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L INTRODUCTION
Spectral Miture Anatysis (SMA) has become a well established procedure for anatyzing
ima.@mgspecuometry dam howeva, the technique is relatively insenAtive to minor sources of

_ v-on (e.g., dtinating stressed from unstressed vegetation and variations in
-Y -MI@. Other statistical approaches have been tried e.g., stepwise multiple linear
em ~Ysis to @et cttnopy chemistry. Grossman et at. (1994) reported that SMLR is
sensitive to measuremtmt emor and that the prediction of minor chemical components are not
Meptmdent of patterns observed in more dominant spectral components tike water. Further,
they obsaved that the relationships were strongly depextdimt on the mode of expressing
reflectance (~-log R) and whether chemistry was expressed on a weight (g/g) or area basis
(@#). Thus, alternative multivariate techniques need to be examined. Smith et al. (1994)
reported a revised SMA that they termed Foreground/Background Analysis (FBA) that
permits direcdng the analysis atong any axis of variance by identifying vectors through rhen-
dimensional spectml volume orthononnat to each other. Here, we report an application of the
FBA tdmique for the detection of canopy chemistry using a moditled form of the analysis.

II. DATA SE1’S AND METHODS
IL1. The leaf reflectance/chemistry data sets
71te study used two datasetsrepresentinga wide range of species having divergent folktr
adaptations and conditions. ‘llese datasets were the LOPEX@afQptical properdes
EILPerhnent)obtained from the JointResearch Centre in (Jacquemoud et al., 1994), and a
simiIar but smatler dataset from the Jasper Ridge Biological Preserve at Stanford University
(Gmwman et al. 1994). The range of variation - several orders of magnitude – depextdedon
the dataset and the specific chemistry (Jaquernoud et al., 1995). Expressing reflectance as
-log R or other transforms provi&s other characteristicsof the variance srructure that could be
better exploited. The variance structure is especially critical for variables like nitrogen that are
in low COm#mWt“on and do not express a wide range of variance between species.

IL2. The analysis
The general form of the SMA quation for each band is expressed as:

NC

DNbs ~I%m.DNlem,b i- Eb, where DNb is the pixel radiance at band b, Fm is the
Ql=l

fraction of each endmember DN~ weighting their radiance at band b, and I% is an error term
accounting for the unmodeled radiance in band b. Endrnetnbersare chosen to explain the
spectrally distinct materhds that form the convex hull of the spectrat volume. ‘Ilk approach
can not mirtimi2ethe spectrat variation of emhrtemberswhose characteristicsare unrelated to
chemistxydetectim. A methodology that could cluster rids variation into a common point is
desired. In respnse to this problem Smith et al. (1994) divide spectrat measurements into
-W wld “f-ground” ti “background” spectra. ‘l’heirFBA appmwh defms a w
vector (withcoqonents w at each band b) such that d foreground DN S~ti vectors are
~ojected to 1and all background DN vectors to O.‘lids property is set by the FBA system of
equations:

foreground ~wb.DNb+C= 1 and background ~wb.DNb + C = O material
b=l b=l
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whereC pvides a translation.A singularvalue decanposition algorithm is used to determine
tiwwwdhdmti tcbt~ti=bhfm -d--qtim
simuhanmudy. This analysis can be extend to a general system of equations in which the
p@dOnS of - spectra along the vector w are its respective chemistry content. in such a
way spectra are discriminated by their relation to chemistry variables. In the singular value
~ti we selected the seven highest eigenvalues and their respective orthoncrrnal
eigenvecwm to rmount for the spectml variability.

III. RESULTS
111.1.At leaf level
~ FBA was performed to define the best V&tOrfor discrimha ting each CiEIniStl’yshown in
Table 1.The analysis was performed both on the JRC and Jasper Ridge fresh leaf datasets,
and on b JRC dry Ieafdataset using l?, -log I@d other non-standard transfamatkms, like

the squared reflectance (R2 ). We calculated the multiple correlation coefficient (r2), to
~ h P@icted values to ritemeasuredchemicalconcenuations.Thebestfitoverall
(0.94)wasfound for predicting water conkmt (g/g). These results show that the highest # are
found for qx.ctra having high chemical variance @lg. 1).Luw r2 values comspond to
chemistry variables that have limited variance. For example, nitrogen has a wider ran e of

3variation in the JRC dataset than rite Jasper Ridge dataset and the former has higher r . In
con- cellulose has greater variance in the Jasper Rkige dataset and produces a higher r2.
‘llle best-fit predicted and measured chemistry is shown in Figure 2. These rmdts ako show
thatspeuraaredomimued by M mean reflectance response (related to albedo) rather than
variability due to minor absorption. Clearly this is undesiible for detection of canopy
chemistry. We can try to improve detection by considering additional transformations that
reduce the effect of variance around the continuum reiktance and maximize shape
differencaw Such transformations might improve predictions and provide abetter basis for
X-_ bhch-stg of minor constituents,

‘k fw operation was to normahze the spectra and remove albedo differences,

R=~
/

N

— where IN= z R: denotethenormof the reflectancevector R.
i=l

The ttext step uses the fact that high variance values in any signal (reflectance in our case) has
fkequencyoutputintheFourierdomainthatmaybedominatedbyresponsetothedc(response
*_=), W*@amb~eti@ti M~waystiti Foti&@.
We applied a Discrete Fourier Transform(DFT)tothe211 band spectrum to remove high
_ ~ (typkdly related to noise) and a low frequency filter to alleviate the dc
~ The effects of these operations are shown in 13gure3. Normalization of the
reflectance spectxumdoes not affect the shape although it does affect the wavelength
~t ~ structure. ‘he DFT filtering step clemly changes the shape of the spectrum
(mean reflectance inforrnadon is lost), but mhances other desirable characteristics of the
varimce structure. The #s of the FBA analysis on the normalized DIT dataset am shown in
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Table 2 l%e r% of the chemistry variables that have low sample variance (e.g. nitrogen and
celhdose) we improved using fhe squared spect.runLwhile those with high concentration or
haviig high intra-sample variability (like water) maintain an acceptable level of prediction

IIL2. Applkation to AVIIUS data
TheFBA chemistryvectors(water,nitroge~ lign@ and cellulose) derived from the JRC
samples were applied to normalized and filtered AVIRIS images of agricultural fields near the
city of Davis (CA) and to muttitemporal images of Jasper Ridge (CA). These resuha showed
distinct spatial pattetns that were related to land cover and land use and with little evidemx of
random noise, The chemistry patterns were not identical and followed expected patterns for
various land cover classes, e.g., high cellulose concentrationsoccurred in dry grasslands where
water contents and nitrogen concentrations were low. Other patterns were generatty consistent
with ecological characteristics.

IV. CONCLUSIONS
Thevariancestructureof the spectra is highly correlated with biochemical absorption. Where
large variance exists for absorption wavelengths, the relationship to chemistry can be
demonstrated. Thus water, for instance, can be estimated by FBA with a high r2 and a
pmdkled relationsldp that is close to a 1:1 correlation. Relationships are less satisfactory for
chemicals that do not show much intrasample variance or have poorly defiied spcctrd
features. However, the r2 values are improved in datmela where variance has been maximized.
These patterns are observed by comparing rhenitrogen, cellulose and carbon r2 between Jasper
Ridge and JRC (Table 2). Nitrogen concentration at JRC is about 2 times that at Jasper Ridge
while celhdose concentrations are reversed (Grossman et at., 1994). chemistry pxlktions fcr
low-variance datmets are improved by normalization and filtering before application of the
FBA white these procedures do not signifkantly affect the prediction of chemistry for samples
having a high range of variance.

When FBA vectors are applied to AVIRIS image datasets the results show distinct spatial
pattana that follow ecolo icat characteristic. Even biochemical~ like cellulose and carbom

sthat have low slopes and r (4DWM) show spatially explicit patterns that follow expected
landscape trends. Further, spatiat patterns are somewhat independent for each biochemical.
~ although we lack sufficient field data to adequately validate the image patterns,
p’ehminary results support the possibility of developingdirect detection of canopy chemistry
using imaging Spectrornetry.
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Fig. 3. ~f~ts of ~e transformationsfor spectraand variance.
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