The seismic records are generated using the spectral element method (SEM), a numerical method that can synthesize the complete wavefield, has very little intrinsic numerical dispersion, and can incorporate exactly the effect of three-dimensional variations [Komatitsch and Vilotte, 1998; Komatitsch et al., 2002; Chaljub et al., 2003]. This is a very accurate, although costly, numerical method. In order to save computation time and make better use of limited computing resources, the core is kept laterally homogeneous and a modal solution in the core is coupled to the spectral element solution in the heterogeneous mantle above [Capdeville et al., 2003]. Topography, ellipticity, Earth’s rotation, self-gravity, and ocean thickness also are taken into account.

Computation is done for one event at a time, and including many stations does not increase the computational time. In order to get a realistic path coverage with minimum computational time, the data has been generated for 29 events located mainly along plate boundaries (Figure 1a) and recorded at 256 stations (Figure 1b) chosen from the Federation of Digital Broadband Seismograph Network (FDSN) list of stations. A minimum period of 32 seconds was chosen in order to keep the experiment within available computer resources. The source time function is a band-limited wavelet with frequency range of 800–500–35.7–32 seconds. Location, moment-tensor, and source-time function of the events are provided to the users.

The data set is released in two versions: a noise-free one and one where noise from a typical GEOSCOPE broadband station [Stutzmann et al., 2000] has been added. Figure 2 shows an example of a noise-free vertical component calculated in the 3-D model and in the 1-D reference model. The fundamental Rayleigh (R1 and R2) and higher-mode Rayleigh (X1 and X2) can be clearly identified.

The synthetic records can be downloaded from the Institut de Physique du Globe de Paris (IPGP) Web site (http://www.ipgp.jussieu.fr/~qyl/). The data sets are located in the directories named ‘benchmark_no_noise’ and ‘benchmark_with_noise’. In each directory, there are 29 stations...
Acknowledgments

This project is funded by the European Commission’s Human Resources and Mobility Programme Marie Curie Research Training Network SPICE contract MRTN-CT2003-504267. The computations were implemented at IPGP the Institut du Développement et des Ressources en Informatique Scientifique, and the Centre Informatique National de l’Enseignement Superieur.

References


—YELONG QIN and YANN CAPDEVILLE, Département de Sismologie, Institut de Physique du Globe de Paris, France; Email: yq@ipgp.jussieu.fr; VALERIE MAUPIN, Department of Geosciences, University of Oslo, Norway; and JEAN-PAUL MONTAGNER, Département de Sismologie, Institut de Physique du Globe de Paris.

Fig. 2. Synthetic comparison for the Z-component between the (top) three-dimensional model and the (bottom) one-dimensional model.

About AGU

At the Fall Meeting

Toward Broad Community Collaboration in Geoinformatics

PAGE 513

A Town Hall meeting at the upcoming AGU Fall Meeting will be held under the theme “Envisioning the future of Earth science data and knowledge access through a broad national geoinformatics collaboration.”

Geoinformatics (GI) is understood as a distributed, integrated digital information system and working environment that provides innovative means for the study of the Sun-Earth system and other planets through the use of advanced information technologies. It is an emerging science and technology frontier, and it is increasingly recognized as a relevant part of the broader cyberinfrastructure for the sciences (see U.S. National Science Foundation Blue Ribbon Panel Report at http://www.nsf.gov/od/ocri/reports/toc.jsp), both within the academic and applied Earth and planetary science and computer science communities as well as in federal and state agencies.

GI is built on a broad range of disciplinary activities, from major research and development efforts that develop new technologies to provide high-quality, sustained production-level services for data discovery, integration, and analysis, to small, discipline-specific efforts that develop data collections and data analysis tools that serve the needs of individual communities.

Many GI-related service and research activities have become visible over the past five years. However, the impact of GI on research and education, and the efficiency and effectiveness with which it is developed, maintained, and operated, depends on community-based coordination and integration of all these activities. At its heart, GI requires collaboration among geoscientists, information scientists, and computer scientists. The distributed and integrative aspect of GI represent its power as well as its challenges. The Town Hall meeting provides a forum for minimizing redundant GI efforts and for promoting communication and coordination efforts to increase sharing of expertise and technologies.

Over the past few years, a broad consensus has emerged from many workshops, discussions, and white papers that healthy growth in GI will require multiagency and professional society partnerships as well as collaboration among individual projects.