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S U M M A R Y
A general tomographic technique is designed in order (i) to operate in anisotropic media;
(ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a
reasonable computing time. One modus operandi to compute a 3-D body wave velocity model
relies on surface wave phase velocity measurements. An intermediate step, shared by other
approaches, consists in translating, for each period of a given mode branch, the phase velocities
integrated along ray paths into local velocity perturbations. To this end, we develop a method,
which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-
linear forward problem allows to use a conjugate gradient optimization. The Earth’s surface
is regularly discretized and the partial derivatives are assigned to the individual grid points.
Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken
into account through the a priori covariances on parameters with laterally variable correlation
lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from
the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with
real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic
models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities
are located in the tectonically active regions and over the continental lithospheres such as
North America, Antarctica or Australia. At various periods, a significant 4ψ signature is
correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert
& Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ

and 4ψ anisotropic terms.

Key words: azimuthal anisotropy, global phase velocity maps, Rayleigh surface waves,
seismic tomography.

1 I N T RO D U C T I O N

Since the early 1980’s, seismologists have made rapid progress in determining the global 3-D structure of the mantle (Dziewonski 1984;

Woodhouse & Dziewonski 1984, 1986; Nataf et al. 1986; Tanimoto 1990; Montagner & Tanimoto 1991; Su et al. 1994; Li & Romanowicz

1995; Trampert & Woodhouse 1996; Grand et al. 1997; van der Hilst et al. 1997; Ekström & Dziewonski 1998; Laske & Masters 1998;

Ritsema et al. 1999; Mégnin & Romanowicz 2000; Ritsema & van Heijst 2000; Debayle et al. 2005, among many others). Such improvements

were made possible thanks to the impressive increase of high-quality data sets and to the incorporation of sophisticated wave propagation

theories taking into account anisotropy and anelasticity or finite frequency kernels. To derive 3-D global body wave velocity models dif-

ferent types of data can be considered. Traveltimes (and/or waveforms) of body waves and surface waveforms are the most widely used.

When focusing on approaches relying on surface wave velocity measurements—well suited for global and regional studies—the inversion

procedures are obviously different from one to each other. Yet, a common feature shared by several of them is a regionalization step, which

consists in translating the integrated velocities between two points, into local perturbations (e.g. Woodhouse & Dziewonski 1984; Montagner

1986; Trampert & Woodhouse 1995; Laske & Masters 1996; Ekström et al. 1997; van Heijst & Woodhouse 1999; Barmin et al. 2001;
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Trampert & van Heijst 2002; Trampert & Woodhouse 2003; Debayle & Sambridge 2004). The long-wavelength structure of the resulting

global maps to date seems to be well determined, up to the harmonic degree 6. However, as pointed out by Laske (1995), the shorter-wavelength

structures vary significantly according to the different parametrizations and the different groups. And, it turns out that a large part of the

discrepancy can be attributed to the inversion techniques. It is well known, for instance, that heterogeneity amplitudes are not satisfactorily

constrained and depend significantly upon the a priori constraints or ad hoc damping factors. Another major difference relies on the intro-

duction or not of the azimuthal anisotropy. Addressing these two points is of great importance to further assess reliability of tomographic

models.

In this paper, we present our method, entitled Computation of Large Anisotropic Seismic Heterogeneities (hereafter referred to as

CLASH), to produce global isotropic and anisotropic phase velocity maps. This method is not fundamentally new since it relies on a classical

azimuthal decomposition of waves horizontally propagating, but the idea of using a regular grid and assigning the partial derivatives to the

individual grid points and the introduction of laterally variable a priori operators depending on the ray density and the azimuthal coverage

make it different from others.

A brief description of the forward problem and of the major distinctive features of the CLASH are firstly given. Resolution tests using

synthetic data sets, enable to assess the reliability of our approach. Finally, applications to real Rayleigh wave data sets are presented and our

models are compared with previous results. The issue of the neglect of one anisotropy kind is addressed, by using synthetic data sets, and is

detailed in the Appendix B.

2 T H E O RY A N D I N V E R S E M E T H O D

2.1 Forward problem

Using the Backus’ (1965) harmonic tensor decomposition and the Rayleigh’s principle, Smith & Dahlen (1973, 1975) investigated the first-

order effects of a small anisotropy on the propagation of Love and Rayleigh surface waves. The azimuthal dependence, due to the presence of

a slight anisotropic elastic stratified half-space, is a homogeneous trigonometric polynomial of degree 4 in ψ , where ψ denotes the azimuth

of the horizontal wave vector, measured clockwise from the north. For a given point (located at θ , φ) and for a given angular frequency ω, C
the local phase velocity is defined as a perturbation of an isotropic reference one, denoted as C0,

C(θ, φ, ω, ψ) = C0(θ, φ, ω) + δC(θ, φ, ω, ψ). (1a)

The velocity perturbation δC can be expanded as Fourier series in ψ ,

δC(θ, φ, ω, ψ) = 1

2C0(θ, φ, ω)
[A1(θ, φ, ω) + A2(θ, φ, ω) cos 2ψ + A3(θ, φ, ω) sin 2ψ + A4(θ, φ, ω) cos 4ψ + A5(θ, φ, ω) sin 4ψ] .

(1b)

The five An coefficients depend on 21 anisotropic elastic parameters describing the medium through where the surface waves are

propagating (Smith & Dahlen 1973). They are depth integral functions involving canonical harmonic elastic components, as derived in

Backus (1970). These 21 harmonic components are an alternative way to describe exactly the same set as the well known 81 elastic properties,

since the latter are constrained by 60 symmetry conditions. Although the An coefficients are obviously different when considering Love or

Rayleigh wave, the azimuthal dependence described in eq. (1b) holds for both cases.

In 1986, Montagner & Nataf performed the same first-order development but using Cartesian elastic coefficients. They derived the same

expression as in eq. (1b) and related the five An coefficients to 13 depth functions—which are linear combinations of elastic coefficients—

involving Love or Rayleigh displacement eigenfunctions in an unperturbed medium.

For a given point, the contribution of the total perturbation referred to as A1 eq. (1b) does not depend of ψ and, therefore, describes the

isotropic effects. The fast-axis direction of wave propagation is defined by the linear combination of the four other coefficients.

For a given angular frequency ω, we consider that the jth traveltime of a surface wave train, propagating over the Earth’s surface, can be

expressed, by dividing the corresponding ray path into m segments, as

� j

〈C j (ω)〉 =
m∑

k=1

l jk

C jk(θ jk, φ jk, ω, ψ jk)
, (2)

where 〈Cj(ω)〉 is the integrated (or averaged) velocity along the ray path epicentral distance (in km), noted as � j . The way 〈Cj(ω)〉 is determined,

is beyond the scope of this article; it is only assumed this datum is correctly measured. Following a discrete approach, Cjk represents the local

velocity for each of the m segments, which length is referred to as ljk . For the sake of clarity, geographical variables, θ jk and φ jk , are omitted

in the following. Since the anisotropic effects are taken into account, the local velocity depends on the azimuth, referred to as ψ jk , of the local

unit tangent vector pointing towards the kth segment direction.

Introducing a global reference isotropic velocity, noted as C 0(ω), eq. (2) becomes

� j

〈C j (ω)〉 =
m∑

k=1

l jk

C0(ω)

[
1 + δC jk(ω, ψ jk)

C0(ω)

]−1

, (3)
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and by using a Taylor–McLaurin expansion, we obtain

C0(ω)

〈C j (ω)〉 − 1 = 1

� j

m∑
k=1

l jk

∞∑
n=1

(−1)n

[
δC jk(ω, ψ jk)

C0(ω)

]n

. (4)

Since 〈Cj(ω)〉 refers to an independent datum, the jth component of the data vector, hereafter referred to as d, is equal to the left member of

eq. (4). The data space dimension is then directly given by the amount of integrated velocity measurements. In practice, n is set to 3 in order

to prevent numerical truncating effects (see Beucler et al. 2003, Appendix A).

Following eq. (1b),

δC jk(ω, ψ jk)

C0(ω)
= 1

2C2
0 (ω)

[A1 jk(ω) + A2 jk(ω) cos 2ψ jk + A3 jk(ω) sin 2ψ jk + A4 jk(ω) cos 4ψ jk + A5 jk(ω) sin 4ψ jk], (5)

represents a linear combination of five unknowns and hence is referred to as parameters or model, indifferently. By defining a new set of

points (located as well on the Earth’s surface), such as ∀ j , ∀k, ∃i : θ i = θ jk and φ i = φ jk , the forward problem can be finally written as

d = g(p),

C0(ω)

〈C j (ω)〉 − 1 = 1

2� j C2
0 (ω)

m∑
k=1

l jk

∞∑
n=1

(−1)n[A1i (θi , φi , ω) + A2i (θi , φi , ω) cos 2ψ jk

+ A3i (θi , φi , ω) sin 2ψ jk + A4i (θi , φi , ω) cos 4ψ jk + A5i (θi , φi , ω) sin 4ψ jk]n . (6)

The index i now refers to the component of the parameter vector p. Thus, p is composed of five subvectors (p1 . . . p5), each of them

corresponding to the isotropic or the anisotropic perturbations. The parameter space dimension is entirely conditioned by the new basis

gridding the Earth’s surface and by the resolution degree of the derived model.

2.2 Inverse method

When considering eq. (6), a classical gradient least-squares optimization (Tarantola & Valette 1982b) is well suited to solve our problem.

Since the latter is widely employed in many geophysical studies, only a brief presentation is given while the main particularities of the CLASH

are detailed in the following.

In order to generate an improved parameter estimate (pk), starting from an initial parameter distribution (p0), we use an iterative algorithm

as expressed in eq. (23) in Tarantola & Valette (1982b),

pk = p0 + CpGT
k−1M−1 [d − g(pk−1) + Gk−1(pk−1 − p0)] ,

with
(7)

M = [
Cd + Gk−1CpGT

k−1

]
, (8)

where G is the partial derivative matrix, Gk−1 = ∂g(pk−1)

∂pk−1
. Cd and Cp are the a priori covariance operators on data and parameters, respectively.

The weak non-linearity of the forward problem allows to choose any model as starting vector. For each iteration k, the compromise between

modifying the model to better fit the data while keeping a good balance with the a priori constraints imposed on the parameters, is measured

by the misfit function, whose image is

S(pk) = 1

2

[
(g(pk) − d)T C−1

d (g(pk) − d) + (pk − p0)T C−1
p (pk − p0)

]
. (9)

When considering this inversion scheme as an intermediate step of a whole procedure deriving 3-D seismic velocity model, the values now

treated as data sets result from previous epicentre-to-station velocity measurements. Based on smallest a priori assumptions, the a posteriori
variance on a given integrated velocity is the only value set as a priori variance on the corresponding datum.

2.2.1 Discretization of the parameter space

In most existing tomographic methods producing global phase velocity maps, the parameter space is expanded into spherical harmonics. In

practice, all phase velocity maps are truncated at a given arbitrary degree and Trampert & Snieder (1996) as Spetzler & Trampert (2003)

showed that a wrong estimate in the poorly sampled regions can bias the amplitudes in the best-covered parts of the model, even at low degrees.

In order to prevent truncating effects, other approaches rely on cubic B-spline basis on a triangular grid of knots (Wang & Dahlen 1995; Wang

et al. 1998) or on the Delaunay triangulation on a sphere (Barmin et al. 2001; Levshin et al. 2005).

The CLASH relies on another type of parametrization which is, in some respect, similar to the two latter approaches. The gridding

method used here offers advantages not to present some strong metric disparities between two neighbouring points located in the equatorial

or in the polar regions, and to simplify the regularization of the Cp operator. The main idea is to evenly discretize the model space in the

metric sense: the Earth’s surface is divided into a number of small circles, parallel to the equator plane. They are evenly spaced out in latitude

following a given input distance value. Starting from one geographical pole, grid points on each small circle are determined such that two

successive knots are equally distant of the same distance value. The whole grid is rearranged and finally optimized, in the least-squares sense,

such as the distance between two points on the surface, corresponding to two successive parameter vector components, is the closest to the

input distance value.
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Figure 1. Laterally variable a priori covariances on parameters. The Earth is regularly discretized in 2036 grid points (+). On the left, the density and

the azimuthal distribution of ray paths surrounding the considered grid point (white ⊕) provide naturally a well-determined problem. Hence, the resulting

covariances for this point match a Gaussian distribution over the spherical surface. On the right, since the regional ray path coverage around the considered

grid point (white ⊕), using initial correlation lengths of 600 km, is not sufficient to ensure a well-determined problem, they are modified and the resulting

distribution exhibits an eastward stretching. See Section 2.2.3 for details.

All the models derived by using synthetic or real data sets and presented in this paper are built with an input distance of 500 km. As

shown in Fig. 1, the Earth’s surface is consequently discretized in 2036 grid points.

2.2.2 Relationships between data and parameters

Most tomographic methods rely so far on the great-circle approximation. Even though it was shown a long time ago that velocity heterogeneities

induce focusing and defocusing effects of a ray bundle, the agreement between results of studies accounting for off-great-circle propagation

(Wong 1989; Laske & Masters 1996, 1998; Wang et al. 1998) and others is, however, very good, provided that seismic wavelength is smaller

than the heterogeneity length scale. Considering that off-great-circle effects for large length-scale tomography (Spetzler et al. 2001), and

especially for minor arcs (Woodhouse & Wong 1986) are of second order, it is also assumed here that the seismic waves are propagating along

great-circle paths joining epicentres to stations.

One main point of the CLASH relies on the relationships between the geographical distribution of ray paths (composing a given data set)

and the location of the parameter components. Since these geometrical relationships determine the length and the azimuth of each segment,

referred in eq. (6) to as ljk and ψ jk , respectively, they are of great importance. Assuming that the main issue is to know whether a given

ray path is intersected by others, our whole approach primarily depends on the geographical ray distribution and on the amount of ray path

intersections.

In order to illustrate our approach few rays are sketched in Fig. 2. The first step consists in computing all crossing points between all the

ray paths. This operation is equivalent to divide a given epicentral distance in as many segments (minus one) as many times it is intersected by

other rays. For each intersection, the nearest grid point (represented by +) is determined. Each grid point is secondly orthogonally projected

on the corresponding ray part, defined by two successive crossing points. As shown in Fig. 2, this operation provides an exact determination

of the length and the azimuth of the part of the ray attached to the nearest grid point.

When looking at Fig. 2, it becomes obvious that some ray segments are not always related to the nearest grid points, which is only due to

the small amount of ray paths shown for the sake of clarity. If a few more rays, propagating in this area and crossing the considered ray path,

are added, this bias rapidly vanishes. We may add that the minimum condition requirements and the computation of the Cp operator ensure

that such artefacts are correctly accounted for and can degrade the output model resolution but cannot affect the reliability of the results.

As a concluding remark, the major differences with other approaches are

(i) the effective length of a segment is determined only through the path intersections, which avoids smearing effects due to a preferentially

oriented ray bundle, usually met in the actual geographical distributions of events and stations and

(ii) each segment is associated with only one grid point instead of several, using barycentres or linear interpolations, which greatly lightens

the computations.
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Figure 2. Sketch illustrating the relationships between the ray paths and the grid points (+). For a given ray path (bold line joining S to R) all intersections

with others are computed. For each crossing point (•), the nearest grid point is determined and the part of the epicentral distance related to it, referred to as ljk

(eq. 6), is computed. It is symbolized by the base length of the corresponding hatched triangle.

2.2.3 A priori covariance operator on parameters

When considering the azimuthal anisotropy in its comprehensive form, the parameter vector p is composed of five subvectors (eq. 6).

Consequently, the a priori covariance operator on parameters Cp is modelled by five submatrices. Since the different subvectors describing

the velocity perturbation are independent, there is no covariance between elements belonging to two different submatrices.

Cp is usually employed to control the variation range of the model vector components when data variances are too large. In addition

we impose in the CLASH, as a first priority, that Cp ensures a well-determined problem over the whole parameter space. This implies that

the correlation lengths between two components of one model subvector, can vary according to the spatial and/or the azimuthal ray density.

Consequently, in a poorly sampled region, the output model resolution is degraded but the amount of linear equations is always sufficient to

well solve the problem.

This atypical feature is realized in three steps: for a given initial correlation length and by using the ray path intersections, the first

stage determines how many ray segments are related to a given grid point and with which azimuth. For a given grid point, when the local

azimuthal distribution criterion is not matched—that is, not enough rays and/or not evenly distributed in the angular sense—the correlation

length is extended, in order to increase the amount of linear equations involving the corresponding model vector component. For the two 2ψ

terms for example, it means that, within the area defined by a given correlation length, at least four local azimuth values have to be evenly

spaced over the [0, π ] angular domain (mod π ). In practice, the local azimuthal distribution criterion is the same for both the 0ψ and the 2ψ

parameters and stricter for the 4ψ . The second step consists in a regularization of the correlation length distribution to avoid strong disparities

between neighbouring grid points and then to generate a positive definite operator (Tarantola & Valette 1982a). The covariances between two

components, belonging to the same submatrix, are finally computed by using a spherical probability density function (Fisher 1925, 1953).

Two examples of covariance distributions, corresponding to two different coverages, are shown in Fig. 1.

On the left (Fig. 1a), the area surrounding the considered grid point (white ⊕) is sufficiently covered, with a good azimuthal distri-

bution. Hence the initial correlation length does not need to be increased and the resulting covariances for this point match a Gaussian

distribution over the spherical surface. On the other hand, in Fig. 1(b), since the region located in the mid-Atlantic ocean (east of Brazil)

is not satisfactorily covered, correlation lengths of concerned components are largely increased. Due to the symmetry conditions, the co-

variances corresponding to the grid point located in Brazil (white ⊕) are modified and the resulting distribution exhibits an eastward

stretching.

In comparison with approaches relying on fixed correlation lengths over the parameter space, our choice prevents from any horizontal

smearing phenomenon. It ensures as well an efficient separation between 0ψ , 2ψ and 4ψ perturbations, and avoids the propagation of wrong

measurements from the poorly sampled regions to the best-covered parts of the model.

Finally, it might also be noted that the regular mapping with individual grid knot assignments and with laterally variable covariances take

into account the irregular seismic sampling of the Earth’s surface, and, to some extent, present similarities with sophisticated parametrization

schemes (Sambridge 1999; Nolet & Montelli 2005).
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3 R E S O L U T I O N T E S T S U S I N G S Y N T H E T I C DATA

3.1 Preliminaries

In order to assess the reliability and the robustness of the CLASH, many synthetic tests were performed but only the most relevant are detailed

in this section. For the sake of clarity, the results of synthetic tests showing the effects of the neglect of anisotropic terms are detailed in

Appendix B.

3.1.1 Methodology

Descriptions and differences between all synthetic tests are summarized in Table 1. For each experiment, the same methodology is followed:

(i) Starting from a given synthetic set of parameters (referred to as input model), velocities integrated along spherical paths, denoted as

〈Cj(ω)〉 in eq. (6), are computed by using the forward problem equation.

(ii) The synthetic data sets are composed of 9288 epicentre-to-station integrated velocities. The coverage is identical to the ray path

distribution used for the inversion of the real 100 s Rayleigh fundamental mode measurements, and is shown in Fig. 3(a). Epicentre and station

locations come from the Harvard CMT catalogue and from the Federation of Digital Broad-Band Seismograph Networks (Fig. 4), respectively.

(iii) For each synthetic test, the same a priori variances on parameters are set. They correspond to standard deviation values of 5 per cent

and 1 per cent for isotropic and anisotropic parameters, respectively.

(iv) Both isotropic and anisotropic output models are plotted using equal area Hammer projection. They are centred on the longitude

φ = 180◦.

3.1.2 Graphical representation of the output models

For both the first two synthetic test results and the models obtained by the inversions of real data sets, the models are displayed in terms

of isotropic and maximum anisotropic perturbations. The isotropic perturbations are expressed in per cent with respect to the reference

velocity, and are mapped with colour scales (Figs 6 and 9). The peak-to-peak amplitudes of anisotropy are represented by the segments, which

correspond to the fast propagation axes. The length of segments reflects the amplitude perturbations (in per cent, with respect to the reference

velocity) and the azimuths of fast axes are represented by the segment directions. When considering 2ψ or 4ψ anisotropic parameters separately

(Figs 10 and 11), the amplitudes and the azimuths can be readily found, which is not feasible for the comprehensive form of anisotropy, say

2ψ+4ψ perturbations (Figs 12 and 13). Consequently, the amplitude perturbations and the fast-axis azimuths are numerically computed,

using eq. (1b), between 0 and 180◦, with a step of 0.25◦, as shown in Fig. 5.

3.1.3 Graphical representation of the a posteriori variances

From a theoretical point of view, values of the a posteriori standard deviations of parameters are given by the square root of the diagonal

elements of the a posteriori covariance matrix, referred to as Cpp (Tarantola 1987, p. 189),

Cpp = Cp − CpGT
k−1M−1Gk−1Cp, (10)

with M as defined as in eq. (8). For all parameters but isotropic, such estimates are however meaningless, therefore, the a posteriori variances

on 2ψ and 4ψ anisotropic parameters are turned into uncertainties in the amplitude perturbations and in the fast-axis azimuths. To this end,

for a given grid point, the a posteriori anisotropic standard deviations are added to and subtracted from the corresponding parameter values,

making 16 new anisotropic perturbation curves, as a function of ψ , as shown in Fig. 5. For each curve, the maximum of the perturbation

Table 1. Description and values of χ2 for the resolution tests using synthetic data sets. p0 and p f refer to the

starting and the final models, respectively.

Input Inverted χ2(p0) χ2(p f ) Variance Figure(s)

model parameters red. (per cent) n◦

Test #1 0ψ , 2ψ , 4ψ 0ψ , 2ψ , 4ψ 1.5067 0.0021 99.8 6(a), 7

Test #2 0ψ , 2ψ , 4ψ 0ψ , 2ψ , 4ψ 4.5269 0.0033 99.9 6(b), B1

Test #3 0ψ , 2ψ , 4ψ 0ψ , 2ψ 4.5269 0.0697 98.4 B2(a)

Test #4 0ψ , 2ψ , 4ψ 0ψ 4.5269 0.2489 94.5 B2(b)

Test #5 0ψ , 2ψ 0ψ , 2ψ , 4ψ 4.3117 0.0016 99.9 B3(a)

Test #6 0ψ , 2ψ 0ψ 4.3117 0.0986 97.7 B3(b)

Test #7 0ψ 0ψ , 2ψ , 4ψ 4.2026 0.0005 99.9 B4(a)

Test #8 0ψ 0ψ , 2ψ 4.2026 0.0005 99.9 B4(b)
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Figure 3. Ray path coverages used for both the computation of synthetic data sets and the inversions of real data sets. They correspond to (a) the fundamental

mode at 100 s and (b) the second overtone at 150 s.

and the corresponding azimuth are computed numerically. The so called a posteriori uncertainties in the amplitude perturbation and in the

azimuth are finally given by the difference between the largest and the lowest maxima and by the widest angular domain between all azimuths,

respectively.

3.1.4 Quantitative comparisons in the data space

In order to compare two different inversion results, it is possible to use a misfit estimate in the data space. For a given iteration k, we may

define χ2, as a function of the model pk ,
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Figure 4. Locations of the 141 FDSN stations (IRIS and GEOSCOPE) processed for the construction of our Rayleigh wave phase velocity maps. The same

station set is used for the resolution tests using synthetic data.
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Figure 5. 2ψ + 4ψ anisotropic perturbations are computed numerically, using eq. (1b), between 0◦ and 180◦ (bold line), thereby providing the amplitude and

the azimuth of the fast axis. Adding to and subtracting from the a posteriori standard deviations make 16 new curves, similarly computed (dashed lines). For a

given point, when the a posteriori variances on both 2ψ and 4ψ parameters are (a) very small, the 16 curves almost perfectly fit the bold one. Consequently,

uncertainties in the amplitude and in the azimuth are lower than 0.1 per cent and 1◦, respectively. On the other hand, when the a posteriori variances are (b) much

larger, they provide 16 various curves (dashed lines). The resulting uncertainty in the azimuth is large as well as in the amplitude.

χ 2(pk) = 1

N
(g(pk) − d)T C−1

d (g(pk) − d), (11)

where N is the number of data. When iterations start from the null model, the χ2(p0) value yields a good estimate of how the reference velocity

explains the data set. In Tables 1 and 2, the values of χ 2, for both the synthetic tests and the real data inversions, are reported for the starting

and for the final model, noted as p f .

3.2 Synthetic test results

In the first experiment, the input model, in which the data are synthetized, is strongly unrealistic (Table 1). As shown in Fig. 6(a), it is composed

of four square anomalies, two of them being purely isotropic, located on the west of Central America and eastward from Australia. The two

others contain isotropic and both 2ψ and 4ψ anisotropic perturbations (from Manchuria to Australia and on the east of Japan). They are

realized using step functions and, therefore, are not outwardly well suited to be recovered by an inverse method providing smooth varying

parameters. After inversion of the synthetic data set, both the shapes and the amplitudes of isotropic and anisotropic heterogeneities are very

correctly retrieved.

This can be seen qualitatively in Fig. 6(a) and also quantitatively when considering the variance reduction in Table 1. Only two small

and very weak secondary oscillations are hardly visible. The fast-axis directions are almost identical to the input ones in the two anisotropic

regions and, as a consequence, no anisotropic perturbation is observed elsewhere. As shown in Fig. 7, areas where anisotropy is reliably
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Figure 6. Resolution tests using synthetic data sets. The blue segments represent the fast-axis directions which are scaled to the anisotropic perturbation

amplitude, expressed in per cent. For the Test #1 (a), the input model is strongly unrealistic while for the Test #2 (b), the input model is realistic but highly

heterogeneous.

detected are clearly highlighted through the a posteriori variances, especially the uncertainties in the fast-axis azimuths, shown in Fig. 7(c).

As an example, few components of the parameter vector, corresponding to the grid points located on the east of Honshu (Japan), are not

satisfactorily retrieved. It might be noted that this is the unique region where the fast-axis directions are not well recovered. The bad retrieving

is due to the rapid variation of the input model anisotropic terms over a too small distance, compared to the 600 km correlation lengths.

Considering the a priori covariance operator on parameters, such rotations of fast-axes are impossible to retrieve but, as seen in Fig. 7(c), this

wrong measurement is clearly outlined. Thus, computation of the a posteriori variances on parameters, and consequently, the transformation

into uncertainties in the anisotropic amplitudes and in the fast-axis azimuths is an efficient tool to assess whether a region is reliably constrained.

The second resolution test is realized by using a much more realistic input model. As shown in Fig. 6(b), the input model encloses smooth

isotropic and both 2ψ and 4ψ anisotropic heterogeneities. In order to be consistent with the Earth’s surface discretization and the initial value

of the correlation lengths, the smallest length scale of heterogeneities to be recovered is set to 600 km. An interesting feature of the input

model is to present much larger perturbation amplitudes, than the a priori variances set in Cp, up to 12 per cent for the 0ψ terms and up to 3

per cent for the anisotropic terms. When comparing the value of χ2(p0) for this test with respect to the Test #1, reported in Table 1, the input

model is undoubtedly highly heterogeneous. It might be noted that such a discrepancy in the data set is greater than those measured for the

real Rayleigh wave data set, as reported in Table 2.

The output model is presented in Fig. 6(b) and it turns out that almost all anomalies, isotropic and anisotropic, are very well recovered.

Even though such large perturbation amplitudes are not a priori expected, the derived model converges to the right amplitudes, after three

iterations. The very good agreement between input and output models can be seen as well in the data space through the χ2(p f ) value. As shown

in the quantitative comparison maps, presented in Fig. B1, the four output anisotropic subvectors are almost identical to the corresponding

input ones and only very small differences are noticeable for the 0ψ parameters. The largest distances, between isotropic input and output

models, are located in a well-known poorly sampled area of the Earth’s surface (around the Kerguelen archipelago) and reach values of

1.1, which corresponds approximately to a velocity difference of 1 per cent. Concerning the anisotropic parameters, the largest difference is

observed in the same region for the sin 2ψ and the sin 4ψ parameters and does not exceed the value of 0.58.
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Figure 7. Test #1 a posteriori variances on parameters. The variances on (a) isotropic parameters are readily deducted from the Cpp matrix (eq. 10) whereas

they are turned into uncertainties in (b) the amplitudes and (c) the azimuths of anisotropic perturbations. (b) and (c) are computed as detailed in Section 3.1.3
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Figure 8. Data set perturbations with respect to the PREM. For the fundamental mode and the first two overtones, the inverted phase velocity perturbations

are computed as a function of period as defined in (eq. 12).

4 A P P L I C AT I O N T O R E A L DATA S E T S

We constructed global isotropic and anisotropic phase velocity maps from our fundamental and overtones Rayleigh wave data sets, measured

by the roller-coaster algorithm (Beucler et al. 2003).

4.1 Preliminaries

The spheroı̈dal mode-branch classification used hereafter is the same as Okal ’s (1978). Only the first Rayleigh wave trains, with epicentral

distances between 55◦ and 135◦, are selected. As shown in Fig. 4, 141 FDSN stations (IRIS and GEOSCOPE networks) are processed to build

the inverted data sets. 229 422 vertical seismograms were manually inspected and only 19 020 were picked and retained for phase velocity

measurements. As explained in Beucler et al. (2003), all sufficiently close events are clustered into boxes of approximately 2◦ × 2◦, and each

individual ray path belonging to the same box is considered to give equivalent results as a common ray path. Consequently, the amount of the

integrated phase velocities is significantly reduced, compared to other studies. The ray path coverages corresponding to the 100 s fundamental

mode of Rayleigh waves and the 150 s second higher mode are shown in Fig. 3.

The Cd operators are diagonal and are only composed of a posteriori variances provided by the roller-coaster algorithm. Considering

that our knowledge of the amplitude of isotropic and anisotropic perturbations does not differ with respect to the period or the mode branch,

the same Cp partitioned matrix is used for the inversions. The parameter variations are expected to be within 5 per cent and 1 per cent for

the isotropic and the anisotropic components, respectively. The initial correlation lengths are set to 600 km for the fundamental mode and

1050 km and 1250 km for the first and the second overtones at 150 s, respectively.

According to the conclusion of the synthetic tests presented in the Appendix B, both 2ψ and 4ψ anisotropic parameters are taken into

account in the inversions of our Rayleigh wave data sets. Since undulations in the topography of discontinuities have no more than a second-

order effect on the azimuthal terms (Trampert & Woodhouse 2003), crustal corrections are not applied at this stage. For each calculation
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and (b) 100 s. Our 0ψ models for (c) the first and (d) the second overtones at 150 s are shown beside vHW1999’s results. Plate boundaries are plotted in blue.
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Figure 10. 2ψ (top) and 4ψ (bottom) models for the fundamental mode of Rayleigh waves at 60 s. Anisotropic parameters derived by the CLASH are displayed

in the left column while TW2003’s results are shown on the right side. The grey scale in the background corresponds to the peak-to-peak amplitude of anisotropy,

expressed with respect to the PREM phase velocity. The black segments represent the fast-axis directions, which are also scaled to the amplitude shown in the

background. Plate boundaries are plotted in white.
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Figure 11. Same as in Fig. 10 but for the Rayleigh wave fundamental mode at 100 s.
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Table 2. Processing information and χ2 values for the inversions of real Rayleigh wave data sets. p0 and p f

refer to the starting and the final models, respectively.

Amount Max corr. Mean corr. χ2(p0) χ2(p f ) Variance Figure(s)

of data length (km) length (km) red. (per cent) n◦

n = 0 − T = 60 s 9281 1050 623 2.9511 0.2682 90.9 9(a), 10, 12

n = 0 − T = 100 s 9288 1050 623 0.8516 0.1546 81.8 9(b), 11, 13

n = 1 − T = 150 s 1699 4150 1871 1.7588 0.8250 53.1 9(c)

n = 2 − T = 150 s 1831 2700 1460 1.1191 0.6063 45.8 9(d)

of phase velocity map, the starting model is the null vector, providing a good estimate of the data set variability through the χ2(p0) values

shown in Table 2. As a final introducing remark, we used the same parametrization for all inversions. The Earth’s surface is discretized in

2036 grid points (Fig. 1). Hence, the total amount of isotropic and anisotropic parameters is 10 180. Actually, since the neighbouring points

are correlated to the Cp operator, the amount of independent variables is smaller.

Before analysing and comparing models themselves, we can make a comment on the 1-D reference model. As other methods (e.g.

van Heijst & Woodhouse 1997; Ekström et al. 1997), the roller-coaster algorithm (Beucler et al. 2003) measures phase velocities integrated

along ray paths, and uses synthetic seismograms computed in PREM (Dziewonski & Anderson 1981). For a given period and a given mode

branch, the discrepancy between all measured phase velocities, now considered as data, and the corresponding PREM value reflects how the

PREM explains vertical seismograms. In order to evaluate this discrepancy, we compute, for each angular frequency,

δC

CPREM

= C(n, ω) − CPREM(n, ω)

CPREM(n, ω)
× 100, (12)

where C is the median value of all measured phase velocities and n refers to the radial order of the mode branch. The results are presented

in Fig. 8, as a function of period, for the fundamental mode and the first two overtones. As pointed out by Trampert & Woodhouse (2001),

we find that, for the fundamental mode, the longer the period, the better seismograms are explained by the PREM. But, with our data sets,

we observe a small increase of the discrepancy for very long periods (larger than 250 s). We add that, for the first two overtones, completely

different trends are observed. It might be noted that the velocity perturbations with respect to the PREM are nevertheless lower than 0.9 per

cent and each curve exhibits coherent variations over the whole period range. Such behaviours may be related to the systematic exploration

step of the roller-coaster algorithm, which provides a collection of starting models for further more detailed inversions. Consequently, the

measured phase velocities can greatly differ from the PREM since the data signals impose it.

4.2 Isotropic models

The isotropic part of the constructed phase velocity maps, for the fundamental mode at 60 s and 100 s and for the first and the second overtones

both at 150 s, are presented in Fig. 9. Our isotropic models are shown on the left side and are compared to the results obtained by Trampert &

Woodhouse (2003, TW2003) and by van Heijst & Woodhouse (1999, vHW1999).

For both the 60 s and the 100 s fundamental mode inversions, the maximum value of laterally variable correlation lengths reaches 1050 km,

at only two grid points (located around θ = −27◦, φ = 218◦). The necessary regularization, in order to preserve Cp as a positive definite

matrix, induces a average value of all correlation lengths of 623 km, which is, therefore, approximately the half the lateral resolution degree

of our fundamental mode phase velocity maps. Such an observation tends to conclude that a set being composed of approximately 10 000

data, evenly distributed over the Earth’s surface, is sufficient to construct phase velocity maps with a lateral resolution degree of 1000 km,

say up to degree 20. For both the first and the second overtones, due to the ray path coverages, the correlation lengths are largely increased,

as shown in Table 2. As a consequence, the lateral resolution degree of higher-mode phase velocity maps is degraded, mostly in the southern

hemisphere. When comparing the value of the maximum correlation lengths for the first and the second higher mode in Table 2, it might be

noted that only a difference of 130 ray paths can drastically increase the resolution degree.

Due to the shallow sensitivities to P and S body waves for the fundamental mode at 60 and 100 s, and kernels related to the A1 parameters

(Smith & Dahlen 1973; Montagner & Nataf 1986), it is well known that isotropic phase velocity perturbations are correlated to first order to

the tectonic features. We can clearly observe as well this correlation in Figs 9(a) and (b). The low-velocity anomalies are mainly located in

the tectonically active regions whereas high-velocity locations match more stable areas such as the cratons and the old part of oceanic pates.

Concerning the stable regions it is of interest to note that the North Australian craton seems to extend off-shore into Papua New Guinea and

towards the Indian Ocean, concurring with previous study results beneath Australia (Simons et al. 1999; Debayle et al. 2005). Many volcanic

region locations are well correlated with low-velocity perturbations (e.g. Afar, Hawaii, Tuamotu archipelago, Azores, Iceland).

In order to compare our results, we plot TW2003’s phase velocity maps on the right side of Figs 9(a) and (b). We find that our 0ψ models

of fundamental mode at both 60 s and 100 s are very similar to TW2003’s. Since the same colour scale is used for plotting maps at each period,

it is essential to note that this good agreement concerns both the locations and the amplitudes of heterogeneities. We may observe however that,

for both 60 s and 100 s phase velocity maps, our isotropic perturbations are more equally distributed around the corresponding PREM phase
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Figure 12. 2ψ + 4ψ model for the fundamental mode of Rayleigh waves at 60 s. The grey scale in the background corresponds to the peak-to-peak amplitude

of anisotropy, expressed with respect to the PREM phase velocity. The black segments represent the fast-axis directions, which are also scaled to the amplitude

shown in the background. Plate boundaries are plotted in white.
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Figure 13. Same as in Fig. 12 but for the Rayleigh wave fundamental mode at 100 s.

velocity. As an example, for the 100 s isotropic model, the linear regression intercept and coefficient of our 0ψ perturbations are of 0.17 and

−8.8 10−6, respectively, whereas they are of 1.08 and −2.9 10−5 for TW2003. The same feature is observed for the 0ψ perturbations at 60 s.

This means that TW2003’s models are shifted of about +1 per cent with respect to the PREM phase velocity, which turns the resulting maps

towards green colours. We may add that very few and small disparities can be noted, for instance in the regions surrounding Hawaii, Tuamotu

archipelago or the Cap-verde islands, which raises the issue of the relationships between ridges and volcanic regions. The two different kinds
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of parametrization make difficult any further quantitative comparison, which are beyond the scope of this article and will be performed in the

future.

For both the first and the second overtones, our isotropic models are presented on the left side of Figs 9(c) and (d), facing the results of

vHW1999. Since the sensitivities to P and S velocities for higher modes are more complicated than for the fundamental mode, the correlation

between phase velocity perturbations and tectonic features is more hazardous. As pointed out by vHW1999, most first overtone high velocities

are related to the cratonic areas of continents. We fairly agree with this observation except for the African continent, but it may be due to our ray

path coverage (Fig. 3b). Concerning the latter point, for both the first and the second overtones, due to the laterally variable correlation lengths,

a large discrepancy between northern and southern amplitude power spectra is observed. We add that a posteriori variances on both isotropic

and anisotropic parameters (not shown here) clearly reflect uncertain measurements in the southern hemisphere (except around Australia) and

for the whole African plate. Our best-resolved parts of the 0ψ model are the western part of the Pacific ocean up to central China, the Europe

and the western part of North and South Americas. Due to the laterally variable correlation lengths, these regions are not affected by spurious

anomalies related to Gibbs phenomenon. It should be mentioned that the first overtone low-velocity zone lying between India and the Kara

sea (north of Ural mountains), exhibiting a northward stretching, is indisputably associated with large a posteriori variances.

When comparing our results with previous ones, we observe that, at long wavelengths, our anomaly locations in Figs 9(c) and (d)

are broadly consistent with vHW1999. It appears that the heterogeneity amplitudes of phase velocity maps of vHW1999 are three times

smaller than ours. This noticeable difference may be related, on one hand, to the damping factors or to the neglect of azimuthal anisotropy (as

discussed in the Appendix B) for the vHW1999’s maps and, on the other hand, to the relatively small amount of data for our maps. However, the

best-resolved parts of our first and second overtone 0ψ models, such as the Pacific region, comprising West of Americas, Australia and East

of Asia, match well those of vHW1999. We may add that both our and vHW1999’s isotropic higher-mode anomalies are equally distributed

around the corresponding PREM phase velocity. As example, for the first overtone, the linear regression intercept and coefficient of our 0ψ

perturbations are of 0.18 and −4.9 10−5, respectively, while they are of 0.12 and −1.2 10−5 for vHW1999.

Finally, the variance reductions and the χ 2(p f ) values, shown in Table 2, tend to conclude that we can be confident in our 0ψ models for

the fundamental mode and it appears that the misfit between our overtone results and vHW1999 models might come from the data sets. Hence,

the discrepancy between isotropic phase velocity maps is certainly more related to the different methods for measuring the higher-mode phase

velocities (mode-branch stripping technique and roller-coaster algorithm) rather than to the CLASH itself.

4.3 Anisotropic models

When considering the ray path coverages and the variance reductions for both the first and the second overtones, we decide to only discuss the

fundamental mode anisotropic models. This choice is also justified by the inability to compare higher-mode anisotropic maps with previous

results. Thus, our 2ψ and 4ψ models for the fundamental mode at 60 s and 100 s are presented in Figs (10) and (11), respectively. They are

compared with the results of TW2003. The comprehensive anisotropic perturbations, say 2ψ+4ψ , are computed as described in Section 3.1.2,

and are shown in Figs 12 and 13.

As for the 0ψ models, due to the sensitivities to P and S velocities for the fundamental mode, anisotropic anomalies can be related to

shallow perturbations and hence to the tectonic features. Assuming a transversely isotropic medium, it is well known that the fast-axis directions

of the 2ψ Rayleigh terms match the directions of plate motions in the oceans (Tanimoto & Anderson 1985; Montagner & Tanimoto 1990).

Qualitatively, such correlations can be observed indeed in our 2ψ models (Figs 10 and 11), especially the fast-axis azimuths perpendicular

to the oceanic ridges. At first order, we observe a good correlation between the 2ψ fast-axis directions and the continental crust motions (e.g.

India, Africa or Australia). Concerning the African continent, we observe that the 2ψ fast-axis azimuths are aligned along a north–south

direction, as found by Hadiouche et al. (1989). But, significant and rapid rotations of the 2ψ azimuths are visible in the Kaapvaal craton,

already observed by Freybourger et al. (2001). It might be noted that very low amplitudes of the 2ψ terms are observed in the Afar region

and in Iceland, which is coherent with the presence of large-scale reservoirs of partially melted material.

When comparing our 2ψ models with TW2003’s, shown on the right side of Figs 10 and 11, we globally observe the same patterns in

the fast-axis directions. In both cases, our and TW2003’s results, we note that the strength of the 2ψ anisotropy at 60 s is greater than at 100 s,

which is in agreement with the decreasing discrepancy between measured and the PREM phase velocities, as a function of period, as shown

in Fig. 8. The 2ψ amplitude perturbations are within the same range, say less than 1.3 per cent, but the locations of high-amplitude regions

are not in good agreement. It must be, however, mentioned that TW2003’s lateral resolution is of degree eight for the azimuthal part, which

prevent any further quantitative comparison with our models, whose lateral resolution degree is of approximately 1200 km.

The Rayleigh 4ψ perturbations are more difficult to interpret in terms of tectonic processes. As discussed in the Appendix B, they

are neglected in most tomographic methods inverting Rayleigh wave data sets. However, our anisotropic models for the fundamental mode

at 60 s and 100 s, shown in Figs 10 and 11, obviously display large 4ψ anomalies. Even though the 2ψ perturbations seem to be of larger

extent than the 4ψ , amplitudes are of the same order of magnitude. Quantitatively, the amplitudes of the 4ψ perturbations are 5 per cent

smaller than the 2ψ ones at 60 s, and they are 12 per cent smaller at 100 s. The reasons for the presence of Rayleigh 4ψ anisotropy is

not unique. It can either reflect oceanic complex mineralogical aggregates, comprising ortho- and/or clinopyroxenes, or different 2ψ fossil

fast-axis directions that may be encountered in regions such as old parts of oceanic plates or continents. In Figs 10 and 11, we observe indeed

that the 4ψ amplitudes are relatively large in many continental regions (e.g. Turkey, Tibet, central Australia, Greenland, North America,

Antarctica) as well as in tectonically active areas (e.g. west coast of North America, Aleutians, west of the Pacific plate). It may be of
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interest to add that all anisotropic models, between 40 s and 200 s, exhibit large 4ψ amplitudes stretched along the Hawaii hotspot track.

Since the density and the azimuthal distribution of ray paths are checked during the computation of Cp, it cannot exist biases due to the ray

path coverages. Moreover, the fast-axis directions of these 4ψ anomalies are very coherent over the whole period range and hardly no 2ψ

perturbations are visible in this region. Both petrological and thermal insights of such observations need to be further investigated. For all

anisotropic models, computed at various periods, most locations of high 2ψ anisotropy do not match those of high 4ψ and the 2ψ fast-axis

directions disagree with the 4ψ directions. Hence, we think that a significant part of the data signal cannot be only explained by the 2ψ terms.

When considering 2ψ + 4ψ perturbations, represented in Figs 12 and 13, it appears nevertheless that the fast-axis directions are mostly

dominated by the 2ψ anisotropy but some rapid rotations in specific locations show that the strength of the 4ψ anisotropy is definitely not

negligible.

As previously mentioned, the difference of lateral resolution degree makes difficult any quantitative comparison with the 4ψ models

of TW2003. We observe that the directions of fast-axes, at both 60 s and 100 s, are however in fairly good agreement (e.g. South of Alaska,

Tonga-Kermadec zone, Tibet). The major difference between our 4ψ models and TW2003’s concerns the evolution of amplitudes, as a function

of period. In our case, as for the 2ψ models, the longer the period, the smaller our 4ψ anomaly amplitudes are, which confirms the trend

observed in Fig. 8. Whereas for TW2003’s models no significant variation is noted between the models at 60 s and 100 s. Finally, we observe

that the 2ψ models at 60 s and 100 s are strongly correlated, as well as the 4ψ perturbations, which seems to indicate a strong azimuthal

anisotropy in the shallower part of the mantle, as observed by TW2003.

5 D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

We investigated the problem of the translation of horizontally propagating seismic wave velocities, integrated between the source and the

receiver, into global isotropic and anisotropic perturbation velocity maps. The forward problem relies on the expression derived by Smith &

Dahlen (1973), which is an extension of the Backus’ decomposition applied to the surface wave case. As many other tomographic methods,

models are calculated by using an iterative gradient least-squares algorithm. Ray paths are assumed to follow great circles, joining epicentres

to stations, and we are aware that a more realistic propagation for surface waves has to be accounted for in the future by modifying the

path sensitivity kernels. The relationships between grid points and data only depend on the crossing point locations between all ray paths,

which prevents artefacts due to any preferential direction of ray bundles, usually met when dealing with real data sets. The inescapable

uneven sampling of the medium, due to the locations of events and stations, is taken into account through the a priori covariance operator on

parameters with laterally variable correlation lengths. The CLASH, is able to handle massive data sets in a reasonable computing time, with

no simplification during matrix computations.

As mentioned in the Appendix B, several existing methods do not consider azimuthal anisotropy or only take into account the 2ψ or

the 4ψ terms, based on synthetic experiment results and also on the theoretical dependence with depth between anisotropic coefficients and

elastic parameters. In order to compare the relative weight of each anisotropic term on the total perturbation, Montagner & Nataf (1986) used

realistic Cij matrices of elastic coefficients to simulate the azimuthal anisotropy in the lithosphere and in the asthenosphere. They found that

the phase velocities of the Rayleigh fundamental mode have a significant 2ψ anisotropy and a negligible 4ψ whereas the a contrario trend

is observed for the Love wave case. When they consider a realistic Cij matrix corresponding to a hartzburgite (Peselnick & Nicolas 1978),

the same 2ψ dominant feature is found for the Rayleigh waves but concerning the Love wave anisotropy, they conclude that the amplitude

of both 2ψ and 4ψ terms is quite small and somewhat dependent upon the Cij matrix. Other studies show that the effect of the azimuthal

anisotropy is, in general, relatively small for Love waves (Schlue 1977; Kawakasi 1986; Montagner & Nataf 1986). And, Debayle et al. (1998)

also showed that a negligible 4ψ Rayleigh and 2ψ Love wave anisotropy is regularly observed in fully, but weakly, anisotropic models. More

recently, Trampert & van Heijst (2002) found that Love wave overtones are strongly sensitive to the anisotropic 2ψ terms.

On the other hand, Laske & Masters (1998) found that, although the contribution of the 4ψ terms is expected to be small for Rayleigh

waves, this result is, however, not observed with their inverted data sets. They add that, if the 4ψ terms are included in the inversion, their

spherical harmonic coefficients are almost as large as those for the 2ψ terms and the only restriction to retrieve reliable 4ψ terms comes

from the ray path coverage. The recent results concerning the fundamental mode of Love and Rayleigh waves (Trampert & Woodhouse 2003)

showed that Love waves are mostly sensitive to the 4ψ anisotropy indeed whereas Rayleigh wave data sets need both 2ψ and 4ψ terms.

We address here the question of the sensitivity of the anisotropic terms from two different points of view. We investigate, using synthetic

data sets, the existence of biases when some of the anisotropic terms are neglected (Appendix B). It is clearly shown that no bias can be

observed when azimuthal anisotropy is taken into account in the inversion process in its comprehensive form, say 2ψ and 4ψ terms. This

observation holds even when perturbations to be recovered are only isotropic. Conversely, the neglect of one of the two kinds of anisotropy

leads to strong artefacts in the resulting models.

According to this observation, we secondly present isotropic and both 2ψ and 4ψ anisotropic models, derived by inversions of real

Rayleigh wave data sets. We observe that amplitudes of the 2ψ and the 4ψ terms are of the same order of magnitude. At various periods, a

significant 4ψ signature is located along the Hawaii hotspot track and needs further investigations. Another interesting feature concerns the

azimuthal anisotropic perturbations located over the continental lithospheres. For instance, at both 60 s and 100 s, large 4ψ terms are observed

in the central and eastern parts of Australia (Figs 10 and 11). In this region, the 2ψ fast-axis directions agree well with the hotspot reference

frame but, due to the considerable 4ψ heterogeneity, the comprehensive anisotropic fast-axis directions, shown in Figs 12 and 13, exhibit rapid

and significant variations. Recent tomographic studies of the Australian lithosphere (Debayle & Kennett 2000; Simons et al. 2002; Simons &
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van der Hilst 2003; Debayle et al. 2005) raised the problem of possible frozen anisotropy in the shallow lithosphere and rapid rotation of the

fast-axis directions around 200 km depth. However, all shear-wave velocity models are inferred neglecting the 4ψ anisotropy and it appears

that a certain part of the apparent discrepancy might be associated with the presence of large 4ψ anisotropic seismic heterogeneities.

Finally, concurring with the conclusions of Trampert & Woodhouse (2003), we think that Rayleigh wave data sets do need both 2ψ and

4ψ anisotropic perturbations in order to be correctly explained.
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A P P E N D I X A : Q UA N T I TAT I V E C O M PA R I S O N S I N T H E M O D E L S PA C E

For all synthetic test results, in order to make some quantitative comparisons of both isotropic and anisotropic parameters, distances between

input and output velocities are shown. For a given point, located on the Earth’s surface, distance functions (equivalent to normalized differences

for linear variables), denoted as δ l , are defined as

∀l ∈ {1, 2, 3, 4, 5}, ∀i ∈ [1, length(pl)], δl (θi , φi ) =
∥∥∥∥ln

(
Cl (θi , φi )

in

Cl (θi , φi )out

)∥∥∥∥ × 100,
(A1)

where input and output velocities are noted as Cl(θ i , φ i )
in and Cl(θ i , φ i )

out, respectively. They are defined as a function of the parameter

subvector components,

Cl (θi , φi ) = C0 (1 + pli ) . (A2)

The subscript l refers to the subvector type: l = 1 for the 0ψ parameters; l = 2 and 3 for the 2ψ terms (cosine and sine, respectively) and l =
4 and 5 for the 4ψ terms (cosine and sine, respectively). The quantitative comparison maps are plotted using Hammer projection.

A P P E N D I X B : S Y N T H E T I C I N V E S T I G AT I O N S O F T H E A Z I M U T H A L A N I S O T RO P Y

Considering that previously shown synthetic tests emphasize the reliability of the CLASH, we address the question to know whether our

method can efficiently separate the 2ψ from the 4ψ anisotropic effects and whether this could have some consequences on the phase velocity

models. As shown in eq. (6), the first-order effects of a small anisotropy on the propagation of surface waves are expressed as Fourier series

in ψ , involving both 2ψ and 4ψ parameters. Assuming a transversely isotropic medium, several studies showed that the Rayleigh waves are

only slightly sensitive to the 4ψ terms and conversely for the Love waves with the 2ψ terms (Smith & Dahlen 1973; Montagner & Nataf

1986; Debayle et al. 1998); and moreover conclude that most data signal can be explained by isotropic perturbations. Consequently some

global tomographic methods neglect the 4ψ anisotropy for Rayleigh waves, and conversely for Love waves, while others do not account for

anisotropy at all. On the other hand, Trampert & Woodhouse (2003) introduced both 2ψ and 4ψ parameters for their inversions of Love

and Rayleigh wave data sets, hence neglecting none of the anisotropic effects. They conclude that the Love wave fundamental mode data do
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Figure B1. Test #2 quantitative comparisons between input and output models. For each subvector, referred to as l, the distances between input and output

velocities, δ l , are computed as defined in eq. (A1). Contour lines are plotted each 0.5 distance unit.

not require 2ψ anisotropy indeed, whereas the Rayleigh waves need both 2ψ and 4ψ terms. Therefore, the question to know whether some

azimuthal anisotropy form can be a priori neglected in the inversions is worth investigating and is attempted by using synthetic data sets. For

each test presented in this appendix, the ray path coverage corresponds to one shown in Fig. 3(a).

For the Tests #3 and #4, the data set is synthetized in the same input model as used for the Test #2, including large isotropic and both

2ψ and 4ψ anisotropic perturbations (Table 1). Neglecting the 4ψ anisotropy, the Test #3 inversion accounts for the 0ψ and only the 2ψ

parameters. For the Test #4, only the 0ψ parameters are introduced in the inversion process, which means that the whole synthetic data set

has to be explained by isotropic perturbations. The quantitative differences, between input and output velocities, are presented in Figs B2(a)

and B2(b).

As expected, compared to the Test #2 results, shown in Fig. B1, the agreement between input and output models is largely degraded. The

misfit can be estimated in the data space through the χ 2(p f ) values or the variance reductions (Table 1). Concerning the Test #3, a large part of

the 4ψ input signal—which cannot be explained, since this kind of anisotropy is not introduced in the inversion—is transferred preferentially

into the 0ψ perturbations rather than into the 2ψ parameters. The largest distance between input and output velocities (eq. A1) reaches the

value of 2.98 for the 0ψ parameters (located in central Pacific ocean) and they are of 1.39 and 1.17 for the cos 2ψ and the sin 2ψ terms,

respectively. As predictable, the worst-case scenario corresponds to the Test #4, where the whole anisotropy of the input model is expected

to be explained only by the isotropic anomalies. As shown in Fig. B2(b), the resulting model is strongly biased and the differences between

input and output velocities reach the value of 3.97.

For the Tests #5 and #6, the data set is synthetized in the same input model as used for the Test #2, where now, for the purpose of

the experiment, the 4ψ anisotropic components are set to zero (Table 1). Hence, the model to be recovered comprises 0ψ and only 2ψ

perturbations, which consequently decreases, in the data space, the χ2(p0) values from 4.5269 to 4.3117, with respect to the Test #2. Since

the model resulting of the inversion accounting for 0ψ and only 2ψ parameters is almost identical to the input model, this test is not detailed
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Figure B2. Same as in Fig. B1 but for the Tests #3 and #4. The input model contains 0ψ and both 2ψ and 4ψ perturbations. For the Test #3, (a) 0ψ and only

2ψ parameters are taken into account during inversion whereas for the Test #4, (b) only the 0ψ perturbations are introduced.

here. Following the same strategy as for the Tests #3 and #4, the Test #5 inversion is performed with the 0ψ parameters and both 2ψ and 4ψ

terms, whereas for the Test #6, only the 0ψ parameters are introduced. The distances between input and output velocities are presented in

Figs B3(a) and B3(b).

Similarly to the Test #4, neglecting the anisotropic components with respect to the input model, as done for the Test #6, produces strong

artefacts. As shown in Fig. B3(b), the velocity differences reach 2.93, although locations of heterogeneities of the derived model (not shown

here) are still rather satisfactorily retrieved. The misfit can be also estimated through the χ 2(p f ) value, but it might be noted that the variance

reduction seems nevertheless to imply good inversion results.

The most interesting feature, revealed by these synthetic tests, concerns the Test #5 output model. We remind that for this experiment,

the three kinds of parameters, say 0ψ and both 2ψ and 4ψ , are taken into account during inversion, but only 0ψ and 2ψ parameters have

to be recovered. The resulting model (not shown here) is almost identical to the input one, and the values of the output 4ψ parameters are

accordingly negligible. As shown in Table 1, the χ 2(p f ) value reflects the very good agreement between the input and the output models.

The quantitative differences for the 0ψ , the cos 2ψ and the sin 2ψ parameters, that is, for the p1, p2 and p3 subvectors, are presented in

Fig. B3(a). The largest distances between input and output velocities reach 1.11 for the 0ψ terms while they reach values of 0.58 and 0.62 for

the cos 2ψ and the sin 2ψ terms, respectively.

Hence, when the 4ψ anisotropy is not present in the data signal, the introduction of both 2ψ and 4ψ parameters does not affect the

inversion results and consequently no 4ψ anisotropy is retrieved. We already showed with Test #1 that when heterogeneities to be recovered

are purely isotropic, no output anisotropy is observed; the Test #5 result tends to show that the CLASH can efficiently separate the two kinds

of anisotropy.

For the purpose of the Tests #7 and #8, the data set is now synthetized in the isotropic part of the input model used for the Test #2

(Table 1). Hence, the model to be recovered is purely isotropic, which consequently decreases the χ2(p0) values from 4.5269 to 4.2026, with

respect to the Test #2. The Test #7 inversion is performed with the 0ψ and both the 2ψ and the 4ψ parameters whereas for the Test #8, the

0ψ and only the 2ψ parameters are introduced. The distances between input and output velocities are presented in Figs B4(a) and B4(b).
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Figure B3. Same as in Fig. B1 but for the Tests #5 and #6. The input model contains 0ψ and only 2ψ perturbations. For the Test #5, (a) 0ψ and both 2ψ and

4ψ parameters are taken into account during inversion whereas for the Test #6, (b) only the 0ψ perturbations are introduced.
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Figure B4. Same as in Fig. B1 but for the Tests #7 and #8. The input model contains only 0ψ perturbations. For the Test #7, (a) 0ψ and both 2ψ and 4ψ

parameters are taken into account during inversion whereas for the Test #8 (b) 0ψ and only 2ψ perturbations are introduced.
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Strengthening the feature revealed by the Test #5, for both the Tests #7 and #8 the isotropic part of output models is almost identical to

the input model. Consequently, no azimuthal anisotropy is recovered. The almost perfect matching between input and output models can be

estimated through the χ 2(p f ) values. As shown in Figs B4(a) and B4(b), the quantitative differences between input and output velocities do

not exceed the value of 0.9, say less than 1 per cent, for the both tests.

To summarize, we observe that when the 0ψ and both 2ψ and 4ψ parameters are taken into account during inversion—whatever the kind

of anisotropy to be recovered—the CLASH retrieves very correctly the input models. This observation holds when data set is synthetized in

a purely isotropic input model and, therefore, tends to conclude that an a priori neglect of at least one kind of the azimuthal anisotropy leads

to artefacts.
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