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Time-reversal seismic-source imaging and moment-tensor inversion
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S U M M A R Y
The time reversal operation in seismic source estimation is considered. We show that the
time reversal operation, equally the adjoint operation, for seismic source imaging gives an
approximate solution to more conventional seismic source inverse problem through the ‘happy
approximation’ underlined by Claerbout. Practical applications of such methods in a long-
period range to monitor earth’s activities in realtime are also discussed.
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1 I N T RO D U C T I O N

Availability of high-performance computing and numerical tech-
niques have brought a new class of analysis methods in seismology,
and so-called adjoint or time reversal operations are getting great
interests in global seismology (Tromp et al. 2005; Larmat et al.
2006). For example, Tromp et al. (2005) drew connections among
different techniques, such as seismic tomography, adjoint methods,
and ‘banana-doughnut’ kernels, and demonstrated how waveform
tomography for 3-D earth structure may be performed based on
numerically simulated waveform synthetic techniques (Komatitsch
& Tromp 2002; Tsuboi et al. 2003). By analyzing broadband seis-
mic recording of the global network for the 2004 great Sumatra
earthquake, Larmat et al. (2006) showed the time reversal source
imaging may be feasible on global scale. This short note is moti-
vated by the work of Larmat et al. (2006), and draws connections
between the time reversal source imaging and more conventional
moment tensor inversion techniques. For the purpose, we focus on
the distinction between ‘inverse’ and ‘adjoint’ methods introduced
by Claerbout (2001).

2 S E I S M I C S O U RC E E S T I M AT I O N

Green’s function

For simplicity, we start with the excitation problem by a single force.
The displacement at x excited by a single force point source

located at ξ may be given as

un(x, t) = Gni (x, t ; ξ , 0) ∗ fi (t) (1)

where G ni and f i are the Green’s function and single force source
time function respectively, and the multiplication * denotes convo-
lution (Aki & Richards 1980).

Equivalently in frequency domain, we have

un(x, ω) = Gni (x, ω; ξ ) fi (ω) (2)

∗On leave from Institut de Physique du Globe de Paris, Paris, France.

and in vector form,

u = G · f (3)

Time reversal operation

For the observation waveform at a point x, d i (t), the time reversal
(TR) operation for ‘wavefield’ at ξ may be written as

TRn(t) = Gni (ξ , t ; x, 0) ∗ di (t0 − t), (4)

where TRn(t) denotes the n-th component of the time-reversed seis-
mogram at ξ and t0 is an arbitrary reference time; in frequency
domain it becomes

TRn(ω) = Gni (ξ , ω; x)d̄i (ω)eiωt0 , (5)

where d̄ denotes complex conjugate of d, and the sign convention
of the Fourier transform is the same as in Aki & Richards (1980).

Source inversion

In source inversion, if the source location is assumed to be known,
we search f (t) such that the difference between predicted wave-
forms and observed ones are minimized. If we use the ordinary
least-squares criterion, the solution f̂ in frequency domain may be
given as

f̂ (ω) = (G∗G)−1 G∗d (6)

where G∗ is the conjugate transpose (or adjoint transpose) of G.
Also as the intermediate equation, the normal equation, we have

G∗G · f (ω) = G∗d (7)

The right hand side of this equation may be written as

rhs = Ḡin(x, ω; ξ )di (ω) = Ḡni (ξ , ω; x)di (ω) (8)

where we used the spatial reciprocity of Green’s function. Compar-
ing with (5), this is a phase-shifted complex conjugate of TRn(ω) in
(5). In other words, the time reversal operation is nothing different
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from the phase-shifted cross-correlation between the observed dis-
placement and the Green’s function (e.g. Draeger & Fink 1997). As
we employ only the spatial reciprocity of Green’s function to draw
the connection between (5) and (8), it should hold for anelastic case
as well (Dahlen & Tromp 1998).

Imaging vs. inversion

Claerbout (2001) introduces a clear definition of the difference
between inverse and adjoint operators as follows: In many geophys-
ical inverse problems (e.g. Tarantola 1984), G∗ G can be often well
approximated by the identity matrix as

G∗G ≈ α I (9)

where α is some real proportionality constant. In this case, the
least-squares solution (6) can be also approximated as

f̂ T R(ω) ≈ α−1 G∗d. (10)

Here following the idea of Claerbout, we define this type of solu-
tion as ‘imaging’, while the conventional least squares solution as
‘inversion’.

Multi-station case

We can easily extend the above argument for observations with mul-
tiple stations. In many seismological source estimation problems,
(9) appears to be a good approximation (e.g. Kawakatsu 1996, for
the moment tensor of deep earthquakes with a sufficient station cov-
erage), and ‘source imaging’ using (10) may be possible. As (10)
is just a phase-shifted complex conjugate of the time reversal, now
we understand why the time reversal appears to work (e.g. Larmat
et al. 2006).

In case the point source approximation is appropriate, the con-
vergence (goodness of fit) can be measured by the ratio of the cross
correlation of observed (d) and predicted (G f̂ ) waveforms to the
observed waveform energy (d2),

R = d∗G f̂

d2
(11)

which is equal to the variance reduction for the least-squares solu-
tion. For source imaging, this may be approximated by

R ≈ α
f̂ 2

T R

d2
, (12)

and a TR-image which gives the largest energy may be considered
as the best one. For a spatially extended source such as the 2004
Sumatra event, more sophisticated measure may be used; neverthe-
less, (12) should still give some idea of the spatial extent of the
seismic source (e.g. Larmat et al. 2006).

Moment tensor case

In case of a more general seismic source represented by the moment
tensor M i j (t), the displacement is now given as

un(x, t) = Gni, j (x, t ; ξ , 0) ∗ Mi j (t), (13)

but the whole argument above can be repeated if we use G ni, j

instead of the Green’s function itself and if we treat six independent
components of symmetric M i j as a vector. So G ni, j should be used
rather than G ni to do TR source imaging. It should be noted that
the spatial derivative , j is applied at the source location ξ ; i.e. in

case of TR imaging, it is the strain field which will be used for
back-propagation: i.e.

TRi j (t) = En
i j (ξ , t ; x, 0) ∗ dn(t0 − t) (14)

TRi j (ω) = En
i j (ξ , ω; x) d̄n(ω) eiωt0 . (15)

Here En
ij is the strain field due to an unit force directed to nth

direction, and defined as

En
i j (ξ , t ; x, 0) = ci j

(
∂Gin(ξ , t ; x, 0)

∂ξ j
+ ∂G jn(ξ , t ; x, 0)

∂ξi

)
, (16)

where the repeated index summation rule does not apply, and we
choose ci j = 1/2 for i = j , and ci j = 1 for the rest to be consistent
with (13). The ‘stress-glut field’ will be back-propagated in this
case, and will converge at the source location as the moment tensor.
The time reversal imaging of the moment tensor may be obtained
as

M̂TRi j (ω) ≈ α−1 Ēn
i j (ξ , ω; x) dn(ω) (17)

Similar to (12), the convergence may be measured by

R ≈ α
M̂2

TR

d2
≡ α

∑
i≤ j M̂2

TRi j

d2
, (18)

where
∑

i≤ j denotes a summation over six independent components

of M̂
2

TRi j .
It should be noted that the imaging solution (10) or (17) does not

scale properly when the parameterization is changed. For example,
if we solve for M ′

11 = 2 × M 11 instead of M 11 while keeping other
parametrization the same, the resulting solution is not guaranteed
to be consistent with that solved for M 11 (this is not the case for the
least-squares solution). Also the convergence criteria (18) should
be modified accordingly.

3 D I S C U S S I O N

Imaging or inversion

We have shown that the time reversal (adjoint) source imaging
gives an approximation to the seismic source inversion by way of
(9). Claerbout (2001) notes that ‘the adjoint is the first step and a
part of all subsequent steps in this inversion process. Surprisingly,
in practice the adjoint sometimes does a better job than the inverse!
This is because the adjoint operator tolerates imperfections in the
data and does not demand that the data provide full information.’
The question left is then whether we should use imaging or inversion
for the seismic source estimation problems.

There are cases when certain components of the moment ten-
sor are not well resolved by data (e.g. Kanamori & Given 1981;
Kawakatsu 1996). There may also exist cases that the knowledge of
the Green’s function is largely poor. In these cases, spurious solution
may be obtained by the inverse and the imaging may be preferred.
Other than those cases, considering the easiness of calculating
the inverse for source estimation, the conventional moment tensor
inversion may be preferred to the time-reversal source imaging. The
non-uniqueness of the solution mentioned above may also limit the
usage for earthquake mechanism estimation purposes. On the other
hand, once the parameterization scheme is fixed, (12) or (18) can be
used for estimating strength of the source, and the spatial extent of
seismic source may be imaged effectively.
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Realtime monitoring applications

Although (9) may give a good approximation, calculation of the
actual inverse is not so difficult for the source inversion; for the
moment tensor source we need to solve for 6 × 6-matrix, and
for the single force source only for 3 × 3-matrix. So there ap-
pears no practical difficulty in solving the inverse problem. In-
deed, in GRiD MT (Grid-based Realtime Determination of Moment
Tensors) algorithm (Kawakatsu 1998; Tsuruoka et al. 2008), mo-
ment tensor inversions are performed in realtime continuously for
every one second for limited source areas. GRiD MT is a grid-
based earthquake analysis system that continuously monitors long-
period seismic wavefield of 20 to 50 seconds recorded by broadband
seismometers, and automatically and simultaneously determines
the origin time, location and seismic moment tensor of seismic
events within three minutes of their occurrence. This system has
been in operation since 2003 at the Earthquake Research Institute
(http://wwweic.eri.utokyo.ac.jp/GRiD MT/), and has been shown
to be successful (Tsuruoka et al. 2008). The success of GRiD MT
proves that it is now practical to perform the seismic source inversion
in realtime, consequently the time reversal source imaging as well.

Either performing inversion or imaging, such a realtime oper-
ation in a long-period range is now possible as mentioned above
for regional scale monitoring, and may be for global scale as well
(e.g. Larmat et al. 2006; Ekström 2006). This type of source in-
version/imaging should also help monitoring glacial quakes (Ek-
ström et al. 2003) and sources of background seismic microseism
and HUM (e.g. Nishida & Fukao 2007), as well as some other
exotic seismic sources (e.g. Kumagai et al. 2001; Ito et al. 2007).
The realtime monitoring of Earth’s activity field may soon become
available.
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