ABSTRACT
The sources of the May 1202 and November 1759, M 7.5 Near East earthquakes remain controversial, because their macroseismic areas coincide, straddling subparallel active faults in the Lebanon restraining bend. Paleoseismic trenching in the Yammouneh basin yields unambiguous evidence both for slip on the Yammouneh fault in the twelfth-thirteenth centuries and for the lack of a posterior event. This conclusion is supported by comparing the freshest visible fault scarps, which imply more recent slip on the Rachaïya-Sergaya system than on the Yammouneh fault. Our results suggest that the recurrence of an A.D. 1202-type earthquake might be due this century, as part of a sequence similar to that of A.D. 1033-1202, possibly heralded by the occurrence of the 1995 Mw 7.3 Aqaba earthquake. The seismic behavior of the Levant fault might thus be characterized by millennial periods of quiescence, separated by clusters of large earthquakes.

Keywords: Lebanon, Levant fault, historical earthquakes, paleoseismology, event clustering.

INTRODUCTION
The 1000-km-long, left-lateral Levant fault (e.g., Dubertret, 1932; Quennell, 1959; Freund et al., 1968; Garfunkel et al., 1981) marks the boundary between the Arabian plate and the Sinai-Levantine block (Courtillot et al., 1987; Salamon et al., 2003). Since Biblical time, it has generated large (M > 7) earthquakes (e.g., Poirier and Taher, 1980; Ben-Menahem, 1991; Abou Karaki, 1987; Guidoboni et al., 2004b). However, the sources of most historical events in the Near East remain unclear. This is particularly true between 33 N and 34.5 N, where the plate-boundary fault system is divided (Dubertret, 1955), owing to transpression within the Lebanese restraining bend (Freund et al., 1970; Griffiths et al., 2000). Recent offshore seismic studies (Carton et al., 2004; Elias et al., 2004) suggest that the strike-perpendicular and strike-parallel components of motion are accommodated by discrete features east and west of Mount Lebanon (3090 m): the offshore Tripoli-Beirut thrust (Tapponnier et al., 2001), and the Yammouneh and Rachaïya-Sergaya faults, respectively (Fig. 1). The latter strike-slip fault, which follows the Anti Lebanon Range (2630 m) east of the Beqaa Plain (1000 m), merges with the former at the southern tip of the Hula basin. By linking the Jordan Valley fault with the Missyaf fault, the Yammouneh fault ensures the continuity of the plate boundary across Lebanon.

Seismic hazard evaluation in this region depends on a better understanding of the seismic potential of the various strands and segments of the Levant fault system. On the basis of new paleoseismic data and geomorphic observations, we propose a reassessment of the sources of arguably the two strongest historical earthquakes (A.D. 1202 and 1759) that devastated the Beqaa Plain and surrounding areas. The Yammouneh fault has usually been believed responsible for both the May 1202 and November 1759 earthquakes (e.g., Ambraseys and Barazangi, 1989; Ben-Menahem, 1991). Our results indicate instead that the paired October and November 1759 events ruptured the Rachaïya-Sergaya system rather than the Yammouneh fault. Although historical data alone are inconclusive, paleoseismic dating and comparison of geomorphic observations remove the ambiguity.

MACROSEISMIC CONSTRAINTS ON THE 1202 AND 1759 EVENTS
The effects of the 1202 and 1759 earthquakes were assessed by Ambraseys and Melville (1988) and Ambraseys and Barazangi (1989), respectively, using first-hand accounts. The 20 May 1202 earthquake shook western Syria and the Crusader states, toppling 31 columns of the Jupiter temple in the city of Baalbek (Ben-Menahem, 1991), which was destroyed. The cities of Nablus, Acre, Safed, Tyre, Tripoli, and Hamah, among others, were severely damaged (Fig. 1). Rock falls in Mount Lebanon killed 200 people. Shaking was felt throughout the Mediterranean and Middle East, as much as 1200 km away.

The seismic sequence of 1759 affected roughly the same region (Ambraseys and Barazangi, 1989). The smaller 30 October shock ruined Safed, Qunaitra, and many villages nearby, killed 2000 people, and triggered a seismic wave in Lake Tiberias (Ben-Menahem, 1979). The second, larger shock on 25 November destroyed all villages in the Beqaa. Baalbek was ruined. Three of the last nine columns of the Jupiter temple (Ben-Menahem, 1991) and three columns of the Baccus temple collapsed. Safed, Ras Baalbek, and Damascus were damaged, and the earthquake was felt as far as Egypt and Anatolia, 1100 km away.

The areas of maximum destruction of the 1202 and November 1759 events overlap, covering an elongated, 150-200-km-long, south-southwest-trending zone centered on the Beqaa plain (Fig. 1). Historical accounts of damage thus imply that the events originated on the Yammouneh or Serghaya fault. Macroseismic isoseismal contours tend to be biased toward populated areas: here, the fertile Beqaa Plain. It is therefore impossible to use such data alone to discriminate between the two faults.

SURFACE FAULTING
The identification and localization of surface faulting associated with the 1202 and 1759 events provides additional clues to determine the faults involved. Archeological and paleoseismic investigation (Ellenblum et al., 1998) showed that the 1202 earthquake caused 1.6 m of left-lateral displacement of fortification walls at Vadum Jacob (Fig. 1). A later 0.5 m offset may correspond either to the October 1759 event or to the last large regional event of 1 January 1837 (Ambraseys, 1997). The castle at Vadum Jacob is located south of the junction between the Yammouneh and Rachaïya-Sergaya faults, so the question of which fault took up slip to the north during either event remains open. On the Serghaya fault, in the southern Zebadani valley in Syria,
null
DR1 [see footnote 1]). Samples K23 (A.D. 1295±1410) and G3 (A.D. 864–1002) come from postseismic wedge 5, which likely contains samples from redistributed layers predating the event. Thus, the latest ground-breaking earthquake occurred between A.D. 864–1001 and 1295–1410. The only possible candidate for this event is the 1202 earthquake, since macroseismic damage for other large Near East events near that time was clearly located either well south (A.D. 1033) or well north (A.D. 1157 and 1170) of the Beqaa (e.g., Ben-Menahem, 1991; Meghraoui et al., 2003; Guidoboni et al., 2004a, 2004b). Any event postdating A.D. 1400 would have disrupted layer 2, and can be safely ruled out.

SUMMARY AND DISCUSSION

Our results put to rest the inference that the Yammouneh fault might not be the main active branch of the Levant fault system in Lebanon (Butler et al., 1997). They provide evidence of coseismic slip on the Yammouneh fault in A.D. 1202, and show that this segment of the fault has remained locked since then. Because the size of the November 1759 event implies that it ruptured the surface, our data preclude that it took place on the Yammouneh fault. Because the 1759 earthquake sequence comprised two large events and because of the new evidence we found—in the form of well-preserved mole tracks—of a recent, large event south of Râchâyâ, the only other large fault system adjacent to the Beqaa (Râchâyâ-Sergâhâya) is the most plausible source. We propose that the 30 October 1759 earthquake was caused by slip on the shorter (<50 km) Râchâyâ fault, and the larger-magnitude 25 November event was caused by slip on the longer (<130 km) Sergâhâya fault, in keeping with the evidence of recent movement on both (Tapponnier et al., 2001), and the French consul’s letter. Our results thus build on those of Gomez et al. (2003) by lifting the ambiguity between the 1705 and 1759 shocks.

We interpret the occurrence of two events in 1759 and the month-long delay between them as a classic earthquake triggering example. Such triggered delayed rupture may be due to the presence of the Mount Hermon asymmetric push-up jog, a geometric irregularity that prevented immediate rupture propagation along the entire Râchâyâ-Sergâhâya fault system. Though not unique, this scenario is in keeping with scaling laws (Wells and Coppersmith, 1994; Ambraseys and Jackson, 1998) that predict (2-sigma) magnitudes of 6.4–7.3 and 7.0–8.0 respectively, compatible with those derived from historical accounts (6.6 and 7.4; Ambraseys and Barazangi, 1989) and from the ~2 m stream channel offset attributed to the last event on the Sergâhâya fault at Zebadani (7.0–7.2 for the November 1759 event; Gomez et al., 2003).

With its fine lacustrine sequence, midway along the Yammouneh fault, the Yammouneh basin is particularly useful for understanding the timing of ancient Lebanese earthquakes. We have investigated this sequence down to 11 m depth; 2–3 m beneath the topsoil is a major stratigraphic transition, of probable climatic origin, from the calcareous marls to an ~8-m-thick clay unit. We have identified and mapped 10 event horizons down to this transition, which we dated as 11 ka (onset of the early Holocene climatic optimum).

Our results have critical implications for the assessment of seismic hazard in the area. On the Missyaf segment of the Ghab fault (Fig. 1), there is paleoseismological and archaeological evidence for three earthquakes since A.D. 70 (Meghraoui et al., 2003), the A.D. 1170 event being the latest. In Lebanon, the classic inference of a ~550 yr recurrence time for large events on the Yammouneh fault (A.D. 1202 to 1759) must be revisited. The penultimate ground-breaking event (S2) in the Kazzâb trench postdates A.D. 261–537 (Table DR1; see footnote 1), such that the quiescence interval prior to 1202 lasted 800 ± 140 yr at most. This is to be compared with the time elapsed since then on both walls, in the uppermost 80 cm. The latest one (S1), marked by a subvertical principal splay, occurred after deposition of layer 6 and before that of layer 4. Layer 6, which is clearly visible on one wall, is preserved only east of the fault, suggesting it was eroded to the west after coseismic uplift. Unit 5, which tapers rapidly eastward, is most likely a type of subaquatic colluvial wedge (redistributed lake mud) emplaced shortly after S1. The penultimate event was recorded by multiple splays (S2) cutting layers 13–16 over a width of 1 m and terminating at the base of layer 12. Layer 11 shows no disruption. Hence we interpret S2 to have occurred between the emplacement of layers 12 and 11. Older events, e.g., S3 and S4, will be discussed elsewhere.

The timing of S1 is constrained by accelerator mass spectrometry radiocarbon dating of samples K23, G3, G1, and K24 (Fig. 2 and Table DR1 [see footnote 1]). Samples K23 (A.D. 1295–1410) and G3 (A.D. 1272–1412) clearly postdate the event. Sample K24 (A.D. 780–1001), from a paleochannel that is clearly capped by layer 4 (and likely by layer 6) to the east, predates the event. Sample G1 (A.D. 864–1002) comes from postseismic wedge 5, which likely contains samples from redistributed layers predating the event. Thus, the latest ground-breaking earthquake occurred between A.D. 864–1001 and 1295–1410.
(803 yr), and with our preliminary finding of an ~1 k.y. average recurrence time for previous events since 13 ka. The earthquake sequence of the eleventh to twelfth centuries (e.g., Poirier and Taher, 1980; Ben-Menahem, 1991; Abou Karaki, 1987; Guidoboni et al., 2004a, 2004b; Ambraseys, 2004), which ended with the 1202 event, might thus represent a concatenation of successively triggered earthquakes, analogous to those observed on the North Anatolian and Kunlun faults in the past 100 yr. Likewise, the Levant fault might exhibit millenial periods of quiescence separated by clusters of events rupturing its entire length in a couple of centuries. One might speculate that the 1995 Mw 7.3 Aqaba earthquake (Klinger et al., 1999) heralds the onset of such a clustered sequence.

Therefore, we should be prepared for the occurrence of a large destructive event similar to that of 1202 during the coming century in Lebanon. Given the rate of $5.1 \pm 1.3$ mm/yr derived from cosmogenic dating of offset fans along the Yamûnînîn fault (Daeîron et al., 2004), such an earthquake could produce 3–5 m of coseismic slip, and untold damage in areas vastly more populated today than in medieval times.

ACKNOWLEDGMENTS

We thank the National Council for Scientific Research (Lebanon), the Institut National des Sciences de l'Univers (Centre National de la Recherche Scientifique, France), and the French Ministère des Affaires Étrangères for support. Without additional funding by the Coopération pour l'Évaluation et le Développement de la Recherche (Ministère des Affaires Étrangères) and by the Institut de Physique du Globe de Paris, this work could not have been accomplished. We also thank G. Seitz and M. Kashgarian, from the Center for Accelerator Mass Spectrometry (AMS) (Lawrence Livermore National Laboratory, USA), for $^{14}C$ sample processing and AMS dating, A. Charbel and R. Jomaa for logistical help in the field, and two anonymous reviewers for constructive criticism. This is International Geological Correlation Programme contribution 2030.

REFERENCES CITED

Abou Karaki, N., 1987, Synthèse et carte sismotectonique des pays de la bor-...