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S U M M A R Y
We have developed a new elasto-gravitational earth model able to take into account lateral
variations, deviatoric pre-stresses and topographies. As a first application, we assume an el-
lipsoidal earth with hydrostatic pre-stresses, and validate and discuss our numerical model by
comparison with previous studies on the M 2 body tide. We then study the response of the
ellipsoidal earth to zonal atmospheric loads, and find that global lateral variations within the
Earth, such as ellipticity, have a weak impact (about 1 per cent) on the elasto-gravitational
deformations induced by atmospheric loading.
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1 I N T RO D U C T I O N

At low frequencies, the Earth is deformed mainly by luni-solar tides
and by surface loads, including ocean, atmosphere, ice volumes and
post-glacial rebound. In this work, we focus our attention on the
Earth’s body tides and atmospheric loadings.

The most accepted Earth body-tide models presently deal with an
ellipsoidal, rotating earth, containing a liquid core and an anelastic
mantle with hydrostatic pre-stresses (Wahr 1981; Wahr & Bergen
1986). The Earth, however, is not an exact ellipsoid, but presents lat-
eral variations and deviatoric pre-stresses: there are long-wavelength
density anomalies within the mantle, as shown by geoid anomalies
and tomography studies (e.g. Romanowicz & Gung 2002). Wang
(1994) and Dehant et al. (1999) studied the influence of lateral
heterogeneities on Earth tides and showed that this effect is small
but not necessarily negligible. They did not, however, take into ac-
count possible deviatoric pre-stresses: these effects on the Earth’s
body tides are totally unknown.

In addition to tidal forces, mass changes in the atmosphere also
cause deformation and mass redistribution inside the planet, in-
volving both local and global surface motions and variations in the
gravity field, which may be observed in geodetic experiments. For
several decades, satellite geodesy has provided information on the
temporal variation of the Earth’s geopotential, and especially on
the low-degree zonal harmonics (J 2, J 3 . . .) (Gegout & Cazenave
1993), which are essentially controlled by surface loads. These hy-
drological, atmospheric or oceanic effects on the Earth’s gravity
field are usually modelled assuming a spherical earth with hydro-
static pre-stress (e.g. Farrell 1972; Wahr et al. 1998).

With the advent of the new generation of gravity measurements,
one of the challenges of the coming decade will be to provide more
realistic earth models that show the variation of gravity with time. In
particular, global studies based on gravity data from satellites such as

GRACE, GOCE, and future GRACE/GOCE follow-on ones require
accurate body-tide deformation models. More realistic gravity vari-
ation models are also needed for local and ground measurements,
particularly for the very accurate superconducting gravimeters and
the associated gravimetric observatory network such as the Global
Geodynamic Project (Crossley et al. 1999).

The formalism developed to compute this elasto-gravitational
model is usually based on spherical harmonic analysis. The addition
of lateral variations leads to couplings between spherical harmon-
ics, i.e. to a more complex formalism that requires a large numer-
ical effort (e.g. Wang 1994; Plag et al. 1996). We develop here a
new approach for a non-radially symmetrical earth model using a
finite-element method known as the spectral element method. The
efficiency of this method is less dependent on the shape of the lateral
heterogeneities than the spherical harmonic method. Our method is
therefore well adapted to studying the impact of global and local
lateral variations on the Earth deformation.

We solve the elasto-gravitational equations taking into consider-
ation the lateral variations within the Earth by using a first-order
perturbation theory (Smith 1974; Dahlen & Tromp 1998). This new
model allows us to take into account lateral variations of density and
rheological parameters, deviatoric pre-stresses and interface topog-
raphy.

In order to validate our calculations, we tackle a well-known
problem: the impact of the hydrostatic ellipticity on the Earth body
tides. An analytical solution for this problem can be derived for a
simple model in which the earth is assumed to be homogeneous
and incompressible. The gravitational potential and the vertical dis-
placement on the surface of the deformed ellipsoid were first de-
rived by Love (1911) and then corrected by Wang (1994). We have
recently extended these analytical results to the tangential surface
displacement (Greff-Lefftz et al. 2005). We first validate our model
with our analytical solutions, and then compare our results with
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previous numerical solutions for a slightly elliptical hydrostatic
stratified compressible elastic model (PREM).

We then investigate the effect of the ellipticity of the Earth. This
effect is usually neglected in loading deformation studies because
it is assumed that, for a surface load, the short-wavelength lateral
variations will probably generate much larger perturbations. In this
paper, we quantify the real impact of the ellipticity on the loading
Love numbers. We then study the perturbations of the temporal zonal
coefficients of the geopotential induced by atmospheric loading.

The paper is organized as follows. In the next section, we recall
the elasto-gravitational theory for a spheroidal, pre-stressed planet
and present some aspects of the spectral element method used in
our approach. In the subsequent section, we validate our results
with previous analytical and numerical studies. The influence of the
ellipticity of the Earth on the deformations induced by M2 tides and
by atmospheric loading is investigated in the final section.

2 T H E O R E T I C A L A N D N U M E R I C A L
A P P ROA C H

2.1 Elasto-gravitational theory

To describe the deformation of a 3-D realistic earth model, we use a
first-order perturbation formalism (for more details, see Dahlen &
Tromp 1998).

The planet is submitted to volumic forces f, with f = −ρ∇V
(luni-solar attraction or gravitational force associated with surface
loading), or to surface conditions (pressure or tangential traction),
which cause deformations and mass redistributions involving sur-
face motions and gravity variations.

The problem is solved in two steps.

(1) We first solve the elasto-gravitational equations for a spher-
ical hydrostatic pre-stressed planet submitted to f, i.e. we deter-
mine the displacement u and the gravitational potential φ within the
planet, using a Lagrangian parametrization. As the inertial terms
and Coriolis acceleration are extremely small for low-frequency ex-
citation sources, we neglect them. The system is then composed of
the static momentum and the mass redistribution equations:

Au + ρ∇φ = f,
∇ · (ρu) + 1

4πG �φ = 0,
(1)

where A is the elasto-gravitational differential operator, depending
on the inner parameters of the planet; ρ is the density, and G is the
gravitational constant.

(2) We then introduce lateral variations of density and of rhe-
ological parameters, of deviatoric pre-stresses and of interface
topography with respect to the initial reference sphere as small
perturbations. We solve a first-order perturbed elasto-gravitational
system of equations. The unknowns are now the additional perturbed
displacement δu and gravitational potential δφ:

Aδu + ρ∇δφ = δf − δAu − δρ∇φ,

∇ · (ρδu) + 1
4πG �δφ = −∇ · (δρu).

(2)

δA is the first-order perturbed elasto-gravitational differential oper-
ator, and δρ the perturbed density. Note that the right-hand side of
the perturbed elasto-gravitational system depends on the solutions
for the spherical planet with hydrostatic pre-stresses.

These equations are solved taking into account boundary condi-
tions on displacements, tractions, gravity and gravity potential, all
projected onto the spherical referential earth.

The elasto-gravitational system of equations is solved for the
static approximation. There are no inertial modes, nor rotational

eigenmodes in our present model. The liquid core is modelled as
an elastic solid with a very small rigidity. We found that the error
induced by these approximations is negligible in the perturbed so-
lution δu and δφ for an earth made with lateral variations (about
0.5 per cent on the perturbed Love numbers—see the solution for
δh+ and δk+ for the elliptical earth in Section 3 for example).

2.2 Spectral element method

The elasto-gravitational operator is identical in the two systems (1)
and (2). It is applied to u and φ in system (1) and to δu and δφ

in system (2). We thus developed a numerical model to solve these
systems independently of the right-hand members. Our approach
is based on the spectral element method, developed in theoretical
seismology in recent years (Komatitsch & Tromp 1999; Chaljub
et al. 2003; Chaljub & Valette 2004). The earth is discretized on the
‘cubed sphere mesh’ based on a Ronchi et al. (1996) transforma-
tion, extended by Chaljub et al. (2003) into the radial dimension.
The partial differential equations are solved using variational for-
mulations decomposed on a polynomial basis of high degree. As for
finite-element methods in general, the method is easily parallelized.
Our program is parallelized on a message passing interface (MPI).

This numerical method taking into account mass redistribution
is applied here to static phenomena. The method is fully detailed in
Métivier (2004).

3 VA L I DAT I O N

In order to check our method, we investigated the effect of
the spheroidal shape of the Earth on the semi-diurnal body tides,
since (1) for this problem there is an analytical solution for the sim-
ple case of an incompressible homogeneous planet, and (2) several
authors (Wahr 1981; Wang 1994; Mathews et al. 1995; Dehant et al.
1999) have already numerically estimated it for the PREM model.

We note ψ o, the centrifugal potential that induces the spheroidal
shape of the Earth:

ψo(r, θ, ϕ) = −	2 r 2

3

(
1 − P0

2 (cos θ )
)
, (3)

where r is the radius, θ is the colatitude and ϕ the longitude. Pm
n

are the non-normalized Legendre polynomials. 	 is the rotational
velocity.

The influence of the centrifugal force is partly applied as a per-
turbation. We solve the problem following Smith (1974): the radial
part of the centrifugal potential is taken into account in the spherical
reference Earth potential and the elliptical part is applied as a pertur-
bation. This perturbation introduces the elliptical lateral variations
of the density and of the topographies (but no deviatoric pre-stress).

Let V M2 be the degree-two tidal potential induced by the semi-
diurnal lunar wave M 2:

VM2 (r, θ, ϕ) = −Vo P2
2 (cos θ ) cos(σ t + 2ϕ)

r 2

a2
, (4)

where V o is the potential amplitude, σ is the semi-diurnal frequency,
and a is the Earth’s radius.

The tidal solutions are expressed in terms of Love numbers. We
use hereafter the notation of the IERS convention (IERS 2003).
We classically note h2, l 2 and k2 the classical spherical tidal Love
numbers. Because the ellipticity on the M 2 tide generates spheroidal
deformation in P2

2 and P2
4 and a toroidal deformation in P2

3, we
introduce the perturbed tidal Love numbers δh0, δh+ related to
the vertical displacement, δl 0, δl+, δω+ related to the tangential
displacement, and δk 0, δk+ related to the gravity potential. The

C© 2005 RAS, GJI, 162, 570–574



572 L. Métivier, M. Greff-Lefftz and M. Diament

displacement is then written on the deformed outer surface of the
ellipsoid:

u + δu = Vo

go

{(
h2 + δh0)P2

2 + δh+ P2
4

)
cos(σ t + 2ϕ) n

+∇
[(

l2 + δl0)P2
2 + δl+ P2

4

)
cos(σ t + 2ϕ)

]
−er ∧ ∇

[
δω+ P2

3 sin(σ t + 2ϕ)
]}

, (5)

where n is the outward normal of the ellipsoid and go = GM/a2

the referential surface gravity, G is the gravitational constant and M
the mass of the Earth. The deformation-induced Eulerian potential
in the free space is

Vo

[
(k2 + δk0)

(
a

r

)3

P2
2 + δk+

(
a

r

)5

P2
4

]
cos(σ t + 2ϕ). (6)

Our numerical model is built for a compressible earth. We impose the
incompressibility condition by setting the compressibility parameter
at an arbitrarily high value (typically about 1014). We compute the
deformation for a homogeneous incompressible earth with a radius
of a = 6371 km, a rigidity µ = 1.15 × 1011 Pa s and a density
ρ = 5520 kg m −3. The upper part of Table 1 shows that our results
are in very good agreement with the analytical solutions: the relative
errors are less than 0.007 per cent.

We now compute the M 2 body tides for an ellipsoidal earth model
stratified following PREM (Dziewonski & Anderson 1981). We
compare our results with the study of Wang (1994). The bottom
part of Table 1 shows that we agree with his solutions for δh+ and
δk+. However our δh0 and δk 0 differ significantly from Wang’s val-
ues (see Table 1). Wang did not treat the ellipticity problem in the
classical way (i.e. following Smith 1974). He started with a spherical
reference model that does not take into account the radial pressure
and the radial potential induced by the radial part of the centrifugal
potential. He applied all the centrifugal potential as a perturbation.
Consequently the sum h2 and k2 differ from our h2 and k2, the dis-
crepancy being in the ellipticity order; however, h2 + δh0 must be
identical, as must k 2 + δk 0 (Greff-Lefftz et al. 2005). In Table 1,
we have corrected the Wang values in order to compare the two
solutions. To do so, we subtracted the difference between our h2 (or
k2) and Wang’s h2 (or k2) solution from Wang’s δho (or δk 0) solu-
tion. Table 1 show that they remain significantly different. We do
not know exactly how Wang (1994) calculated the Earth’s response
to the radial part of the centrifugal potential. Did he consider that
the PREM earth responds as an incompressible inviscid fluid on the
rotation time-scale, as is assumed in Clairaut’s theory for the de-
gree 2 deformation? Or did he assume that the Earth responds as a
compressible fluid, which would imply that the mean radial density,
the mean radial elastic parameters and the mean radius of the planet

Table 1. Perturbed tidal Love numbers for two earth models. Top: incompressible homogeneous earth model. Comparison of our numerical results with the
analytical values. The parameters used are: earth radius a = 6371 km, rigidity µ = 1.15 × 1011 Pa s and density ρ = 5520 kg m−3. Bottom: PREM. Comparison
of our results with the ones obtained by Wang (1994). The Wang (1994) solutions have been corrected in order to enable comparison of the solutions (see text).

×10−3 δh0 δh+ δk 0 δk+ δl 0 δl+ δw+
Homogeneous incompressible eartha

Analytical solution 1.587130 −0.332207 2.136239 −0.406726 1.077985 −0.063861 0.224459
Numerical solution 1.587247 −0.332230 2.136248 −0.406729 1.077947 −0.063846 0.224460

Relative error −0.0074 per cent −0.0069 per cent −0.0004 per cent −0.0007 per cent 0.0035 per cent 0.0235 per cent 0.0005 per cent

PREM
Wang solution 1.23 −0.10 1.25 −0.19 — — —
Our solution 0.742 −0.107 1.090 −0.195 0.655 −0.534 0.230

would change? As for us, we believe that, as PREM is a mean spher-
ical earth built from seismological observations, the radial part of
the fluid deformation induced by the centrifugal potential is already
taken into account in the reference model.

4 A P P L I C AT I O N S

4.1 The M2 tides and Earth ellipticity

As a first application, we further investigated the predictions of our
model for the M 2 tide. Figs 1 and 2 show the ellipticity perturba-
tion of the surface displacement and of the gravity (computed for
PREM). The perturbed displacement is about 0.5 mm, and conse-
quently cannot be neglected since, for the sake of space geodesy, it
is now necessary to achieve the mm-level in tidal displacements.
For gravity, there is a significant degree-four order-two compo-
nent with an amplitude of about 200 nGal. This perturbation should
be detectable with very accurate superconducting gravimeters for
which the instrumental precision is about 1 nGal (see the GGP
project, Crossley et al. 1999), if the oceanic effects are correctly
modelled.

4.2 Atmospheric loading and Earth ellipticity

We now investigate the response of an ellipsoidal earth to zonal
atmospheric loads. In point of fact, the annual component of the
Earth zonal geopotential is notably due to air mass redistribution in
the atmosphere (Gegout & Cazenave 1993; Blewitt et al. 2001).

The boundary conditions for the loading gravitational potential,
denoted V L, are the same as the ones for the tidal potential, but
there is now a boundary condition linking the external pressure
acting on the ellipsoidal earth to the radial traction induced by elasto-
gravitational deformation. The free-space gravitational potential can
be written using �Jn zonal coefficients:

−goa

[
a

r
−

M∑
n=2

�Jn

(
a

r

)n+1

P0
n (cos θ )

]
. (7)

The zonal loading potential is expanded in spherical harmonics, such
as: V L = ∑M

n=1 V L
n P0

n (cos θ ). The �Jn can be expressed with the
help of the spherical loading Love numbers k ′

n and with perturbed
Love numbers δk ′

n−, δk ′
n0 and δk ′

n+:

�Jn =
(

1 + k ′
n + δk ′

n0

) V L
n

goa
+ δk ′

n+2−
V L

n+2

goa
+ δk ′

n−2+
V L

n−2

goa
. (8)

We first obtain the V L
n components from a running average, with an

average length of about one year, of the surface pressure coefficients,
with an inverted barometer correction, from the NCEP/NCAR
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Figure 1. The perturbed M2 body-tide displacement due to ellipticity. The colour scale represents the vertical displacement in millimetres, and the arrows
represent the perturbed tangential displacement (maximum of 0.3 mm), on the ellipsoid. The reference earth model is PREM.
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Figure 2. The M2 body-tide gravity perturbation (in nGal) due to the ellipticity calculated on the deformed surface, for PREM.

reanalyses (Kalnay et al. 1996). We calculate the associated �J 2

and �J 3. The classical spherical solution [i.e. (1 + k ′
n) V L

n /go a] is
plotted at the top of Fig. 3 and its perturbation due to the ellipticity
is shown at the bottom. This figure shows that the ellipticity of the
Earth has two effects in the �Jn coefficients: first, it weakly perturbs
its amplitude (by about 0.01 × 10−10 for the �J 3 component), and
second, it creates a phase shift (of less than one hour for the �J 3 an-
nual component) between the degree n component of the source and
the degree n gravitational potential. These perturbations are smaller
than the accuracy of the observations and consequently we have to
conclude that, for surface loads, the long-wavelengths lateral varia-
tions such as ellipticity can be neglected in deformation theory. The
next step of our work will be to test whether the short-wavelength
lateral variations will generate much more important perturbations
for surface loads.

5 C O N C L U S I O N

We have developed a new Earth elasto-gravitational model able to
take into account lateral variations, deviatoric pre-stresses and to-
pographies. This numerical model has been validated by comparison
with the analytical solution of the ellipticity perturbation on the M 2

body tide for a homogeneous incompressible earth, and with nu-
merical PREM solutions. We have found some discrepancies with
previous studies, probably due to different hypotheses about the
initial reference sphere. We confirm that the impact of ellipticity
on body tides is very large, considering present-day instrumental
accuracy.

We have determined the response of the ellipsoidal earth to at-
mospheric loading, and have found that the ellipticity has a very
small impact on the time-variable zonal gravity potential. We con-
clude that global lateral variations within the Earth will have a weak
impact on the elasto-gravitational deformation induced by atmo-
spheric loading. Local lateral variations would probably develop a
more important perturbation in the Earth’s response to atmospheric
loading; this problem will be addressed in the future.
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