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Abstract. Ice sheet flow modeling is generally based on the shallow ice approxima- 
tion (SIA) developed for isotropic ice. We extend this approximation to anisotropic 
ice and check its validity for both the isotropic and anisotropic cases by comparing 
the results of up to second-order SIA with those obtained from a model solving 
the full set of mechanical equations. The theory is developed for a constitutive 
relation describing Newtonian and non-Newtonian behavior, but numerical results 
are shown only for a NewtonJan behavior. The results are compared for plane flow of 
isothermal ice under steady state conditions. SIA gives an excellent representation 
of the NewtonJan flow of an isotropic ice sheet and a good description for the 
anisotropic case. The zero-order approximation is sufficient to describe ice flow 
precisely over fiat bedrock, for the anisotropic and isotropic cases, even close to 
an ice divide. For uneven bedrock, the second-order SIA gives excellent results for 
isotropic ice and acceptable results for anisotropic ice. Finally, we quantify the 
error introduced by using an enhancement factor to represent the anisotropy when 
longitudinal stresses are taken into account. 

1. Introduction 

Solving the complete set of mechanical equations that 
describe the flow of an ice sheet requires long and diffi- 
cult numerical calculations. For this reason, an approx- 
imate solution (the shallow ice approximation, here- 
inafter SIA) has been formulated. The aim of this paper 
is to systematically investigate the validity of this ap- 
proximation which has often been done arbitrarily in 
the past, and to formulate the SIA taking into account 
the anisotropic behavior of ice. 

The simplest model used to describe ice sheet flow 
considers the ice sheet as a parallel slab of infinite hor- 
izontal length, sliding over bedrock of uniform slope 
[Nye, 1952, 1957]. More complex approximate solutions 
have been formulated, including one based on an appro- 
priate scale analysis of the field equations and boundary 
conditions (the SIA) [Hutter, 1981; Fowler and Larson, 
1980]. This approximation gives explicit expressions 
for the velocity and stress field of a glacier when the 
bedrock topography and surface elevation slowly vary 
with respect to the horizontal coordinate 
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The SIA for isotropic ice was developed by Hutter 
[1981] and Fowler and Larson [1980]. The zero or- 
der of this approximation is now commonly used in ice 
sheet modeling [Hutter, 1993]. In the last few years, 
attempts have been made to solve the higher orders of 
this approximation numerically accoun[ing for longitu- 
dinal stresses IDahi-Jensen, 1989a, b; Herrerich, 1988; 
Blatter, 1995], but as pointed out, by Hutter [1993], no 
rigorous solution is yet available in the literature. 

Mechanical tests in laboratories and deformation mea- 
surements in ice sheets have shown that the mechani- 

cal response of polar ice strongly depends on the direc- 
tion of the prescribed stress. It is known that this vis- 
coplastic anisotropy is linked to a preferred orientation 
of the crystallographic network of the grains contained 
in the sample (texture). The evidence of this strong 
anisotropy requires the use of an anisotropic constitu- 
rive relation to describe ice sheet flow. A realistic con- 
stitutive relation should be able to describe both the 

viscoplastic response of the material for a given texture 
and the evolution of the texture during the deformation. 
But no analytical constitutive relation taking both phe- 
nomena into account is available at present. Therefore 
we use here Lliboutry's [1993] analytical constitutive re- 
lation that gives the anisotropic response of the material 
when the texture exhibits a revolution axis. 

This paper addresses (1) the problem of a rigorous 
development of the zero, first and second order of S!A 
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in the case of isotropic and anisotropic ice, (2) the com- 
parison of the results of the zero- and second-order ap- 
proximation in both the isotropic and anisotropic cases 
with those obtained using a numerical model (the "com- 
plete" model) solving the complete set of mechanical 
equations [Mangehey et al., 1996, 1997]. 

In section 2, after a brief description of the problem, 
we develop the zero, first and second order of the SIA 
and we describe the numerical model used to solve the 

SIA equations up to the second order. These theoretical 
results were obtained for a constitutive relation includ- 

ing a Newtonian (n = 1) and a non-Newtonian (n = 3) 
term. Here the numerical results are shown only for the 
NewtonJan case. In section 3 we study the validity and 
limits of the SIA for the Newtonjan case by comparing 
the solution with an "exact" numerical calculation. Fur- 

thermore, for flat and irregular bedrock, we discuss the 
relative magnitude of the different terms of the second- 
order approximation and we demonstrate that all the 
terms have to be taken into account for a correct cal- 

culation. Finally, in section 5 we quantify the extent 
of the error introduced by the use of an enhancement 
factor to describe the anisotropic viscoplastic behav- 
ior of ice [Shoji and Langway, 1984; Dahl-Jensen, 1985; 
œi'ostecka and Whillans, 1988; Reeh and Paterson, 1988; 
Dahl-Jensen, 1989a; Schott et al., 1992]. 

2. Description of the Problem 
2.1. Field Equations and Boundary Conditions 

We consider the case of a steady state plane flow in 
two-dimensional slab geometry with a free surface z - 
E(x) and a prescribed temperature field within the ice 
sheet over undulating bedrock z - B(x) (Figure 1). We 
obtain dimensionless equations by using the ice depth 
as a characteristic depth and the typical accumulation 
rate at the upper free surface u, as a characteristic ice 
velocity (in this work we take u, - 0.2 m.y. -• and d, = 
2500 m). A characteristic stress is defined by 
where co is the ice density and # the acceleration due to 
gravity; r, corresponds to the hydrostatic pressure at 
the base of the glacier. The dimensional variables are 

[ Accumulation rate ] 

Ice divide 
Free 

// I H(x,t) 

Be&•k •B(x) 

Figure 1. Cross section of a Wpical polar ice shee•. 

indicated by a tilde. Dimensionless variables are then 
given by 

(•, •:) - (•, •)/•,, 

($', p) - (g', •)/•-,, 
Dij -- •)ij d,/u,, 

~ 

(lb) 

(•c) 

(•d) 

Here H is the ice thickness, u and w are the horizontal 
and vertical component of the velocity field u, Dij and 
S•j are the components of the strain rate tensor D and 
the deviatoric stress tensor S', respectively. The fluid 
pressure is indicated by p and the viscosity tensor by 
M. Let us call in this paper (la)•,(la)•, the first and 
second column of (la), respectively. 

The plane (x- z) is assumed to be a symmetry plane 
for the flow of the ice sheet (i.e., O/Oy = 0): 

3p_ 05• , , 
a-•- ay = o•- S• - S;• -O. (2) 

The equations of mass and momentum conservation, in 
dimensionless form, read 

•-• + 77z - 0, (•) 
•$• o$'•z Op 

Ox c9z Ox 

as• aS'z• ap 
t - •. (4) •z 0z 0z 

We shM1 assume 6h• the fluid is • res• •t the 

deform&hie b&se •nd •h•t •he top surface is stress free. 
Defining n• •s •he unit normM vector • the surff•ce, 
the boundary conditions re•d 

•t•-•(•)' •-0, (•) 

at z = E(Z) : cr 'ils -- Patmils = 0, (6) 

where Patm is the atmospheric pressure. At the upper 
surface z = E(z), the kinematic surface equation reads 

3E •E 

at +• •- •' (7) 
where a is the accumulation rate. More details •bout 
these boundary conditions are given by Mangehey [1996] 
and Mangehey et al. [1996]. 

2.2. Constitutive Relation 

In ice sheet flow modeling, Glen's flow law is generally 
used to describe isotropic ice behavior [Glen, 1955; Nye, 
•957 ]. 

Dii - A,• r '•- t $jj , (8) 
where An is the temperature-dependent rate factor: 

• - • •xp (-Q/•r), (9) 



MANGENEY AND CALIFANO-ANISOTROPIC SHALLOW ICE APPROXIMATION 693 

and r the effective stress defined as 

•- ••(S '•) (•0) 
where n is the stress sensitivity, Q the activation en- 
ergy for creep, R the gas constant, and T the absolute 
temperature. 

Uncertainties exist concerning the value of the siress 
sensitivity n in •he constitu•ive relation. While 3 is 
the value for equivalen• deviatoric s•resses larger than 
abou• 0.2 MPa, bo•h mechanical tests and borehole •ilt 
measurements lead •o a value lower than 2 [Pimienta 
and Duva!, 1987; Alley, 1992] for lower stresses. Doake 
and Wolff [1985] have concluded from the data anal- 
ysis of four boreholes •hat a linear approximation of 
•he constitutive rela[ion may be as appropriate as the 
commonly used nonlinear cons•itutive relation. For this 
reason we use here •he constitutive relation with a New- 
tonian (n: 1) and a non-Newtonian (n = 3) term. In 
the isotropic case the constitutive relation reads 

Z>• - (•• + •) S•. (•) 

To describe the viscoplastic anisotropic response of 
the ice for a given texture, we use here the constitutive 
relation proposed by Ltiboutvy [1993] for orthotropic, 

transversally isotropic polar ice and applied to a plane 
flow by Mangehey et al. [1996]. This constitutive rela- 
tion is based on a homogenization theory, assuming a 
uniform stress state within the polycrystM. 

The texture is assumed to be a function of the re- 

duced depth only and it does not depend on the defor- 
mation history of the ice. Texture development with 
reduced depth •* = (z- B)/H was fitted on the fab- 
ric data of the recent Greenland Ice Core Project ice 
core [Thorsteinsson et al., 1997] that represents a typi- 
cal texture distribution for ice sheets (Figure 2a). The 
texture is randomly oriented at the surface and the ice 
is then isotropic. Deeper down, the ice crystals strongly 
concentrate around the vertical in situ direction (single 
maximum texture). As a consequence, the ice easily de- 
forms when subjected to horizontal shear but strongly 
resists all longitudinal stresses. For a plane flow and 
with the particular texture symmetries we consider, the 
viscosity matrix has ghe form: 

(•2) 

where M• - M•,•:zz, M2- myyyy, M3 - mzzzz, M4 - 
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Figure 2. Characteristics of the fabric used in the model and the associated directional viscosi- 
ties. (a) Development of the texture at 0, 1/4, 1/2, 3/4 and 1 times the depth. (b) Components 
of the viscosity matrix resulting from this texture. The viscosity tensor components are various 
symbols. 
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Myu• - M•zyu, M5 - M• -- M•, Me - M•yy = 
Myu• and M7- Mzzzz. 

The dependence of the viscosity matrix components 
Miju• on the four invariants of the deviatoric stress ten- 
sor is given by Lliboutry [!993] and Mangehey et al. 
[1996]. At the surface (isotropic ice), this constitutive 
relation is reduced to the generalized Glen's flow law 
(11) and the viscosity matrix reads 

1 
- Mij k! Aa r • + A • 

where I is the identity tensor. The variation of Mij•z 
with reduced depth in the Newtonian case is shown in 
Figure 2. In this work, we impose an ice temperature 
of-20øC and the value of A• = 2.8 x 10 3 [Duval 
Castelnau, 1995] and As = 2.6 x l0 s [Budd and Yacka, 
1989] (A• - u,/(r,d,)A• and As - u,/(v,ad,)Aa). In 
the numerical results presented here only A1 is used 
(Newtonian behavior). 

2.3. Shallow Ice Approximation 

We will now briefly recall the main features of the 
SiA [Hutter, 1983, pp. 270-331; Motland, 1984]. This 
approximation is based on the slow variation of the ice 
sheet geometry and bedrock topography with respect 
to the horizontal coordinate x. This approximation has 
been widely used in the other branches of fluid mechan- 
ics, for example, to solve the shallow water equations in 
the theory of surface gravity waves [see, e.g., Friedrichs, 
1948; N½ller, 1948]. We introduce coordinate stretching 
such that the surface variation in the horizontal direc- 

tion (OE/OX) and the velocity components in the new 
coordinates are (..9 (1): 

X=ez, Z=z, (14) 

U = ½ux, W = uz. (15) 

The aspect ratio e is a small parameter defined by the 
ratio between the characteristic ice thickness d, and the 
characteristic length of the glacier L,' 

e-d,/L,. (16) 

Typical values are e - 10 -a for Antarctic and 5 x 10 -3 
for Greenland [_Paterson, 1994, p. 262]. All the fields • 
are assumed to vary slowly with the horizontal coordi- 
nate x (½ - •(ex, z)). Using the stretched coordinates, 
(3) and (4)become 

OU OW 
t -- 0, (17) Ox Oz 

e -5-• + Ox + Oz 

e az + az - 0, (t8b) 

with the boundary conditions (6) at the upper surface 
now transformed to 

(1 - e:r'2)p '- S'• -e•I'2S'• z - E(z), (19) 
where 

OE OE 

cq x = ½•--•- ½I', P'-P-Patna. 
All terms in (17), (18) and (19) must be expressed 

in terms of powers of e with coefficients of order unity 
to get f(e, ½•, etc.) - 0. Only then can the coefficients 
of each power of e be set to be identically zero. The 
deviatoric stress S • has not yet been expanded in pow- 
ers of e; such an expansion is now necessary. For this 
reason we express the constitutive relation in terms of 
the velocity gradients in the new coordinates: 

Ou Ow 

- + 
Ou ow 

- + az ' 

1(10U OW ) - 75-2 a-X ' (0c) 

We assume here that all the components Miju• of the 
viscosity matrix are of the same order. Indeed, the vis- 
cosities are all equal at the surface, because the ice is 
isotropic there and are of the same order in the upper 
half of the ice sheet. Therefore no other small param- 
eter linked with the anisotropy can be introduced even 
though the viscosity in response to shear stresses may 
be at least 1 order of magnitude lower than the vis- 
cosity in response to longitudinal stresses, close to the 
bedrock. Then, from (20), S;• • eS•z and in equation 
(18) the leading order terms are the horizontal pressure 
gradient and the vertical gradient of the shear stress. 
The stresses were dimensionalized by r. so that pt is 
(_9(1). This requires that S• is O(e). We introduce 
new components Y•ijkl in the viscosity matrix which 
are (9(1). This implies from (20c) and from the order 
of magnitude of the shear stress that 

Mij• (21) 'A• ij kl -- 
This variable change corresponds to that obtained 

by Hutter [1983, p. 3!3] for the isotropic case, who 
found that, in the case of a power law with exponent n, 
Aiikt in the new coordinates of order 1 satisfies A, = 
A•/½ •+•. Indeed, •he effective stress r being O(e), (!3) 
reads 

Mijkl -- •2 1 Av". + Ai 
where 7'- •-/e is (9(1). We then obtain the deviatoric 
stress components, a function of the viscosity matrix 
components in the new coordinates: 
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ou Ow) 
Ou 

- a jr + oz' , 

(23) 
Another method would be to introduce the scale 

[or • be[ween the "shear" viscosity M•z• •nd •he "lon- 
gitudinal" viscosRies in order to •ake into account the 
fac• •ha• anisotropic ice strongly resists compression or 
[ruction but is weaker with respect to shear. With this 
•aling, we obtain the following relation: 

M•z•z 

Milli - c2./Miiii, i,j ' x,z 
, 

Miijj - ½2j•iijj. 
This scaling leads to the same zero-order SIA as the 
scaling used in (21). Another possible approach is a 
multiple scales analysis. In this case, in addition to 
the scale factor e related to the ice sheet geometry, a 
small new parameter ea related to the ice anisotropy 
is introduced. This approach also gives the same zero- 
order results (A. Salamatin, personal communication, 
1996). 

Expressing all the quantities in terms of a power series 
ore [Hutter, 1983, p. 274] in (17), (18) and (19) we solve 
the zero-, first- and second-order SIA. The details of the 
calculation are given in the appendix. 

SIA in the general case of an anisotropic constitutive re- 
lation up to second order. This solution has never been 
formulated nor used, to the authors' knowledge. 

To solve the equations of the SIA up to the second 
order, we numerically integrate the set of equations 
(A4)~(A9) coupled with (AI?)which represent the free- 
surface changes. For the zero-order system, the fields 
depend only on E © and on its derivatives. It is there- 
fore possible to calculate first the zero-order approxi- 
mation of the flow and free-surface changes, then the 
second-order approximation. 

The calculation is obtained by successive iterations of 
the flow and free-surface equations until a steady state is 
reached. In particular, the time dependent free-surface 
equations are solved using a semi-implicit version of 
the standard second-order (explicit) Adams-Bashford 
scheme [Peyret and Taylor, 1983; Mangehey, 1996]. 

The evaluation of the validity of the SIA is made 
using a "complete" model solving the set of mechanical 
equations in a fixed domain including the ice divide (this 
solution will hereinafter be referred to as the "exact" so- 

lution). The numerical code used to solve the complete 
mechanical equations is discussed by Mangehey [1996] 
and by Mangehey et al. [1997]. The margin position is 
not calculated. 

Horizontal velocity profiles are imposed at the left 
and right boundaries of the domain. In the shallow ice 
model we impose the surface elevation at both right 
and left boundaries so that the ice divide elevation 
calculated with the SIA model is the same as the ice 

divide elevation previously calculated with the "com- 
plete" model. 

2.4. Numerical Models 

The zero-order terms of the solution series for steady, 
isothermal and isotropic plane flow of a grounded ice 
sheet have been presented by Motland and Johnson 
[1980, 1982]. The steady state approximation was solved 
numerically by Yakowitz et al. [!986] and Hutter et 
al. [1986, 1987], and the nonsteady state has been cal- 
culated by many glaciologists in order to quantify the 
behavior of large ice sheets under various climatic vari- 
ations [Hindmarsh et al., 1987, !989; Hefterich, 1988; 
Hindmarsh and Hutter, 1988; Calov, 1990; Huybrechts, 
19909, b; Huybrechts and Oerlemans, !990; Letreguilly 
et al., 19919, b; Fabre et al., 1995]. At zero order, the 
effects of longitudinal strain rates are not taken into ac- 
count. In the model of Hutter et al. [!986], based on 
the zero-order solution, a significant quantity of basal 
sliding is required to obtain accurate predictions. This 
model is limited due to the fact that longitudinal strain 
rates are neglected despite their importance in the vicin- 
ity of an ice divide [$zidarovsky et al., 1989]. The so!u- 
tion of the first-order equations is identically equal to 
zero for the velocity field (see Appendix), so that it is 
necessary to solve the second-order system to take these 
effects into account. We present here the solution of the 

3. Results 

In this work we use a linear viscosity to compare dif- 
ferent order solutions of the SIA for isothermal flow for 

the isotropic and anisotropic case with the "exact" so- 
lution. 

3.1. Flat Bedrock 

In this section we will start from the simplest situa- 
tion, that of flat bedrock. In Figure 3 we plot the surface 
elevation (Figures 3a and 3b) and the vertical velocity 
at the surface (Figures 3c and 3d) versus x, for the zero- 
order (Figures 3a and 3c) and second-order (Figures 3b 
and 3d) terms. The solution represents an equilibrium 
configuration for each the isotropic and anisotropic case 
with an accumulation rate a(x) = !. 

From this figure, it is immediately evident that the 
zero-order approximation gives a very good representa- 
tion of the ice flow on flat bedrock for the isotropic as 
well as the anisotropic case. More specifically, Figures 
3b-3d show that the second-order correction is practi- 
cally negligible everywhere. 

The same behavior is also observed in the other phys- 
ical fields, such as the horizontal velocity and the shear 



696 MANGENEY AND CALIFANO' ANISOTROPIC SHALLOW ICE APPROXIMATION 

t .20 

1.1,5 

,,..,, !.10 

1.05 

! .00 

0 

-2.0x10 -5 •- b. /..-_ 
-4.0x10-5 • .....-"" -- "'" 

,•x -6.0x10 _ 

-8.0x10 I •"' -- -1.0x10 -4 .... ' - 
-1.2xl 0 -4 ....... --. .......... . ................ - 

o 5 lO 15 

Distance, x 

.-0.4 

-0.6 c. 

.... -0.8 

• -1 .o • ,-', 
"" -1.2 

-1.4 

-1.8 

0 

. 

- 

- 

- 

i ....... i • 

5 10 15 
Distance x 

•..Ox10 -4 

5.0x10-,I- d. ../' _ 
. 

x 2.0xl 0 -- 

1.0xl 0 -4 • .... ..........• = __= 
0 '=- --: .... , ........... ' 

0 5 10 15 
Distance x 

Figure 3. (a) Surface elevation and (c) vertical velocity at the surface calculated with the 
complete model. Dashed-dotted lines refer to the isotropic case and solid lines refer to the 
anisotropic case. Triangles and plus signs refer to the zero-order SIA for the isotropic and 
anisotropic case, respectively. (b, d) Second-order terms of the SIA for the surface elevation and 
the vertical velocity, respectively, for the isotropic (dashed-dotted lines) and anisotropic (solid 
lines) cases. 

stress, except for the longitudinal stresses which, as ex- 
pected from the analytical development, have a vanish- 
ing zero-order approximation. Furthermore, we observe 
in Figure 4 that the first-order approximation of the lon- 
gitudinal stresses in the anisotropic case is in very good 
agreement with the results of the "exact" solution. We 
have 'obtained the same result for the isotropic case. 

3.2, Irregular Bedrock 

Ice sheet flow over uneven bedrock is a current prob- 
lem. Indeed, 30 km from the future European Pro- 

gramme for Ice Coring in Antarctica drill site at Dome 
C (Antarctica), the bedrock topography varies over 10 
km from -600 to +800 m compared to the sea surface 
elevation; this corresponds to a variation of 50% of the 
ice thickness over less thah four ice thicknesses. In or- 

der to study the validity of the SIA in the presence of 
irregular bedrock, we define a sinusoidal bedrock 

in the domain Izl < L/2, where L - 30 in dimension- 
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Figure 4. Vertical profiles of (a) the longitudinal stress and (b) the axial stress at the ice divide 
in the anisotropic case, obtained with the complete model (solid lines), the second-order SIA (plus 
signs) and the second-order SIA with the anisotropic vi.scosity tensor replaced by an isotropic 
flow law with a depth-dependent enhancement factor .(triangles). The stresses are multiplied by 
a factor of 10 a. 

less variables. For Ixl > 15 the bedrock elevation B is 
taken to be equal to -B0. Here f and B0 are the fre- 
quency and the amplitude of the undulations, respec- 
tively. Note that for < m0, the solution is indepen- 
dent of the bedrock topography imposed for > 15. 
In what follows we have taken a fixed value of the fre- 
quency f = 3 and of the amplitude B0 = 0.2. However, 
a number of calculations with different values of / and 
B0 (not discussed here) have been performed. These 
calculations show that results are not qualitatively af- 
fected by the choice of f and B. 0. 'We emphasize that 
the numerical values of f and B0 are such that the max- 
imum gradient of the bedrock OB/Oz is O(e); therefore 
the SIA is still valid. We have also checked that for 

the anisotropic case the horizontal viscosity gradients 
OMij•/Ox are also O(e). As for the flat bedrock, the so- 
lution represents an equilibrium configuration for each 
the isotropic and anisotropic case with an accumulation 
rate a(z) = 1. A detailed description of the compari- 
son between the isotropic and anisotropic case is given 
by Mangeney et al. [1996, 1997]. We show here only 
results providing a clear comparison between the SIA 
and the "exact" solution. 

In Figure 5 we show the shear stress at three differ- 
ent locations, x = 1 near the ice divide, z = 5 within a 
"bedrock hole" and x = 10 over a "bedrock bump." The 
isotropic case is shown in the first three il!ustrations, 
and the anisotropic case is shown in the last three illus- 
trations. In the isotropic case we see that the zero-order 
approximation gives a relatively good representation of 

the "exact" solution; very good agreement is reached 
with the second-order correction. In the anisotropic 
case, on the other hand, we observe that the zero-order 
approximation is a rough estimate of the "exact" solu- 
tion. In fact, in Figures 5d-5f we see that it is necessary 
to include the second-order terms in the calculation to 
obtain a reasonable estimate of the real flow. However, 
there .are some locations, for example, at z - 5, where 
even the second-order approximation strays far from the 
"exact" solution. This effect is particularly evident on 
the profile of the longitudinal stress (Figure 6). 

The observed disagreement of the SIA with respect 
to the "exact" solution for the anisotropic case can be 
explained by the appearance of strong gradients of lon- 
gitudinal stresses O$'•x/Oz. In fact, in this case these 
gradients can achieve typical values roughly equal to or 
greater than the surface slope corresponding to the hor- 
izontal gradient of the pressure in the zero-order system 
(see equation (A4)), so that they cannot be neglected at 
the zero order (equation (18)). These high values of the 
gradient are observed mainly in the basal layers over the 
holes. It can be explained by the fact that the longitu- 
dinal stresses themselves are very high in the basal lay- 
ers, which act as a stress guide because of their stiffness 
to extension. The overlaying layers are able to deform 
enough to satisfy strain rate continuity with the d•ep 
stiff layers without the need for high stress. The upper 
layers, if stressed longitudinally, respond quickly by flow 
in order to relax or lower the stress, because they, be- 
ing isotropic, are not hard to extend. The deep layers, 
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on the other hand, being more viscous for longitudinal 
extension, cannot respond as qui. ckly and so remain per- 
petually supporting more than their "fair share" of the 
driving longitudinal stress (Ed. Waddington, personal 
communication, 1997). 

One of the most interesting results is that the SIA is 
very satisfactory in the vicinity of the ice divide, where 
this approximation was thought to fail until present, 
In fact, the scale analysis used for the SIA does not 
require the horizontal velocity u to be different from 
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zero everywhere (see equation (15)); on the other hand, 
if the absolute value of Ou/Oz is O(½) or less where 
u = 0, then the assumptions of the SIA are no longer 
satisfied [Mangenell, 1996]. 

3.3. Magnitudes of Second-Order Terms 

At the second order the she•r stress (A14) is given 
by 

S/(•) 
OX V '• 

+ • •z ....... .dz•dz , 
OX • 

(25) 



700 MANGENEY AND CALIFANO-ANISOTROPIC SHALLOW ICE APPROXIMATION 

Note that .q'_•(•) takes into account the effects of longi- 
tudinal strain rates. According to Hutter [1981], the 
magnitude of this second-order correction term signifi- 
cantly depends on the exponent of the constitutive re- 
lation and, as we will show later, it also depends on the 
viscoplastic anisotropy of the ice. 

The zero-order solution is not valid in regions where 
the longitudinal strain rates are significant. For this 
reason many authors have tried to incorporate the lon- 
gitudinal strain rates in ice sheet flow modeling. $zi- 
darovsky et al. [1989] have numerically evaluated the 
second-order S!A, but their numerical procedure, start- 
ing from the ice divide, is based on an ad hoc verti- 
cal velocity profile imposed at the ice divide. Another 
approach was to use the zero-order approximation to 
calculate the vertical stress: 

= =-/= E- z, (26) 

and then to calculate the shear stress using the equa- 
tions of the second-order SIA [Dahl-Jensen, 1989a, b; 
Herrerich, 1988; BIatter, 1995]. The expression of the 
shear stress deduced by this method is 

sL - as (z- s)- 
and, comparing with •he second-order correction of the 
she•r stress (25), we see [h• some terms have been ar- 
bitrarily neglected. We observe, as was pointed out by 
Nutter [1993], [ha• this method is no• rigorous because 
the zero- and second-order SIA are mixed arbitrarily; 

the zero-order equation (26) implies that the normal 
stresses are not material dependent [!futter, 1993]. De- 
spite the efforts to evaluate the magnitude of different 
terms contained in the second-order shear stress [œudd, 
1971; Hutter et aI., 1981; Kamb and Echelmeyer, 1986a, 
b, c, d], et correct cedcul•ttion of the relative magni- 
tude of these terms has never been made even for the 
isotropic case. The exact evaluation of these terms is 
of signific•mt importance when flow models are used as 
an inverse method to determine rheologic•d parameters, 
for example. 

To obtain an estimate of the relative m•tgnitude of 
the different terms of the second-order she•tr stress, we 
express S xz as a sum of four terms: S • = A+B+ 
C+ D with 

A= OX \•'•' ' 

•.____.Z_• dz,'dz• B - OX 2 , 

In Figure 7 we show the second-order basal shear stress 
versus z for both the isotropic and anisotropic c•e to- 
aether with the individual components A, B, C and D. 
In the isotropic case (Figure 7a), we observe that all 
the different terms are of the same order of magnitude, 
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Figure 7. Second-order terms of the SIA for the basal shear stress versus the ice divide distance 
(a) for the isotropic and (b) anisotropic case. The different terms X - (A, B, C, D)involved in 
the basal shear stress at second order are also plotted. The stresses are multiplied by •t factor of 
!0 a. 
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except C, which turns out to be negligible with respect 
to the others. In the anisotropic case (Figure 7b) we see 
that, term A is predominant, even if D should be taken 
into account. 

As discussed above, the only term included in the 
previous "second-order numerical models" is the first 
term A, the others being arbitrarily neglected. There- 
fore the results obtained in this way are necessarily in- 
consistent. This inconsistency is particularly flagrant 
given thai; all these models are limited to the isotropic 
case. It is worth noting that in most cases these mod- 
els halve been applied to flows on almost flat bedrock. 
This explains the rather good agreement with "exact" 
solutions such as the one calculated by Schott Hvidber9 
[1•98]. In fact, as discussed a•bove, the second order 
correction is in such cases negligible with respect to the 
zero order solution (except for the longitudinal stresses); 
therefore the terms B, C and D are effectively negligi- 
ble, as well as the term A. However, with flat bedrock, 
this a•pproach is equivalent to solving the S!A up to the 
second order. 

4. On the Use of an Enhancement 
Factor 

In order to take anisotropy into account, many au- 
thors assume that the parameter Aø• in the constitu- 
tive relation (8) is a function of the structure of polar 
ice. This factor Aø• has been assumed to be depen- 
dent mainly on texture [Hooke, 1981; Budd and Jacka, 
1989]. This dependence is commonly taken into ac- 
count by assuming that Aøn is proportional to a depth- 
dependent enhancement factor œ(z) [Shoji and Lang- 
way, 1984; DaM-Jensen, 1985; Kostecka and Whillans, 
1988; Reeh and Paterson, 1988; Dah!-Jensen, 1989a; 
$chott et al., 1992; C. Schott Hvidberg et al., Ice 
flow between the GRIP and GISP2 boreholes in cen- 

tral Greenland, submitted to Journal of Geophysical 
t•esearch, 1996]. Note that in this case the consti- 
tutive relation is still isotropic. This method is, of 
course, not correct when longitudinal stresses are taken 
into account. The use of the enhancement factor œ(z) 
to represent the anisotropy is equivalent to replacing 
the isotropic viscosity r/0 by the shear viscosity Mxz•z 
(œ(z) = Mxz•.z/•7o). We will here quantify the extent of 
the error introduced by the scalar enhancement factor. 

Equation (29) shows that the zero-order horizon- 
tal velocity is inversely proportional to the component 
,9[r=z of the viscosity tensor (equation (A12)of the 
appendix): 

z) - v(ø)(x, - •(E © - zt)dzt. 
(29) 

In what follows, we call 2V4.•, ••z, •V4•x, and 
A4•z• the axial viscosities, and we call •t4•z•z the shear 
viscosity. Since the shear stress is the only component 

of the deviatoric stress unequal to zero, the zero-order 
approximation for the anisotropic case is equivalent to 
the use of an enhancement factor œ(z) = 
in the isotropic viscosity. The method of using an en- 
hancement factor to calculate the flow of anisotropic ice 
is then correct for the zero-order approximation. 

However, when the second-order correction is calcu- 
lated, that is, when the longitudinal stresses are taken 
into account, this enhancement factor does not corre- 
spond to an exact representation of the anisotropy. The 
second term of the second-order shear stress, equation 
(25), is compatible with this enhancement factor be- 
cause the she•r stresses are the same in the isotropic 
and anisotropic case, while the first term will introduce 
significant error. In ice with c axes aligned with the 
vertical axis, and the ice is more resistant to longi- 
tudinal stress and less resistant with respect to shear 
stress. However, the enhancement factor introduced in 
the isotropic viscosity leads to the same value for axial 
and shear viscosities. From Figure 2 it is clear that the 
four axial viscosities have • completely different shape 
than that of M,,x• and vary in the opposite sense: the 
shear viscosity component decreases with depth, while 
the others increase. Therefore the enhancement factor 

used to represent the axial viscosities makes the ice less 
resistant to longitudinal stresses, exactly the contrary of 
the real effect. Even if this contradiction occurs essen- 

tially in the deep layers where longitudinal stresses are 
small, we will show below that this has an influence on 
the flow. As pointed out by Van der Veen and Whillans 
[1990], anisotropy must be taken into account at least 
by different rate factors for different strain rate compo- 
nents. From l•igure 4, we see that the longitudinal and 
axial stresses obtained using the enhancement factor are 
completely different from the "exact" solution. 

In Figures 8a-Sd we plot the shear and longitudinal 
stress and the horizontal and vertical velocity at x = 5, 
respectively. In this figure we observe that the "consis- 
tent" second-order SIA in the anisotropic case gives 
rather good representation of the flow obtained by the 
complete calculation. On the other hand, the second- 
order correction obtained using an enhancement factor 
is practically negligible with respect to the zero-order 
solution, which means that it is not the correct way to 
approach the "exact" solution starting from the zero- 
order approximation. As expected theoretically, the 
longitudinM stress calculated using the enhancement 
factor is wrong. These results are independent of the 
particular point •2 = 5 considered in l•igure 8. 

5. Conclusion 

In this paper we address the problem of the shallow 
ice •pproximation (S!A) developed by Hutter [1983, pp. 
270-331] for the isotropic case and extended here to the 
anisotropic case. The main goal was to check the valid- 
ity of this approximation. This was achieved by com- 
paring the results of the SIA up to the second order to 
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an "exact" numerical solution obtained by integrating 
the full set of mechanical equations. 

The most important result is that the SIA gives 
an excellent representation of the Newtonian flow of 
an isotropic ice sheet and a good description for the 
anisotropic case. When fiat bedrock is considered, 
the zero-order approximation of the SIA is sufficient 

to describe "exactly" the flow for isotropic, as well as 
anisotropic case. We stress that, as opposed to what 
was thought before, the SIA remains valid even in the 
vicinity of an ice divide for a Newtonian behavior. 

When significant perturbations are introduced on the 
bedrock profile, up to 50% of the ice depth over a typ- 
ical length of five ice thicknesses, the zero-order SIA 
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still gives a good approximation of the flow for isotropic 
case. A further expansion to the second order then gives 
excellent agreement with the "exact" solution. 

On the other hand, for the anisotropic case, the zero- 
order solution is a very rough approximation of the "ex- 
act" solution, so that it is necessary to improve the cal- 
culation by including second-order terms. in this case, 
the maximum relative error on the stresses is of order 
of 10%. This result comes from the fact that strong 
horizontal gradients of the longitudinal stress are gen- 
erated close to the holes of the bedrock. The presence 
of these strong gradients modifies the mechanical bal- 
ance in the zero-order system between the vertical gra- 
dient of the shear stress and the surface slope. Finally, 
we have quantified the error introduced by using an 
enhancement factor in the isotropic viscosity to model 
anisotropic effects. 

Since this work was a first step in validating the 
SIA and to improve it by incorporating an anisotropic 
constitutive relation, we have limited our analysis to 
isothermal situations. This condition can be easily re- 
moved in order to obtain more realistic results. The 
SIA and the "exact" solution were compared for a given 
ice divide elevation calculated in a fixed domain. Since 
the SIA is not applicable close to the margins, the sur- 
face elevation obtained with this approximation can be 
different from that obtained with a complete model in 
which the movement of the boundaries is taken into ac- 
count. 

Appendix: Solution of the Shallow Ice 
Approximation up to Second Order in 
the General Case of Anisotropic Ice 

We give here the detailed solution of (!7) and (18) 
with boundary conditions (!9) using the perturbation 
method in a power series of the aspect ratio e. Express- 
ing all the quantities as a power series of e [Hutter, 1983, 
pp. 274], 

(A•) 

in (23) at the third order we have 

(•(0) •,•)) S '= = e • .M = • •, O X + e O X 

(OW(ø) OW (•)) +e2A4• 0'--•-- + e- OZ ' 

, /au(ø) au ©) 
+,• (Ow(ø) Ow © ) • O• + e Oz ' 

•(aw(ø)) ox 

Since the deviatoric stresses are of an order less than or 

equal to e, we develop the stresses as 

f.q,(O) ,.,,(•.) e2.q,(2) ) 

.q,t ,',l (•) 2 •,(2) ) 

Introducing (A1), (An) and (A3)in (17), (18)and 
(19), we obtain zero-, first- and second-order equations. 
Zero-order equations 

' ox • oz =ø' -o, (A4a) 
a(o) as,J ) 
ax az =ø' ,s'J )-o, 

OP(ø) .q,(o) 10U © OZ 1, ...•,• .M=•:,• 2 OZ ' (A4c) 
with boundary conditions at the surface 

! OU © 
•== • oz = o, (A•) 

p(O)_ O. (ASb) 

First-order equations 

OU(X) OW (1) 
ox oz 

(A6a) 

oP() ) 
ox • OZ =o, 

Op(x) 
•0• 

oz 

S•,(•) OU © • =AA=,=,•, OX 
OW (o) 

oz 

.•,(•) OU © MZZZZ • 
OW (o) 

oz 

S•,(•) ! OU (•) • - M•;•;•2 OZ ' 
with boundary conditions at the surface 

(A6b) 

(A6c) 

(A6d) 

(A6e) 

(A6f) 

10U (•) 
M• 2 OZ =0, (A7a) 

P(•)- O. 

Second-order equations 

(A7b) 

OU (2) 
ox • oz 

0p(2) 
OX 

Op(•) 
Oz 

OW (2) 
'--0• 

O,qt(•') cO,q,'(•) 
ox oz 

as'2 ø) 
ox oz 

-0, 

=0, 

(ASa) 

(ASh) 

(A8c) 
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$•(•'> = M•'• oU(•) 0W (•) = O'•-- + M•.z• 0---•' (ASd) 

OU(•) OW(•) (A8e) 

oz '"+ ox ' ß 
with boundary condition at the surface 

S•,(') _. r ©) 
Z k 

cg.q,/(ø) 
.q'•(")) "":•' E (:•) - O, -• + OZ 

p(2) + OP(ø) E(•.) _ .q,(•) (A9) OZ -• ' 

where 
OE(o) 

i,o _ 
ox 

A1. -Zero. Order Solution 

Integration of equation (A4c)• with the boundary con- 
dition (ASh) gives 

p(0) _ E(0) _ Z. (A10) 

Integration of (A4b) • with the boundary condition (A5a) 
gives the shear stress 

s '(ø) - -r (ø) (E (ø) - Z) •Z ' 

Note that (A4) leads to ,q,•(•o) _ $,(o) _ 0 Integrating ZZ ' 

(A4c)= with respect to z using slip conditions at the 
bedrock gives 

/B z 21 '(0) u(o)(x,z) - u(o)(x - (z(o)_ 
' M•z• z 

(A12) 
The continuity equation (A4a)• allows us to calculate 
W by integrating with respect to z from the bedrock 

w (ø) (x z) - w (ø) (x, s) - øu(ø) ' 0X •dz'. (A13) 

A2. First-Order Solution 

The solution of the first-order equations (A6) and (A7) 
is identically equal to zero, except for the longitudinal 
stresses given by (A6d) et (A6e). 

A3. Second-Order Solution 

We differentiate (A8b) with respect to z and substract 
the x derivative of (ASc). Then, using boundary con- 
ditions (A9) and the Leibnitz rule s we integrate twice 
with respect to z, obtaining the expression for the shear 
stress: 

,_,oz./(:•) _ 

(A14) 

Taking into account (A8f), U (•) is calculated as function 
of the zero-order solution only' 

- 
z 

u (2)(XB)-fs Ow(ø) , ' 'Ox-dz 

and W (2) is calculated integrating (A8a)' 

Z OU(=) W(2)(X'Z) - W(U)(X'B)- ' OX dz'. 
A4. Surface Elevation 

The first order being identically equal to zero, E = 
E (ø) + e2E (2), equation (7) reads 

OE (o) OE(o) 
c9"•• -• U(ø) W (ø) -- a OX ' 

OE(•) . OE(•) OE(o) 
0• + U(ø)• + U(2) W © - 0. (A17) ox ox 
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