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We present a Riemann solver derived by a relaxation technique for classical single-phase
shallow flow equations and for a two-phase shallow flow model describing a mixture of
solid granular material and fluid. Our primary interest is the numerical approximation of
this two-phase solid/fluid model, whose complexity poses numerical difficulties that can-
not be efficiently addressed by existing solvers. In particular, we are concerned with ensur-
ing a robust treatment of dry bed states. The relaxation system used by the proposed solver
is formulated by introducing auxiliary variables that replace the momenta in the spatial
gradients of the original model systems. The resulting relaxation solver is related to Roe
solver in that its Riemann solution for the flow height and relaxation variables is formally
computed as Roe’s Riemann solution. The relaxation solver has the advantage of a certain
degree of freedom in the specification of the wave structure through the choice of the
relaxation parameters. This flexibility can be exploited to handle robustly vacuum states,
which is a well known difficulty of standard Roe’s method, while maintaining Roe’s low dif-
fusivity. For the single-phase model positivity of flow height is rigorously preserved. For
the two-phase model positivity of volume fractions in general is not ensured, and a suitable
restriction on the CFL number might be needed. Nonetheless, numerical experiments
suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and
vacuum formation for a large range of flow conditions.

As a corollary of our study, we show that for single-phase shallow flow equations the
relaxation solver is formally equivalent to the VFRoe solver with conservative variables
of Gallouët and Masella [T. Gallouët, J.-M. Masella, Un schéma de Godunov approché
C.R. Acad. Sci. Paris, Série I, 323 (1996) 77–84]. The relaxation interpretation allows
establishing positivity conditions for this VFRoe method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

This paper illustrates a wave propagation finite volume scheme for single-phase and two-phase shallow flow models ob-
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describing the flow of a shallow layer of a mixture of solid granular material and fluid. The model system is a variant of the
Pitman–Le two-fluid model [1], and it consists of mass and momentum equations for the solid and fluid phases, coupled to-
gether by both conservative and non-conservative momentum exchange terms. The main application of interest of this two-
phase model is the simulation of geophysical gravitational flows such as avalanches and debris flows, which typically contain
both solid granular components and an interstitial fluid phase. Indeed, most of the models used to simulate real avalanches
do not take into account the presence of a fluid component (e.g. [2–4]). The fluid however is expected to play a key role in the
mobility of natural flows and in the structure of their deposits [5–7]. Furthermore, interpretation of the deposits of gravita-
tional flows on Mars in terms of fluid content is a key issue in planetary sciences because of its connection to life [8,7].

The considered two-phase granular flow model was first studied in [9,10], where it was shown to be hyperbolic under the
condition of phase velocity differences sufficiently small. The hyperbolicity assumption is then reasonable for the foreseen
applications to geophysical flows, where usually inter-phase forces rapidly drive solid and fluid constituents towards kine-
matic equilibrium [5]. In [9,10] the two-phase granular flow system was numerically approximated by a Godunov-type finite
volume scheme based on a Roe-type Riemann solver. One disadvantage of this Roe-type method is that it may produce
unphysical negative discrete values of the flow depth and of phase volume fractions. Positivity preservation of flow height
is a fundamental property for numerical models for free surface flows to handle correctly wet/dry transition zones where the
flow height vanishes (wet/dry fronts). Here in particular we are interested in the computation of these flows by finite volume
schemes based on Riemann solvers [11–14]. We refer for instance to [15] for a survey of other approaches.

For classical single-phase shallow water equations numerous positivity preserving Riemann solvers are available. First,
there are classical robust methods such as the exact Riemann solver (Godunov method [16]) and the HLL, HLLC solvers
[17,14]. Other approximate solvers able to treat efficiently vacuum states have been developed by means of relaxation strat-
egies, such as Suliciu’s solver [18–20], and the recent method of Berthon–Marche [21]. Among other methods, let us mention
the augmented four-wave Riemann solver of George [22], which is related to the class of relaxation solvers of LeVeque and
Pelanti [23], and the modified Roe method (MRoe) of Castro, Parés and co-workers [24,25]. This MRoe method however is not
rigorously positivity preserving, and it may need a restriction on the CFL number to avoid negative water depths.

Unfortunately, it is difficult to extend the existing positivity preserving techniques for single-phase shallow flow equa-
tions to the considered two-phase granular flow model, due to its non-conservative character and the complexity of its
Riemann solution structure. Major difficulties for the two-phase system are the lack of explicit expressions of the eigen-
values, the limited information about the structure of the characteristic fields (Riemann invariants are not available), and
hence the lack of knowledge of the exact Riemann solution. The presence of non-conservative terms prevents resorting to
methods of the HLL family [17].

In an effort to build a robust method for the two-phase model suited for flow regimes involving dry bed regions, we have
studied a new Riemann solver derived through a relaxation technique. Our work has been particularly inspired by the relax-
ation approach of Berthon and Marche [21] for shallow water equations, although here we develop a new idea, and our relax-
ation system does not enter in the class of relaxation models proposed in [21]. In [21] the authors establish positivity of the
VFRoe scheme with non-conservative variables (VFRoe-ncv) of [26–28] by identifying the VFRoe-ncv solver with a particular
relaxation solver. The positivity preserving approach of Berthon–Marche relies on a choice of relaxation variables that is
motivated by the form of the Riemann invariants of the single-phase shallow flow system. The technique then is not directly
applicable to our two-phase system, for which the Riemann invariants are not known, and there is no analogous form of the
relaxation model useful to enforce positivity in the two-phase case by the same arguments as in [21]. The relaxation method
that we introduce here has originated after initial attempts of extending the Berthon–Marche approach to the two-phase
system. Both our relaxation model and the one in [21] are based on the pioneering idea of Jin and Xin [29] of approximating
the original model equations via a new system that is easier to solve (see also e.g. [30,31,23]). The particular feature that we
have borrowed from Berthon and Marche [21] is the formulation of a relaxation system with linear degeneracy in all the
characteristic fields, a property obtained by a special decoupling of the linear equations governing the relaxation variables
from the remaining non-linear equations of the relaxation model. The innovative idea of our model is to introduce auxiliary
variables that replace the momenta in the spatial gradients of the original single-phase and two-phase systems. These new
variables are governed by linear equations with coefficients that determine the eigenstructure of the relaxation model, sim-
ilar to [21]. This procedure leads to a Riemann solver that is related to Roe solver in that its Riemann solution for the flow
height and relaxation variables is formally computed as Roe’s Riemann solution. The relaxation solver has the advantage of a
certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This
flexibility can be exploited to handle robustly dry bed states and vacuum appearance, while maintaining Roe’s method
low diffusivity and sharp shock resolution. For the single-phase system positivity of flow height is rigorously preserved.
For the two-phase model positivity in general is not ensured, and a suitable restriction on the CFL number might be needed.
Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and
vacuum formation for a large range of flow conditions, often with no need of a CFL reduction.

As a corollary of our study, in analogy with the results of Berthon–Marche [21] for the VFRoe-ncv method, we find formal
equivalence of our relaxation solver for single-phase shallow flows with the first original version of the VFRoe solver, the
method with conservative variables of [32,33]. Similar to [21], the relaxation interpretation allows establishing positivity
conditions for this version of the VFRoe scheme.

The paper is structured as follows. First, in Sections 2 and 3 we present the shallow flow models under study. We then
give a brief presentation of wave propagation algorithms based on Riemann solvers in Section 4, recalling Roe [34] and
Please cite this article in press as: M. Pelanti et al., A Riemann solver for single-phase and two-phase shallow flow models based on relax-
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Roe-type solvers and the difficulties in handling vacuum states encountered by these methods. In Section 5 we present our
relaxation solver for the single-phase case, and in Section 6 we discuss its equivalence with the VFRoe solver of [32,33]. The
relaxation solver for the two-phase granular flow model is illustrated in Section 7. Numerical results for both the single-
phase and the two-phase model are presented in Section 8, and some concluding remarks are finally written in Section 9.
Appendix A is not directly related to the relaxation approach, but it is dedicated to a positivity preserving Roe method for
the single-phase shallow flow system.

2. Single-phase shallow flow equations

The classical one-dimensional single-phase shallow water system has the conservative form
Please
ation.
@thþ @xm ¼ 0; ð1aÞ

@tmþ @x
m2

h
þ g

2
h2

� �
¼ 0; ð1bÞ
where h is the flow height, m ¼ hu the momentum, and u the flow velocity in the x direction. In compact form:
@tqþ @xf ðqÞ ¼ 0; ð2aÞ
where
q ¼
h

m

� �
and f ðqÞ ¼

m
m2

h þ
g
2 h2

 !
ð2bÞ
denote the vector of the conserved variables and the flux vector function, respectively. The quasi-linear form of the equations
is
@tqþ AðqÞ@xq ¼ 0; ð3aÞ

AðqÞ ¼ f 0ðqÞ ¼
0 1

�u2 þ gh 2u

� �
; ð3bÞ
and the system is defined over the convex set of admissible states
X ¼ fq 2 R2; h P 0; u 2 Rg: ð4Þ
The system has eigenvalues kk and corresponding right eigenvectors rk; k ¼ 1;2, given by
k1;2 ¼ u� c; r1;2 ¼
1

u� c

� �
; c ¼

ffiffiffiffiffiffi
gh

p
; ð5Þ
and it is strictly hyperbolic for h > 0. The left eigenvectors can be taken as
l1;2 ¼
1
2c
ð�uþ c;�1Þ ð6Þ
with the normalization ljrk ¼ djk (Kronecker’s delta).

3. A two-phase shallow granular flow model

We consider a shallow layer of a mixture of solid granular material and fluid over a horizontal surface. Solid and fluid
components are assumed incompressible, with constant specific densities qs and qf < qs, respectively. We denote with h
the flow height and with u the solid volume fraction, and we define the variables
hs ¼ uh and hf ¼ ð1�uÞh: ð7Þ
We consider the one-dimensional case, and we indicate solid and fluid velocities in the x direction with us; uf , respectively.
Phase momenta are given by ms ¼ hsus and mf ¼ hf uf . The dynamics of this granular mixture can be modeled by the follow-
ing depth-averaged system, consisting of mass and momentum equations for the two constituents:
@ths þ @xms ¼ 0; ð8aÞ

@tms þ @x
m2

s

hs
þ g

2
h2

s þ g
1� c

2
hshf

� �
þ cghs@xhf ¼ cFD; ð8bÞ

@thf þ @xmf ¼ 0; ð8cÞ

@tmf þ @x

m2
f

hf
þ g

2
h2

f

 !
þ ghf @xhs ¼ �FD: ð8dÞ
Above, g is the gravity constant and
cite this article in press as: M. Pelanti et al., A Riemann solver for single-phase and two-phase shallow flow models based on relax-
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Please
ation.
c ¼
qf

qs
< 1: ð9Þ
Source terms on the right-hand side of the momentum equations model inter-phase drag forces FD, which we express as
FD ¼ Dðhs þ hf Þðuf � usÞ, where D ¼ Dðu; juf � usj;rÞ is a drag function depending in general on u; juf � usj, and a set of phys-
ical parameters r (e.g. specific densities, particle diameter). Drag effects in the model are important for maintaining flow
conditions in the hyperbolic regime, as it will be clearer in the following (Section 3.1). However, in this paper we will only
be concerned with the numerical approximation of the homogeneous system.

In compact form the homogeneous system reads
@tqþ @xf ðqÞ þwðq; @xqÞ ¼ 0; ð10aÞ
where
q ¼

hs

ms

hf

mf

0BBB@
1CCCA; f ðqÞ ¼

ms

m2
s

hs
þ g

2 h2
s þ g 1�c

2 hshf

mf

m2
f

hf
þ g

2 h2
f

0BBBBB@

1CCCCCA; and wðq; @xqÞ ¼

0
cghs@xhf

0
ghf@xhs

0BBB@
1CCCA: ð10bÞ
Above, we have put into evidence the conservative portion of the system @xf ðqÞ, and the non-conservative term wðq; @xqÞ.
Note that the mass equations for hs and hf are conservative, whereas the momentum equations for ms and mf exhibit
non-conservative products that couple the dynamics of the solid and fluid phases. The momentum of the mixture
mm ¼ ms þ cmf is nonetheless conserved:
@tmm þ @xfmðqÞ ¼ 0; ð11aÞ
where
fmðqÞ ¼ f ð2ÞðqÞ þ cf ð4ÞðqÞ þ cghshf ¼
m2

s

hs
þ c

m2
f

hf
þ g

2
h2

s þ ch2
f

� �
þ g

1þ c
2

hshf : ð11bÞ
Let us also write the homogeneous system in quasi-linear form for future reference. We have:
@tqþ AðqÞ@xq ¼ 0; ð12aÞ
where
AðqÞ ¼

0 1 0 0
�u2

s þ ghs þ g 1�c
2 hf 2us g 1þc

2 hs 0
0 0 0 1

ghf 0 �u2
f þ ghf 2uf

0BBB@
1CCCA: ð12bÞ
The set of admissible states for this model is:
X ¼ fq 2 R4; hs;hf P 0; us; uf 2 Rg; ð13aÞ

or, equivalently, in terms of h ¼ hs þ hf and u ¼ hs

hsþhf
,

X ¼ fq 2 R4; h P 0;u 2 ½0;1�;us; uf 2 Rg: ð13bÞ

The two-phase model (8) is a variant of the two-phase debris flow model of Pitman and Le [1]. It was previously studied in
[9,10] in an extended form that included topography terms accounting for a variable bottom surface. The model system
above differs from the original work of Pitman and Le [1] in the description of the fluid and mixture momentum balance,
and, in contrast with [1], has the property of recovering a conservative equation for the momentum of the mixture mm,
as shown in (11). We recently learned that Le presented in his thesis work [35] a version of his earlier two-phase model
[1] that results to be equivalent to our formulation. Le in his thesis analyzes the model system in normalized form and
he claims hyperbolicity assuming ‘‘reasonable parameters” in the equations. In the next section we illustrate the results
of the more precise eigenvalue analysis of the system that we presented in [9,10].

3.1. Eigenvalues and hyperbolicity

In general, simple explicit expressions of the eigenvalues kk; k ¼ 1; . . . ;4, of the matrix A of the system cannot be derived.
In the particular case of equality of solid and fluid velocities, uf ¼ us � u, the eigenvalues are real and distinct ðh > 0;u–1Þ,
and given by
k1;4 ¼ u� a and k2;3 ¼ u� ab; ð14Þ

where we have introduced the quantities
a ¼
ffiffiffiffiffiffi
gh

p
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�uÞ1� c

2

r
< 1: ð15Þ
cite this article in press as: M. Pelanti et al., A Riemann solver for single-phase and two-phase shallow flow models based on relax-
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Other particular cases are: (i) u ¼ 0, for which the eigenvalues are uf � a, us � ab, with b ¼
ffiffiffiffiffiffi
1�c

2

q
; (ii) u ¼ 1, for which we find

the two distinct eigenvalues us � a and the double eigenvalue uf . For the general case, in [10] we proved the following:

Proposition 3.1. Matrix A (12b) has always at least two real eigenvalues k1;4, and moreover, the eigenvalues kk of A; k ¼ 1; . . . ;4,
satisfy:
Please
ation.
umin � a 6 k1 6 Rðk2Þ 6 Rðk3Þ 6 k4 6 umax þ a; ð16Þ
where umin �minðuf ;usÞ;umax � maxðuf ;usÞ, and Rð�Þ denotes the real part. Furthermore:

(i) If jus � uf j 6 2ab or jus � uf jP 2a then all the eigenvalues are real. If one of these inequalities is strictly satisfied, and if
h > 0 and u–1, then the eigenvalues are also distinct, and system (12) is strictly hyperbolic.

(ii) If 2ab < jus � uf j < 2a then the internal eigenvalues k2;3 may be complex.

Proposition 3.1 shows that our model system is hyperbolic for differences of solid and fluid velocities either sufficiently
small or sufficiently large, compared to the characteristic speeds of flow in kinematic equilibrium, and that there exists a
range of values of the phase velocity difference for which the system eigenvalues may be complex and hyperbolicity is lost.
The relevant hyperbolic regime for applications is the one corresponding to small jus � uf j. It is understood that inter-phase
drag forces act in favor of hyperbolic flow conditions, since they tend to drive phase velocities closer.

Let us also recall the bounding intervals that we found for the eigenvalues in [10], in addition to the bounds (16). For the
external eigenvalues k1;4 we have
k1 2 ðumin � a;minðumax � a;umin � abÞÞ and ð17aÞ
k4 2 ðmaxðumin þ a;umax þ abÞ;umax þ aÞ; ð17bÞ
and for the internal eigenvalues k2;3, if they are real, we have
k2 2 ðminðumax � a;umin � abÞ;minðumax � ab;umin þ aÞÞ and ð17cÞ
k3 2 ðmaxðumax � a;umin þ abÞ;maxðumin þ a;umax þ abÞÞ: ð17dÞ
3.1.1. Implicit analytical expressions of the eigenvalues
We write here implicit analytical expressions of the system’s eigenvalues (not presented in [10]), since the formulas give

some insight into the dependence on the flow variables, and they will be useful in the following (Section 7.3). In general, the
eigenvalues have the form:
k1;4 ¼ Ve � ce and k2;3 ¼ V i � ci; ce; ci P 0 ð18Þ
with
Ve ¼ �uþ d and V i ¼ �u� d; ð19Þ
where �u ¼ usþuf

2 and the d represents the deviation of the velocities Ve and V i of the external and internal eigenvalues, respec-
tively, from the mean velocity �u. Let us define DU ¼ us � uf . The quantities ce and ci can be expressed as
ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ

ffiffiffiffiffiffi
Zþ

pq
and ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T �

ffiffiffiffiffiffi
Z�
pq

; ð20aÞ
where
T ¼ DU
2

� �2

� 3d2 þ 1
2

a2ð1þ bÞ2; ð20bÞ

Z� ¼ 1
4

a4ð1� b2Þ2 � a2jdkDUj 3þ c
1� c

b2 � 1
���� ����þ 8d4 � d2ðDU2 þ 2a2ð1þ b2ÞÞ þ DU2

2
a2ð1þ b2Þ: ð20cÞ
The solution for d can be found by solving the following cubic equation for the variable y ¼ d2:
y3 þ b2y2 þ b1yþ b0 ¼ 0; ð21Þ
where
b2 ¼ �
DU
2

� �2

� 1
2

a2ð1þ b2Þ; ð22aÞ

b1 ¼
1

16
a4ð1� b2Þ2 þ 1

2
a2 DU

2

� �2

ð1þ b2Þ2; ð22bÞ

b0 ¼ �
1

16
a4 DU

2

� �2 3þ c
1� c

b2 � 1
� �2

: ð22cÞ
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Among the three roots of the equation above, we take the only (positive) real root if there are two complex conjugate roots. If
all the roots are real, the root that we need is the one with minimum (positive) value. (Note that the solution for y must give a
value of d such that Z� is positive.) Once we have the solution for y, we take jdj ¼ ffiffiffi

y
p

, and the sign of d depends on the sign of
the following quantity:
Please
ation.
Y ¼ DU
1þ c
3þ c

�u
� �

: ð23Þ
We have dR0 for YQ0. In particular, note that if us ¼ uf or u ¼ 1þc
3þc, then d ¼ 0, Ve ¼ V i ¼ �u, and we obtain explicit expressions

for the eigenvalues (the expressions in (14) for the case us ¼ uf ¼ u). Based on the inequalities (17), we have the following
bounds on d;Ve;i, and ce;i:
jdj 6 min
jDUj

2
;
a
2
ð1� bÞ

� �
; ð24aÞ

umin 6 Ve;i 6 umax and 0 6 ci 6 ce 6 aþ jDUj
2

: ð24bÞ
Introducing now the number
N � DU
a
; ð25Þ
we observe that the ratio
d
a
¼ zðN; bÞ ð26Þ
depends only on N and b since b2=a2; b1=a4; b0=a6 and sgnðYÞ depend only on N; b, and the quantities ce; ci can be ex-
pressed as
ce;i ¼ aCe;iðN;bÞ; ð27aÞ
where
Ce;iðN; bÞ ¼
N2

4
� 3z2 þ 1

2
ð1þ b2Þ � 1

4
ð1� b2Þ2 � Njzj 3þ c

1� c
� 1

���� ����þ 8z4 � z2ðN2 þ 2ð1þ b2ÞÞ þ N2

2
ð1þ b2Þ

 !1
2

0@ 1A1
2

:

ð27bÞ
From (24), we obtain the bounds jzj 6min 1
2 jNj; 1

2 ð1� bÞ
� 	

6
1
2 ; Ce;i 6 1þ jNj2

� �
, and note that in the first hyperbolic region we

have jNj 6 2b.

3.1.2. Eigenvectors
The right and left eigenvectors of the matrix AðqÞ (12b) can be written in terms of the eigenvalues kk; k ¼ 1; . . . ;4. Let us

consider here for simplicity h > 0; u – 1, and u – 0, that is hs; hf > 0. Then the right eigenvectors rk; k ¼ 1; . . . ;4, can be
expressed as
rk ¼

1
kk

nk

nkkk

0BBB@
1CCCA ð28aÞ
with
nk ¼
ðkk � usÞ2 � g hs þ 1�c

2 hf

� �
g 1þc

2 hs

¼
ghf

ðkk � uf Þ2 � ghf

: ð28bÞ
Assuming that the matrix of the right eigenvectors R ¼ ðr1; r2; r3; r4Þ is non-singular, which in particular is true if
jus � uf j < 2ab or jus � uf j > 2a (Proposition 3.1), the left eigenvectors lk of AðqÞ; k ¼ 1; . . . ;4, can be then taken as
lk ¼
nk

P0ðkkÞ
; nk ¼ ð#s;kðkk � 2usÞ; #s;k; #f ðkk � 2uf Þ; #f Þ; ð29aÞ
where PðkÞ ¼ detðkI � AÞ is the characteristic polynomial of A and
#s;k ¼ ðkk � uf Þ2 � ghf ¼ g
hf

nk
and #f ¼ g

1þ c
2

hs: ð29bÞ
Here we have normalized the left eigenvectors so that ljrk ¼ djk.
cite this article in press as: M. Pelanti et al., A Riemann solver for single-phase and two-phase shallow flow models based on relax-
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4. Wave-propagation finite volume methods and Riemann solvers

The class of numerical schemes that we consider for the approximation of the single-phase and the two-phase shallow
flow models are the wave propagation methods of [36]. These are a class of finite volume schemes for the solution of hyper-
bolic systems based on Riemann solvers (Godunov-type schemes), cf. [37,11–13,20]. In fact, as we mentioned in Section 1,
the relaxation approach that we propose results in the definition of a particular Riemann solver for the shallow flow systems
(see Sections 5 and 7). For the numerical solution of the two-phase model (8) we assume that solid and fluid velocity differ-
ences are small enough so that the system is hyperbolic. Potential difficulties related to the appearance of complex eigen-
values will be mentioned in Section 7.5. Note also that here we will illustrate a method only for the solution of the
homogeneous two-phase system. Inter-phase drag source terms will be taken into account in some of the numerical exper-
iments, and they are approximated by the fractional step algorithm described in [10].

Let us consider a general hyperbolic system of the form
Please
ation.
@tqþ AðqÞ@xq ¼ 0; q 2 Rl; A 2 Rl�l: ð30Þ
A Riemann solver for this system of equations defines a function qRSðx=t; q‘; qrÞ that approximates the true similarity solution
to a Riemann problem for the system with left and right data q‘ and qr . For many solvers (e.g. HLL, Roe, Suliciu, . . .) this func-
tion qRSðx=t; q‘; qrÞ consists of a set of M wavesWk and corresponding speeds sk;MRl (e.g. M ¼ l for Roe, M ¼ 2 for HLL). That
is, qRSjx=t<s1 ¼ q‘, qRSjx=t>sM ¼ qr , and
qRSðx=t; q‘; qrÞjsk<x=t<skþ1 ¼ q‘ þ
Xk

j¼1

W j ¼ qr �
XM�k

j¼1

WM�jþ1; k ¼ 1; . . . ;M � 1: ð31Þ
The sum of the waves must be equal to the initial jump in the system variables:
Dq � qr � q‘ ¼
XM

k¼1

Wk: ð32Þ
Moreover, for conservative systems endowed with a flux function f ðqÞ; f 0ðqÞ ¼ AðqÞ, i.e. systems of the form @tqþ @xf ðqÞ ¼ 0,
the initial flux jump must be recovered by the sum of the waves multiplied by the corresponding speeds:
Df � f ðqrÞ � f ðq‘Þ ¼
XM

k¼1

skWk: ð33Þ
The quantities Zk ¼ skWk have the dimension of a flux, and we will call them f-waves following the nomenclature introduced
in [38] (the nomenclature holds for both the conservative and the non-conservative case).

The updating formula of the corresponding Godunov-type finite volume scheme can be written in the following LeVeque’s
wave-propagation form [36,13] in terms of the f-waves Zk

iþ1=2 and speeds sk
iþ1=2 arising from local Riemann problems with data

Q n
i ; Qn

iþ1 (i 2 Z and n 2 N are the indexes of the discretization in space and time, respectively):
Q nþ1
i ¼ Q n

i �
Dt
Dx
ðAþDQ i�1=2 þA�DQ iþ1=2Þ �

Dt
Dx
ðFc

iþ1=2 � Fc
i�1=2Þ; ð34aÞ

Fc
iþ1=2 ¼

1
2

XM

k¼1

sgn sk
iþ1=2

� �
1� Dt

Dx
sk

iþ1=2

��� ���� �
Zc;k

iþ1=2; ð34bÞ
where A�DQ are the fluctuations at cell interfaces,
A�DQ iþ1=2 ¼
X

k:sk
iþ1=2

<0

Zk
iþ1=2 and AþDQ iþ1=2 ¼

X
k:sk

iþ1=2
>0

Zk
iþ1=2; ð34cÞ
and Fc
iþ1=2 are correction fluxes for second order resolution. Zc;k

iþ1=2 are a modified version of Zk
iþ1=2, obtained by applying to

Zk
iþ1=2 a limiter function, cf. [13].

4.1. Roe and Roe-type Riemann solvers

Classical Roe’s Riemann solver [34] for systems of conservation laws, and Roe-type solvers for more general systems of
the form (30), are based on a linearization of the system’s equations. These solvers approximate the solution to a Riemann
problem for the original system with initial data q‘; qr by the exact solution of a Riemann problem for a linearized system
@tqþ bAðq‘; qrÞ@xq ¼ 0: ð35Þ
The constant coefficient matrix bAðq‘; qrÞ (Roe matrix) must guarantee conservation for the variables of the model system that
are governed by conservative equations. That is, if the kth component qðkÞ of the vector q is a conserved quantity, and f ðkÞ

denotes the associated flux function, then we need
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bAðk;:Þðqr � q‘Þ ¼ f ðkÞðqrÞ � f ðkÞðq‘Þ; ð36Þ
where Aðk;:Þ is the kth row of the matrix bA. We refer the reader to [11,37] for a rigorous definition of Roe matrix and to [39–41]
for a generalized definition of Roe linearization based on the use of a family of paths.

For the conservative shallow flow system (1) the Roe matrix is classically defined as the original matrix AðqÞ (3b) evalu-
ated at an average state q̂ ¼ q̂ðĥ; ûÞ, where
ĥ ¼ h‘ þ hr

2
and û ¼

ffiffiffiffiffi
h‘

p
u‘ þ

ffiffiffiffiffi
hr

p
urffiffiffiffiffi

h‘
p

þ
ffiffiffiffiffi
hr

p : ð37Þ
In [9,10] a Roe-type Riemann solver was presented for the solution of the non-conservative two-phase flow model (12). Here
the constant coefficient matrix bAðq‘; qrÞ must guarantee conservation for the mass of each phase and for the momentum of
the mixture, that is (36) for k ¼ 1 and k ¼ 3, and
bAð2;:Þ þ cbAð4;:Þ� �

ðqr � q‘Þ ¼ fmðqrÞ � fmðq‘Þ: ð38Þ
This can be obtained by taking bA as the matrix AðqÞ in (12b) evaluated at an average state q̂ ¼ q̂ðĥs; ĥf ; ûs; ûf Þ, where
ĥh ¼
hh;‘ þ hh;r

2
and ûh ¼

ffiffiffiffiffiffiffi
hh;‘

p
uh;‘ þ

ffiffiffiffiffiffiffi
hh;r

p
uh;rffiffiffiffiffiffiffi

hh;‘

p
þ

ffiffiffiffiffiffiffi
hh;r

p ; h ¼ s; f : ð39Þ
Resulting waves and speeds for Roe and Roe-type solvers are defined by ðM ¼ lÞ
Wk ¼ âkr̂k and sk ¼ k̂k; k ¼ 1; . . . ;l; ð40Þ
where fr̂k; k̂kg16k6l are the eigenpairs of the Roe matrix bA of the considered system, and âk are the coefficients of the eigen-
decomposition Dq ¼

Pl
k¼1âkr̂k. Hence, âk ¼ l̂kDq, where l̂k are the left eigenvectors of bA, with the normalization l̂j r̂k ¼ djk. The

f-waves to be used in (34c) are then
Zk ¼ k̂kWk ¼ k̂kâkr̂k: ð41Þ
4.2. The problem of positivity preservation

A well-known drawback of numerical schemes based on Roe and Roe-type solvers is that they may generate negative dis-
crete values of physically non-negative variables, the flow height and phase volume fractions in the models under study. The
difficulties related to positivity2 preservation of Godunov-type schemes were analyzed in detail by Einfeldt–Munz–Roe–
Sjögreen [42] in the context of the Euler equations of gas dynamics. In [42] the authors introduced the notion of positively
conservative scheme, which here we state in a general form:

Definition 4.1. A numerical scheme for the approximation of a given system of equations endowed with a set X of physically
admissible states is positivity preserving if, for any choice of the initial data in X, the computed values of the solution belong
to X at any discrete spatial location and at any time level.

For the models (1) and (8) physical consistency requires that the discrete solution values belong to the set of admissible
states (4) and (13a), respectively. Hence we need
hn
i P 0; 8i 2 Z; 8n 2 N; ð42Þ
for the single-phase model, and
hn
i P 0; un

i 2 ½0;1� () hn
s;i; h

n
f ;i P 0; 8i 2 Z; 8n 2 N; ð43Þ
for the two-phase model.
Let us consider the particular class of Godunov-type schemes in the sense of Harten–Lax–van Leer [17]. For an approx-

imation qRSðx=t; q‘; qrÞ to local Riemann problems, and under suitable consistency conditions, such schemes are defined by
[17, Theorem 3.1]
Qnþ1
i ¼ 1

Dx

Z Dx=2

0
qRSðx=t; Qn

i�1;Q
n
i Þdxþ 1

Dx

Z 0

�Dx=2
qRSðx=t; Q n

i ;Q
n
iþ1Þdx; ð44Þ
that is the discrete solution is computed (at first order) by cell L2-averaging of the local approximate Riemann solutions. Roe
an Roe-type solvers, HLL solvers, and relaxation solvers in the sense of Bouchut [20] enter in this class of methods, c.f. [20] for
a rigorous and detailed presentation.
term positivity is classically used in this context in the literature instead of the more precise term non-negativity. We will use indifferently the two
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For these Godunov-type schemes a sufficient condition for positivity is non-negativity of the approximate Riemann solu-
tion for the physically non-negative variables, as we enunciate below.

Lemma 4.2. A Godunov-type scheme in the sense of Harten–Lax–van Leer (44) for a given system of equations endowed with a
convex set X of physically admissible states is positivity preserving if the Riemann solution states generated by the associated
Riemann solver belong to X for any choice of the initial Riemann data in X, and under the condition CFL 6 1=2, where
Please
ation.
CFL ¼ Dt
Dx

max
i
ðjsk

iþ1=2j; k ¼ 1; . . . ;MÞ: ð45Þ
Proof. The proof was given in [42]. Assume qRSðx=t; q‘; qrÞ 2 X, for any pair q‘; qr 2 X and CFL 6 1=2. Then the computed solu-
tion values Qnþ1

i belong to X;8i 2 Z and 8n 2 N, since they are obtained by convex averaging of Riemann solution states that
belong to the convex set X. h

The Roe Riemann solution structure for the single-phase shallow flow model (1) consists of three constant states
q‘; q	Roe; qr , separated by two linear waves propagating at speeds
k̂1;2 ¼ û� ĉ; where ĉ ¼
ffiffiffiffiffiffi
gĥ

q
ð46Þ
with the definitions (37) of ĥ; û. By using the Roe waves (40), and the identity
Dm ¼ ûDhþ
ffiffiffiffiffiffiffiffiffi
h‘hr

p
Du; ð47Þ
where Dð�Þ � ð�Þr � ð�Þ‘, the flow height corresponding to the intermediate state q	Roe can be easily found as
h	Roe ¼
h‘ þ hr

2
�

ffiffiffiffiffiffiffiffiffi
h‘hr

p
Du

2ĉ
: ð48Þ
For fixed initial data h‘; hr , we see that h	Roe becomes negative for positive values of the initial velocity jump Du sufficiently

large, Du > ĉðh‘þhrÞffiffiffiffiffiffiffi
h‘hr

p . This typically happens for Riemann problems consisting of two rarefactions moving in opposite directions

that form a region of very low flow depth or a vacuum zone (dry bed) in between (cf. [14]; [13, p. 327]). If for a Riemann
problem at some grid cell interface h	Roe < 0, then the numerical scheme will likely produce negative discrete values of h,

and the numerical code will fail when computing quantities
ffiffiffiffiffiffi
gh

p
. Let us also recall that failure of the standard Roe solver

near vacuum states for shallow water equations as well as for Euler equations can be imputed to an underestimation of
the physical signal velocities by the numerical signal velocities (the Roe speeds (46)). See the discussion of Einfeldt–
Munz–Roe–Sjögreen in [42, p. 285] for the Euler equations. Unfortunately, the conservation constraints on the definition

of the Roe matrix bA ¼ Aðq̂Þ prevent from using a choice of the average state q̂ that could allow enlarging suitably the Roe
velocities to ensure positivity of the numerical scheme.

Clearly, similar numerical difficulties for positivity preservation are encountered by the Roe-type method for the two-
phase model. In this case negative values of hs and/or hf may be produced.

In the following we present a Riemann solver based on a relaxation model that has additional degrees of freedom with
respect to Roe and Roe-type solvers. This new solver guarantees conservation for any choice of the relaxation parameters,
which can be freely set to obtain numerical speeds that ensure robustness of the method near dry states.

Let us mention that for the single-phase shallow flow system a positivity preserving Roe method can be obtained by
defining a Roe matrix in a new form that differs from the classical choice of the average Jacobian bA ¼ Aðq̂Þ. This approach
is described in Appendix A, where we also discuss why such strategy unfortunately does not seem applicable to the two-
phase shallow flow system.

5. Relaxation method for the single-phase shallow flow model

We derive in this section an approximate Riemann solver for the single-phase shallow flow equations (1) by introducing a
relaxation model for the system. Our approach was in particular suggested by the recent relaxation solver of Berthon and
Marche [21], but the main ideas follow primarily the work of Jin and Xin [29] and Suliciu [18,19]. Other related works
are for instance [30,31,23]. We refer in particular to the monograph [20] and the bibliography therein. We introduce an aux-
iliary variable x that is meant to be an approximation of the momentum m, and approaches m as a relaxation time s! 0þ.
This relaxation variable x is used to replace the momentum variable m in the spatial gradients of the original system. We
propose that x is governed by a linearized form of the momentum equation:
@txþ ð�~u2 þ g~hÞ@xhþ 2~u@xx ¼
m�x

s
; ð49Þ
where the linearization has been considered at an average state ~qð~h; ~uÞ, and the source term on the right-hand side drives the
relaxation process to equilibrium. Then the relaxation system has the form:
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@thþ @xx ¼ 0; ð50aÞ

@tmþ @x
x2

h
þ g

2
h2

� �
¼ 0; ð50bÞ

@txþ ð�~u2 þ g~hÞ@xhþ 2~u@xx ¼
m�x

s
: ð50cÞ
Formally, the system above recovers the original system in the limit s! 0þ (equilibrium limit).
Here we define a solution method for the shallow flow system (1) that is based on the relaxed scheme of Jin–Xin [29]. The

algorithm consists of two alternating steps:

1. Set the relaxation variable x equal to its equilibrium value m in the initialization of the data at time tn (equilibrium step);
2. Solve exactly over a time step local Riemann problems at cell interfaces for the relaxation system with no relaxation

source term to update ðh;mÞn to ðh;mÞnþ1 (propagation step).

Since we reset xn ¼ mn at each time level, note that the solution for x coming from the propagation step is ignored.
When the algorithm above is used, the Riemann solution of the relaxation system results in the definition of an approx-

imate Riemann solution qrel
RSðx=t; q‘; qrÞ for the original system, see [23,20]. The resulting numerical approximation method

for (1) is a Godunov-type scheme in the sense of Harten–Lax–van Leer (44) associated to a function qrel
RSðx=t; q‘; qrÞ [20]. Be-

cause we will not be concerned with the relaxation source term, hereafter we will intend as relaxation model simply the
homogeneous relaxation system, which, denoting qE ¼ ðh;m;xÞT, has the quasi-linear form:
@tqE þ AEðqEÞ@xqE ¼ 0 ð51aÞ
with
AEðqEÞ ¼
0 0 1

�x2

h þ gh 0 2 x
h

�~u2 þ g~h 0 2~u

0B@
1CA: ð51bÞ
5.1. Riemann structure of the relaxation model

Let us note that the relaxation model (51) presents a decoupled sub-system for the variables
qR �
h

x

� �
: ð52Þ
This sub-system corresponds to a linearized form of the original system (3),
@tqR þ eA@xqR ¼ 0 ð53Þ
with a matrix eA ¼ Að~qÞ, where AðqÞ 2 R2�2 is the matrix (3b), and ~q ¼ ~qð~h; ~uÞ. The eigenvalues of the relaxation model are the
two eigenvalues of this sub-system, that is the eigenvalues of eA, plus a zero eigenvalue:
~k1;2 ¼ ~u� ~c; where ~c ¼
ffiffiffiffiffiffi
g~h

q
; and k0 ¼ 0: ð54Þ
The eigenvectors corresponding to ~k1;2 are
rE
1;2 ¼

1
2x
h �

x2=h2�gh
~u�~c

~u� ~c

0B@
1CA; ð55Þ
and the eigenvector associated to k0 ¼ 0 is rE0 ¼ ð0;1;0ÞT. Note that all the characteristic fields are linearly degenerate. The
Riemann solution of the relaxation system consists then of constant states separated by linear waves (contact discontinu-
ities), a stationary wave corresponding to k0, and two waves propagating at speeds ~k1;2.

5.1.1. Riemann invariants
The variables qR ¼ ðh;xÞT are Riemann invariants across the stationary discontinuity k0:
D0h ¼ 0 and D0x ¼ 0; ð56Þ
where D0ð�Þ denotes increments across k0. Therefore, only the momentum variable m has possibly a jump across this station-
ary wave. Across the two propagating waves associated to ~k1;2 ¼ ~u� ~c, the following invariance relations hold:
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~kkh�x ¼ const: and ð57aÞ

~kkm� Fðh;xÞ ¼ const:; where Fðh;xÞ ¼ x2

h
þ g

2
h2
: ð57bÞ
Denoting with Dkð�Þ increments across the waves ~kk; k ¼ 1;2, we have therefore the following jump relations for these
waves:
~kkDkh ¼ Dkx; ð58aÞ
~kkDkm ¼ DkFðh;xÞ; ð58bÞ
which can be also written as

~kkDkq ¼ Dkf ðqRÞ; ð59Þ
where f ðqÞ is the flux vector of the shallow flow system (2). Note that the relations (59) have the form of Rankine–Hugoniot
jump conditions.

5.2. Relaxation Riemann solver

The exact solution qE
RSðx=t; qE

‘ ; q
E
r Þ 2 R3 to a Riemann problem for the relaxation system (51) with left and right data qE

‘ ; q
E
r

defines an approximate Riemann solution qrel
RS ðx=t; q‘; qrÞ 2 R2 for the original system (3) with data q‘; qr , i.e.

qrel
RS

� 	ðkÞ ¼ qE
RS

� 	ðkÞ
; k ¼ 1;2. Notice that the equilibrium step of the relaxed scheme introduced at the beginning of this section

amounts to setting the right and left data of the relaxation variables as
x‘ ¼ m‘ and xr ¼ mr : ð60Þ

The Riemann solution for the variables qR of the relaxation system is the Riemann solution of the linear sub-system (53). The
increments DkqR; k ¼ 1;2, across the (linear) waves ~k1;2 ¼ ~u� ~c are:
DkqR ¼ ðDkh;DkxÞT ¼ ~ak~rk; k ¼ 1;2; ð61Þ
where ~rk are the right eigenvectors of eA;~r1;2 ¼ ð1; ~u� ~cÞT, and ~ak are the coefficients of the projection DqR ¼
P2

k¼1~ak~rk (here
Dð�Þ � ð�Þr � ð�Þ‘, as in Section 4.2). We have ~ak ¼ ~lkDqR, where~lk are the left eigenvectors of eA; ~l1;2 ¼ 1

2~c ð�~uþ ~c;�1Þ. The inter-
mediate state ðqRÞ	 ¼ ðh	;x	Þ between the waves ~k1 and ~k2 can be then found as
ðqRÞ	 ¼ qR
‘ þ ~a1~r1 ¼ qR

r � ~a2~r2: ð62Þ
Clearly, ðqRÞ	 and DkqR can be equivalently obtained through the Riemann invariants (57a). In particular, note that we have
the equality ~kkDkh ¼ Dkx ¼ ~kk ~ak.

The increments for the momentum m across the two propagating waves are then given by the jump relations (58b), which
correspond to the Riemann invariants (57b). Finally, the jump of the momentum across k0 is D0m ¼ Dm�

P2
k¼1Dkm, and the

Riemann solution intermediate states for m can be found by distinguishing between the different cases corresponding to a
different order of ~k1; ~k2 with respect to k0, however this information is not needed in the solver (see below). The resulting
approximate Riemann solver for the original system consists of three waves
Wk ¼ Dkq; k ¼ 1;2; and W3 ¼ ð0;D0mÞT; ð63Þ
moving at speeds sk given by
s1;2 ¼ ~k1;2 ¼ ~u� ~c and s3 ¼ k0 ¼ 0: ð64Þ
The wave structure can be written in terms of the f-waves Zk ¼ skWk. We have
Zk ¼ ~kkDkq; k ¼ 1;2; and Z3 ¼ 0; ð65Þ
where ~kkDkq are obtained as explained above. We rewrite here for clarity the resulting formulas:
~kkDkh ¼ ~kk ~ak; ð66aÞ

~kkDkm ¼ Dk
x2

h
þ g

2
h2

� �
; k ¼ 1;2: ð66bÞ
Note that in the wave propagation algorithm (34) we only need to specify f-waves and speeds, and not the wavesWk them-
selves. This avoids computing the jump of the momentum across the eigenvalue k0 ¼ 0. It is easy to see that the solver is
conservative for any choice of ~q, since, based on (59) and (60),
X3

k¼1

Zk ¼ Df ðqÞ: ð67Þ
Let us observe that the relaxation procedure has led to a Riemann solver that uses a Riemann solution qR formally com-
puted as the Roe Riemann solution, the difference possibly being in the definition of the averages ^ð�Þ, ~ð�Þ of h;u. This is obvious
by looking at the linearized problems (53) and (35), and it has motivated our choice of the superscript R of qR, which stands
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for ‘‘Roe”. Then, the f-waves of the relaxation solver are defined as the flux jumps corresponding to this Roe Riemann solu-
tion, see (65) and (59), whereas the standard Roe solver uses the eigencomponents of the linearized system. Furthermore, as
a consequence of the linearity of the first component of the flux function f ðqÞ of the model system, the flow height wave
components and the flow height Riemann solution are formally computed in the same way by the relaxation and Roe solvers
(cf. (66a) and (41)). Then the two methods differ only in the expression of the momentum wave components. Based on this
observations, the relaxation solver can be seen as a modified Roe solver that allows conservation for arbitrary choices of the
parameters by a new definition of the momentum waves. Indeed such a solver for the shallow water equations is not entirely
a novelty, as its wave structure results to be equivalent to that of the VFRoe solver with conservative variables of Gallouët
and co-workers of [32,33], as we explain in Section 6.

Let us also finally mention that, like Roe and VFRoe solvers, our relaxation solver may fail when the linearized problem’s
eigenvalues are close to sonic points, and an entropy fix is needed. In particular, we use the Harten and Hyman entropy-fix
correction [43], in the LeVeque form described in [37] (see also [14]).

5.3. Relaxation parameters and positivity

We now exploit the freedom in the choice of the parameters ~h; ~u to ensure positivity of the Riemann solution of the relax-
ation system, which is a sufficient condition for positivity of the numerical scheme, by Lemma 4.2. We have seen that there is
only one intermediate Riemann state h	 for the flow height, as a result of the invariance property in (56). Then, for positivity,
it suffices to satisfy
Please
ation.
h	 P 0: ð68Þ
Motivated by the interpretation of the relaxation solver as a correction of the Roe solver, here we use in general the Roe
speeds (46) as relaxation speeds (64), and we possibly modify them only when locally needed to enforce (68). In fact, far
from vacuum regions, the Roe’s speeds prove to be an efficient, stable, and low-diffusivity choice. Note that with this choice
the relaxation solver possesses the Roe’s solver property of exactly resolving single shocks, based on (59) and the equalitybADqR ¼ Df ðqRÞ (and let us recall, following Toro [14, p. 110], that a shock wave cannot be adjacent to a region of dry bed).

Making a step further, we propose to keep the average relaxation velocity ~u equal to the Roe velocity for any Riemann
problem:
~u � û ¼
ffiffiffiffiffi
h‘

p
u‘ þ

ffiffiffiffiffi
hr

p
urffiffiffiffiffi

h‘
p

þ
ffiffiffiffiffi
hr

p : ð69Þ
Then, we look for a definition of ~h that fulfills (68), and such that
~c ¼
ffiffiffiffiffiffi
g~h

q
P

ffiffiffiffiffiffi
gĥ

q
; ð70Þ
or, equivalently,
~h P ĥ: ð71Þ
This stability constraint means that the propagation speeds of the relaxation solver are at least as large as the propagation
speeds of the Roe solver. By using (62) and the identity (47), the positivity condition (68) reads
h	 ¼ h‘ þ hr

2
�

ffiffiffiffiffiffiffiffiffi
h‘hr

p
Du

2~c
P 0; ð72Þ
and this gives the condition on ~h:
~h P
h‘hrðDuÞ2þ
gðh‘ þ hrÞ2

; ð�Þþ � positive part: ð73Þ
We can satisfy (73) and (71) by simply defining
~h �max ĥ;
h‘hrðDuÞ2þ
gðh‘ þ hrÞ2

 !
: ð74Þ
This choice implies that ~h > ĥ only when the Roe average ĥ gives a negative value of the intermediate state h	. Based on Lem-
ma 4.2, and by construction of eA, we can finally state the result below.

Theorem 5.1. The first-order wave-propagation scheme for the single-phase shallow flow system (1) that uses the relaxation
Riemann solver defined by (64)–(66) is positivity preserving with the definition eA ¼ Að~qð~h; ~uÞÞ, ~h, ~u as in (74), (69) , and under the
condition CFL 6 1=2.
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To guarantee positivity of the second-order wave propagation scheme (34) we follow the simple approach proposed in
[44], which consists in re-limiting the correction fluxes Fc

iþ1=2 if they drive h negative in one cell. This means that the method
is accurate only at first order near wet/dry transitions (and shocks). Let us finally remark that although positivity is rigorously
demonstrated only for CFL 6 1=2, practically the method proves to preserve positivity for CFL close to 1 (see Section 8).

5.4. Roe-relaxation method

A more efficient implementation of the numerical scheme consists in using a hybrid Roe-relaxation method that uses the
momentum waves given by the Roe solver if (74) gives ~h ¼ ĥ, and the momentum waves given by the relaxation solver
otherwise. That is, if ĥ P h‘hrðDuÞ2þ

gðh‘þhr Þ2
, instead of (66b) we simply employ the momentum f-wave components given by Roe’s

method (Eq. (41)):
Please
ation.
~kkDkm ¼ ~kkð~kk~akÞ; k ¼ 1;2: ð75Þ
In fact, if the relaxation parameters are equal to the Roe averages, the increments DkqR in (61) suffice for updating the solu-
tion through Roe’s formulas. Then we avoid computing the momentum increments (66b) given by the relaxation solver,
which require the computation of the intermediate state ðqRÞ	 ¼ ðh	;x	Þ. Let us remark that, although the Roe method
and the relaxation method give analogous results far from vacuum states, the entropy fix technique [37] proves to be more
effective for the Roe’s solver, which then handles more efficiently transonic rarefactions. This is related to the discontinuity
of the momentum variable in the relaxation Riemann solution across k0 ¼ 0. Therefore the adaptive use of the relaxation sol-
ver performed by the hybrid method appears ultimately as the most efficient solution technique.

6. Equivalence with the VFRoe solver

In analogy with the work of Berthon and Marche [21], the relaxation method that we have introduced results to be equiv-
alent to a variant of the VFRoe scheme. In [21] the authors identify the VFRoe-ncv solver with non-conservative variables
ð2c;uÞ [26–28] with a relaxation solver that is obtained by introducing two auxiliary variables approximating c and u.
The choice of this pair of variables is related to the Riemann invariants of the single-phase system, u� 2

ffiffiffiffiffiffi
gh

p
.

In the present work we find equivalence with the first original version of the VFRoe method [32,33], which uses conser-
vative variables ðh;mÞ. This VFRoe scheme is an approximate Godunov-type scheme applicable to conservative systems
@tqþ @xf ðqÞ ¼ 0. It uses the exact Riemann solution qlin

RSðx=t; q‘; qrÞ of a Roe-type linearized system
@tqþ eAVFRðq‘; qrÞ@xq ¼ 0: ð76Þ
Then it defines the numerical flux at interfaces FVFRðq‘; qrÞ as the physical flux f ðqÞ computed at interface solutions of the
linearized Riemann problem (a similar idea was also mentioned earlier by LeVeque in [37, p. 146]):
FVFRðq‘; qrÞ ¼ f qlin
RSð0; q‘; qrÞ

� 	
: ð77Þ
The first order updating formula of the scheme has the standard form
Q nþ1
i ¼ Q n

i �
Dt
Dx

FVFR Q n
i ;Q

n
iþ1

� 	
� FVFR Q n

i�1;Q
n
i

� 	� 	
: ð78Þ
Note that the definition (77) ensures conservation for any linearization matrix eAVFRðq‘; qrÞ, in contrast with the classical Roe
solver.

The equivalence of our method with the VFRoe method applied to (2), provided that we use the same linearization matrixeAVFR ¼ eA in (76) and (53), follows from the remarks at the end of the previous sub-section. To show this equivalence more
precisely, let us note that the VFRoe scheme can be written in the wave propagation form (34) (with Fc

iþ1=2 ¼ 0) by writing
FVFR Qn
i ;Q

n
iþ1

� 	
� FVFR Q n

i�1;Q
n
i

� 	
¼ AþDQ VFR

i�1=2 þA
�DQ VFR

iþ1=2 ð79Þ
with the fluctuations A�DQ VFR defined as
A�DQ VFR
iþ1=2 ¼ FVFRðQ i;Q iþ1Þ � f ðQiÞ and AþDQ VFR

iþ1=2 ¼ f ðQ iþ1Þ � FVFRðQ i;Qiþ1Þ: ð80Þ
Under the assumption eAVFR ¼ eA, it is easy to verify the equivalence of these expressions with the fluctuations defined by the
relaxation scheme. Let us consider for instance A�DQVFR

iþ1=2. We have
A�DQ VFR
iþ1=2 ¼

f ðQ iþ1Þ � f ðQ iÞ if ~k2;iþ1=2 < 0;

f q	VFR

� 	
� f ðQ iÞ if ~k1;iþ1=2 < 0 < ~k2;iþ1=2;

0 if ~k1;iþ1=2 > 0;

8>><>>: ð81Þ
where q	VFR is the intermediate state between the two propagating waves ~k1;iþ1=2 and ~k2;iþ1=2, as given by the Riemann solution
of (76). For the relaxation solver:
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Please
ation.
A�DQ iþ1=2 ¼
Z1

iþ1=2 þZ2
iþ1=2 ¼ f ðQ iþ1Þ � f ðQ iÞ if ~k2;iþ1=2 < 0;

Z1
iþ1=2 ¼ ðD1x;D1FÞTiþ1=2 ¼ f ðqRÞ	

� 	
� f ðQ iÞ if ~k1;iþ1=2 < 0 < ~k2;iþ1=2;

0 if ~k1;iþ1=2 > 0;

8>><>>: ð82Þ
which is clearly equivalent to (81) since, if eAVFR ¼ eA, systems (76) and (53) have identical Riemann solution, and hence
ðqRÞ	 ¼ q	VFR. An analogous proof can be written for AþDQVFR

i�1=2.
More generally, the VFRoe method for a conservative system @tqþ @xf ðqÞ ¼ 0 can be interpreted as a relaxation method

that uses a vector of auxiliary variables W approximating q, and the following relaxation system:
@tqþ @xf ðWÞ ¼ 0; ð83aÞ
@tWþ eA@xW ¼ 0; ð83bÞ
where eA is an average of the matrix AðqÞ ¼ f 0ðqÞ. For systems such as (1) that include a linear mass conservation equation, we
do not need an auxiliary mass variable, which would give a redundant equation in the relaxation system. Therefore for the
shallow flow system it suffices to introduce one relaxation variable x for the momentum.

One advantage of the relaxation technique is that it defines a general strategy that can be employed also for systems with
non-conservative terms, to which the original VFRoe method is not applicable. Although some extensions of the VFRoe meth-
od to non-conservative systems have been proposed for some specific models [45,46,33,27], there is no general VFRoe frame-
work for non-conservative systems. In this paper we apply our relaxation technique to the non-conservative two-phase
model (8). The same idea could be analogously used for other non-conservative systems, such as the two-layer shallow flow
model [47–49,40,50]. Nonetheless, we have to remind the potential difficulties of the method related to the computation of
non-conservative products, see Remark 7.1.

6.1. Positivity of the VFRoe solver

As in [21], an important result of the identification of the VFRoe solver with the relaxation solver is the ability to establish
positivity conditions for the VFRoe method. In fact, the relaxation interpretation allows to place the VFRoe scheme in the class of
Godunov-type scheme of Harten–Lax–van Leer (44) via the approximate Riemann solution qrel

RSðx=t; q‘; qrÞ defined by the relax-
ation solver. This enables to use the argument of non-negativity of Riemann solution intermediate states as sufficient condition
for positivity of the scheme, by Lemma 4.2. When the VFRoe method was first introduced in [32,33], it was not recognized to
belong to the class of the Harten–Lax–van Leer Godunov-type schemes employing an L2 projection step, and the intermediate
states positivity condition did not seem applicable. Note that appealing to this condition does not mean that positivity can be
achieved, this being subject to the existence of an average matrix eA that ensures positivity of the Riemann solution states. We
have seen that for the single-phase shallow flow equations such a matrix exists, and we can enunciate the result below, which
directly follows the equivalence of the VFRoe solver with the relaxation solver and Theorem 5.1.

Corollary 6.1. The VFRoe scheme (77), (78) applied to the single-phase shallow flow system (1) is positivity preserving with the
choice eAVFR ¼ Að~qð~h; ~uÞÞ; ~h; ~u as in (74), (69) , and under the condition CFL 6 1=2.

An analogous positivity result can be obtained for the isentropic gas dynamics equations, which generalize system (1) to
the case of a pressure function pðhÞ; p0ðhÞ > 0, in the momentum flux (pðhÞ ¼ g

2 h2 in (1)). Refer to system (A.1) in Appendix A.
In this case AðqÞ has the form (3b) but with the entry (2,1) in the general form Að2;1Þ ¼ �u2 þ p0ðhÞ. Positivity of the relaxation
method generalized to this system and of the equivalent VFRoe scheme is ensured if we take eAVFR ¼ eA ¼ Að~qð~p0; ~uÞÞ, with
~u ¼ û, and
~p0 �max bp0;h‘hrðDuÞ2þ
ðh‘ þ hrÞ2

 !
; where bp 0 ¼ Dp=Dh if Dh – 0;

p0 h‘þhr
2

� �
if Dh ¼ 0:

(
ð84Þ
We recall that in the standard VFRoe method a simple mean average is chosen for the linearization matrix eAVFR, which does
not guarantee positivity. The authors in [33] analyzed the solver for the isentropic gas dynamics system and showed that the
method could compute interfaces with negative masses and fail. The difficulty was imprecisely admitted as a drawback of
the VFRoe scheme, whereas it should have been imputed to an inappropriate choice of eAVFR. The development of the version
of the VFRoe scheme with non-conservative variables (VFRoe-ncv) [26,51,27,28] was also motivated by efforts to build a ro-
bust method for flows involving dry states.

7. Relaxation method for the two-phase granular flow model

We now apply the relaxation method illustrated above for the single-phase shallow flow system to the two-phase gran-
ular flow model in (10). We here introduce two auxiliary variables xs and xf that are meant to be approximations of the
momenta ms and mf and approach ms and mf as the relaxation time s! 0þ. Similar to the single-phase case, these relaxation
variables xs and xf replace the momentum variables ms and mf in the spatial gradients of the original system and are gov-
erned by linearized forms of the momentum equations:
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Please
ation.
@txs þ �~u2
s þ g~hs þ g

1� c
2

~hf

� �
@xhs þ 2~us@xxs þ g

1þ c
2

~hs@xhf ¼
ms �xs

s
; ð85aÞ

@txf þ g~hf @xhs þ �~u2
f þ g~hf

� �
@xhf þ 2~uf@xxf ¼

mf �xf

s ; ð85bÞ
where the linearization has been considered at an average state ~qð~hs;
~hf ; ~us; ~uf Þ. Omitting hereafter the relaxation source term,

the relaxation system has the form:
@ths þ @xxs ¼ 0; ð86aÞ

@tms þ @x
x2

s

hs
þ g

2
h2

s þ g
1� c

2
hshf

� �
þ cghs@xhf ¼ 0; ð86bÞ

@thf þ @xxf ¼ 0; ð86cÞ

@tmf þ @x

x2
f

hf
þ g

2
h2

f

 !
þ ghf@xhs ¼ 0; ð86dÞ

@txs þ �~u2
s þ g~hs þ g

1� c
2

~hf

� �
@xhs þ 2~us@xxs þ g

1þ c
2

~hs@xhf ¼ 0; ð86eÞ

@txf þ g~hf @xhs þ �~u2
f þ g~hf

� �
@xhf þ 2~uf@xxf ¼ 0: ð86fÞ
7.1. Riemann structure of the two-phase relaxation model

The two-phase relaxation model (86) presents a decoupled sub-system for the variables
qR �

hs

xs

hf

xf

0BBB@
1CCCA ð87Þ
that corresponds to a linearized form of the original two-phase system (12),
@tqR þ eA@xqR ¼ 0 ð88Þ
with a matrix eA ¼ Að~qÞ, where AðqÞ 2 R4�4 is the matrix (12b), and ~q ¼ ~qð~hs;
~hf ; ~us; ~uf ÞT. The eigenvalues of the relaxation mod-

el are the four eigenvalues of this sub-system, that is the eigenvalues ~kk ¼ kkð~qÞ; k ¼ 1; . . . ;4, of eA ¼ Að~qÞ, plus a zero eigen-
value with double algebraic multiplicity k0 � k0

1 ¼ k0
2 ¼ 0. The eigenvectors associated to k0 are rE0

1 ¼ ð0;1;0;0;0;0Þ
T and

rE0
2 ¼ ð0;0;0;1;0;0Þ

T, while the eigenvectors corresponding to ~kk can be written as
~rE
k ¼

1
�x2

s

h2
s
þ ghs þ g 1�c

2 hf

� �
1
~kk
þ 2 xs

hs
þ g 1þc

2 hs
~nk
~kk

~nk

ghf
1
~kk
þ �

x2
f

h2
f
þ ghf

� �
~nk
~kk
þ 2 xf

hf

~nk

~kk

~nk
~kk

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; ð89Þ
where ~nk is the quantity nk defined in (28b) evaluated in ~q. As for the single-phase case, all the characteristic fields are lin-
early degenerate, and the Riemann solution of the relaxation system consists of constant states separated by linear waves, a
stationary discontinuity corresponding to k0 � k0

1 ¼ k0
2 ¼ 0, and four waves propagating at speeds ~kk; k ¼ 1; . . . ;4.

7.1.1. Riemann invariants
The variables qR ¼ ðhs;xs;hf ;xf ÞT are Riemann invariants across k0,
D0qR ¼ 0; ð90Þ
where D0ð�Þ denotes increments across k0 as for the single-phase case. Then, only the momenta ms and mf can possibly have
jumps across the stationary discontinuity. See the schematic representation of the Riemann solution wave structure in Fig. 1.

Across the waves propagating at speeds ~kk we have the invariance relations:
~nkhs � hf ¼ const:; ð91aÞ
~kkhs �xs ¼ const:; ~kkhf �xf ¼ const:; ð91bÞ

~kkms � F sðxs;hs;hf Þ ¼ const:; ~kkmf � F f ðxf ; hf Þ ¼ const:;
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Fig. 1. Riemann solution wave structure of the two-phase relaxation model, consisting of linear waves propagating at speeds ~kk , k ¼ 1; . . . ;4, and a
stationary discontinuity k0. The variables qR ¼ ðhs ;xs; hf ;xf ÞT are Riemann invariants across k0, whereas the momenta ms; mf may have jumps across this
wave.
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where
Please
ation.
F s ¼
x2

s

hs
þ 1

2
gh2

s þ g
1� c

2
hshf þ

1
2

gc~nkh2
s and F f ¼

x2
f

hf
þ 1

2
gh2

f þ
1
2

g
h2

f

~nk

: ð91cÞ
Let us denote with ð�ÞL;Rk the states to the left and to the right of the kth wave ~kk; k ¼ 1; . . . 4, and with Dkð�Þ the corresponding
increment, Dkð�Þ ¼ ð�ÞRk � ð�Þ

L
k. As before, let Dð�Þ � ð�Þr � ð�Þ‘. By using the Riemann invariants above, we can express the incre-

ments of q across the considered waves by the following relations:
~kkDkhs ¼ Dkxs; ð92aÞ
~kkDkhf ¼ Dkxf ; ð92bÞ

~kkDkms ¼ Dk
x2

s

hs
þ g

2
h2

s þ g
1� c

2
hshf

� �
þ gc

hL
s;k þ hR

s;k

2
Dkhf ; ð92cÞ

~kkDkmf ¼ Dk

x2
f

hf
þ g

2
h2

f

 !
þ g

hL
f ;k þ hR

f ;k

2
Dkhs: ð92dÞ
Note that we can write
~kkDkq ¼ Dkf ðqRÞ þWððhf ;sÞL;Rk Þ; ð93Þ
where f ðqÞ is the conservative portion of the two-phase system in (10) and the term
Wððhf ;sÞL;Rk Þ ¼ 0; gc
hL

s;k þ hR
s;k

2
Dkhf ;0; g

hL
f ;k þ hR

f ;k

2
Dkhs

 !T

ð94Þ
is a contribution arising from the non-conservative term wðq; @xqÞ. The increments of the mixture momentum are
~kkDkmm ¼ ~kkDkms þ c~kkDkmf ¼ Dk
x2

s

hs
þ g

2
h2

s þ g
1� c

2
hshf

� �
þ cDk

x2
f

hf
þ g

2
h2

f

 !
þ gcDkðhshf Þ

¼ Dk
x2

s

hs
þ c

x2
f

hf
þ g

2
h2

s þ c
g
2

h2
f þ g

1þ c
2

hshf

 !
; ð95Þ
and they correspond to the jump of the mixture momentum flux fm (11b) evaluated in qR:
~kkDkmm ¼ DkfmðqRÞ: ð96Þ
7.2. Two-phase relaxation Riemann solver

Let us denote with qE the variables of the relaxation system, qE ¼ ðhs;ms;hf ;mf ;xs;xf ÞT. The exact solution of a Riemann
problem for the relaxation system with left and right data qE

‘ ; qE
r defines an approximate Riemann solution for the original

system with data q‘; qr . The initial data of the relaxation variables correspond to the equilibrium values:
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Please
ation.
xh;‘ ¼ mh;‘ and xh;r ¼ mh;r; h ¼ s; f : ð97Þ
The Riemann solution for the variables qR ¼ ðhs;xs;hf ;xf ÞT is the solution of the linear sub-system (88). The increments of qR

across the four waves ~kk are DkqR ¼ ~ak~rk, k ¼ 1; . . . ;4, where ~rk are the four right eigenvectors of eA, and ~ak are the coefficients
of the projection DqR ¼

P4
k¼1 ~ak~rk. Introducing the two-component vectors
~rs
k �

1
~kk

� �
2 R2; ð98Þ
we can write
DkqR ¼
~ak~rs

k

ð~nk ~akÞ~rs
k

 !
2 R4; ð99Þ
and, by using the left eigenvectors ~lk of eA (see (29)),
~ak ¼ ~lkDqR ¼ 1
P0ð~kkÞ

ð ~#s;kð~kk � 2~usÞ; ~#s;k; ~#f ð~kk � 2~uf Þ; ~#f ÞDqR; ð100aÞ

ð~nk ~akÞ ¼ ð~nk
~lkÞDqR ¼ 1

P0ð~kkÞ
ð~fsð~kk � 2~usÞ;~fs;~ff ;kð~kk � 2~uf Þ;~ff ;kÞDqR: ð100bÞ
Here ~#s;k; ~#f are the quantities (29b) evaluated in ~q, and ~fs; ~ff ;k correspond to
fs ¼ nk#s;k ¼ ghf and ff ;k ¼ nk#f ¼ ðkk � usÞ2 � g hs þ
1� c

2
hf

� �
; ð101Þ
based on (29b) and (28b). In case one phase is absent, ~hs ¼ 0 or ~hf ¼ 0, we simply use the single-phase solver for the only
constituent of the flowing mass. This avoids the problem of the singularity of the matrix of the eigenvectors for the case
of pure solid ð~hf ¼ 0Þ, which gives P0ð~kkÞ ¼ 0 for ~k2 ¼ ~k3 ¼ ~uf . Nonetheless, note that the relations above allow recovering
the case ~hs ¼ 0 in which only the fluid phase is present, whereas in writing the eigenvectors in Section 3.1.2 we assumed
hs > 0.

The increments for the momenta ms; mf are given by the relations (92c) and (92d). The resulting approximate Riemann
solver for the original system (10) consists of six waves Wk
Wk ¼ Dkq; k ¼ 1; . . . ;4; W5 ¼ ð0;D0xs;0;0ÞT; W6 ¼ ð0;0;0;D0xf ÞT; ð102Þ
moving at speeds sk given by
sk ¼ ~kk; k ¼ 1; . . . ;4; s5 ¼ s6 ¼ k0 ¼ 0: ð103Þ
In terms of the f-waves Zk ¼ skWk we have
Zk ¼ ~kkDkq; k ¼ 1; . . . ;4; Z5 ¼ Z6 ¼ 0; ð104Þ
where ~kkDkq are obtained as explained above. We summarize here the results:
~kkDkhs ¼ ~kk ~ak; ð105aÞ

~kkDkms ¼ Dk
x2

s

hs
þ g

2
h2

s þ g
1� c

2
hshf

� �
þ gc

hL
s;k þ hR

s;k

2
Dkhf ; ð105bÞ

~kkDkhf ¼ ~kkð~nk ~akÞ; ð105cÞ

~kkDkmf ¼ Dk

x2
f

hf
þ g

2
h2

f

 !
þ g

hL
f ;k þ hR

f ;k

2
Dkhs: ð105dÞ
Since we only need to specify f-waves and speeds, and not the wavesWk themselves, we can avoid computing the jumps of
the momenta across the zero eigenvalue k0; D0xs and D0xf , which would require knowledge of the order of ~kk with respect
to k0, and therefore a distinction between possible wave configurations. Note finally that conservation of phase masses and
mixture momentum is ensured, by (92a), (92b), (96) and (97).

Remark 7.1. Although this paper does not focus on the treatment of non-conservative terms, it is important to recall the
associated difficulties and potential failures of numerical methods such as the one presented here or Roe’s method [10]. It is
well known that a first difficulty of non-conservative hyperbolic systems is the lack of a notion of weak solution in the
distributional framework. The theory of Maso–LeFloch–Murat [52] has marked an important advance by giving a rigorous
definition of weak solution, based on the concept of non-conservative products as a Borel measure associated to a choice of a
family of paths. A numerical scheme applied to a non-conservative system in general makes a choice, either explicitly or
implicitly, of the meaning of the non-conservative products. The path-conservative methods introduced by Parés [41] are
consistent by construction with the definition of non-conservative products of [52], once a family of paths has been selected.
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The implicit choice of the meaning of non-conservative terms of our relaxation solver is reflected in the relations (105),
which represent the generalized Rankine–Hugoniot conditions assumed by the method, and which imply that the scheme is
formally consistent with the family of straight segments. Unfortunately, consistence of a numerical scheme with a family of
paths does not guarantee convergence to the weak solution associated to the selected family, as shown and discussed in [53].
Here the authors also demonstrate that the error measure is usually ‘‘small”.

In view of these considerations, one must be aware of the potential convergence difficulties of our relaxation scheme (and
of Roe’s scheme as well) when examining numerical results for the two-phase model involving shocks. See experiments in
Section 8.2.1.

Let us finally mention the very recent work [54] about shortcomings of numerical methods for non-conservative systems.

7.3. Relaxation parameters and positivity

For the two-phase model we must guarantee non-negativity of the variables hs and hf , which is equivalent to require
physical admissibility of the flow depth and of the phase volume fractions. The positivity conditions are (43). Similar to
the single-phase case, we wish to define the parameters ~q ¼ ~qð~hs;

~hf ; ~us; ~uf Þ so as to ensure positivity of the Riemann solution
of the relaxation system. However, the two-phase case is much more difficult. The relaxation Riemann solution structure is
more complex, since it involves more variables and more intermediate states, and, in addition, it is not available in explicit
form in terms of ~q. The first problem to consider is the existence of an average state ~q that could ensure positivity. Indeed
here the flexibility offered by the relaxation parameters ~q does not seem enough to satisfy positivity conditions for all the
physically non-negative variables and for all the Riemann intermediate states. Nonetheless, we can fulfill part of them,
and at least satisfy positivity for the Riemann solution values of the flow height h ¼ hs þ hf . Numerical experimentation sug-
gests that the resulting solver can robustly model a wide range of flow conditions involving vacuum states.

Motivated by our results for the single-phase case, and by our analysis of the two-phase system’s eigenvalues, we propose
the following strategy for defining the relaxation averages. We begin by defining these averages as the Roe averages (39):
Please
ation.
~us ¼ ûs; ~uf ¼ ûf ; ð106aÞ
~hs ¼ ĥs;

~hf ¼ ĥf ; ð106bÞ
and we keep this choice if no negative intermediate states for hs; hf appear in the Riemann solution of the relaxation system.
Far from vacuum, Roe’s averages prove to be a very efficient and stable choice in the whole hyperbolic domain, which in-
cludes the two regions jDUj 6 2ab and jDUjP 2a. Note that it may seem appealing to set ~us ¼ ~uf in the relaxation solver,
since this would always give explicit expressions of the eigenvalues and it would simplify noticeably the positivity analysis
of the Riemann solution. However this choice might lead to instabilities for certain regimes, namely when jDUj is too large.

If a negative Riemann intermediate state for hs and/or hf is detected:

(i) We keep the definition of the relaxation average velocities as the Roe velocities, relations (106a).
(ii) We fix the ratio
~hs

~hs þ ~hf

¼ ĥs

ĥs þ ĥf

� û: ð107Þ
(iii) Let â ¼
ffiffiffiffiffiffi
gĥ

q
, ĥ ¼ ĥs þ ĥf , and ~a ¼

ffiffiffiffiffiffi
g~h

q
; ~h ¼ ~hs þ ~hf . We look for a sufficiently large value of the relaxation parameter ~a

with
~a P â ð108Þ
that allows satisfying (achievable) positivity conditions. Then we define
~hs ¼ û~h and ~hf ¼ ð1� ûÞ~h; where ~h ¼
~a2

g
: ð109Þ
Let us now study positivity conditions for the intermediate states of the relaxation solver. Recalling that hs; hf are invari-
ant across the stationary wave k0 ¼ 0, we have three intermediate states k ¼ 1;2;3 to examine (see Fig. 1). The intermediate
states for hs and hf can be written as
hs1;3 ¼ �hs þ
~a1 � ~a4

2
�

~a2 þ ~a3

2
; ð110aÞ

hs2 ¼ �hs þ
~a1 � ~a4

2
þ

~a2 � ~a3

2
; ð110bÞ

hf 1;3 ¼ �hf þ
ð~n~aÞ1 � ð~n~aÞ4

2
� ð

~n~aÞ2 þ ð~n~aÞ3
2

; ð110cÞ

hf 2 ¼ �hf þ
ð~n~aÞ1 � ð~n~aÞ4

2
þ ð

~n~aÞ2 � ð~n~aÞ3
2

; ð110dÞ
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where we have used the notation �ð�Þ ¼ ð�Þ‘þð�Þr2 , and where, by using the velocities (106a) and the identity (47),
Please
ation.
~ak ¼
1

P0ð~kkÞ
~#s;kð~kk � ûsÞDhs þ ~#f ð~kk � ûf ÞDhf þ ~#s;k

ffiffiffiffiffiffiffiffiffiffiffiffi
hs‘hsr

p
Dus þ ~#f

ffiffiffiffiffiffiffiffiffiffiffi
hf ‘hfr

q
Duf

� �
; ð111aÞ

ð~nk ~akÞ ¼
1

P0ð~kkÞ
~fsð~kk � ûsÞDhs þ ~ff ;kð~kk � ûf ÞDhf þ ~fs

ffiffiffiffiffiffiffiffiffiffiffiffi
hs‘hsr

p
Dus þ ~ff ;k

ffiffiffiffiffiffiffiffiffiffiffi
hf ‘hfr

q
Duf

� �
: ð111bÞ
The quantities ~ð�Þ above are functions of ~a:
~#s;k ¼ ð~kk � ûf Þ2 � ð1� ûÞ~a2; ~#f ¼
1þ c

2
û~a2; ð111cÞ

~fs ¼ ð1� ûÞ~a2; ~ff ;k ¼ ð~kk � ûsÞ2 � ûþ 1� c
2
ð1� ûÞ

� �
~a2; ð111dÞ
and ~kk ¼ ~kkð~a; ûs; ûf ; ûÞ.

Case DbU � ûs � ûf ¼ 0.
If ûs ¼ ûf � û, the eigenvalues ~kk are explicitly given:
~k1;4 ¼ û� ~a and ~k2;3 ¼ û� ~ab̂; ð112Þ
where
b̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ûÞ1� c

2

r
: ð113Þ
Therefore, we have explicit expressions for the intermediate states above, and we can easily derive optimal bounds for ~a. Let
us introduce
ĝ ¼ ûð1� cÞ þ 1þ c; ð114aÞ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hs‘hsr

p
Dus þ

1þ c
2

ffiffiffiffiffiffiffiffiffiffiffi
hf ‘hfr

q
Duf ; ð114bÞ

C ¼ ð1� ûÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
hs‘hsr

p
Dus � û

ffiffiffiffiffiffiffiffiffiffiffi
hf ‘hfr

q
Duf ; ð114cÞ

Ks ¼ ûBþ 1þ c
2

C

b̂
; Kf ¼ ð1� ûÞB� C

b̂
; ð114dÞ

K2 ¼ Ks þ Kf ¼ B� 1� c
2

C

b̂
; ð114eÞ

U ¼ ð1� ûÞDhs � ûDhf ¼
2h‘hr

h‘ þ hr
Du: ð114fÞ
The intermediate states for hs and hf can then be written:
hs1;3 ¼ �hs �
û
ĝ

B
~a
� 1þ c

2
U
ĝ
; ð115aÞ

hf 1;3 ¼ �hf �
1� û

ĝ
B
~a
�U

ĝ
; ð115bÞ

hh2 ¼ �hh �
Kh

ĝ~a
; h ¼ s; f ; ð115cÞ
and the intermediate states for the flow height h are:
h1;3 ¼ �h� û
ĝ

B
~a
� 1� c

2
U
ĝ
; ð116aÞ

h2 ¼ �h� K2

ĝ~a
: ð116bÞ
Let us observe that the expressions for the intermediate states above have the form hð�Þ ¼ d1 þ d2=~a. It is then clear that the
condition for the existence of a bounded value of ~a such that hð�Þ P 0 for arbitrary d2 is that d1 > 0. By inspecting the relations
above, we deduce that this existence condition does not hold for the lateral states hs1;3 and hf 1;3. Indeed, if for instance the
initial velocity jumps are zero, then B ¼ 0, and hs1;3 ¼ �hs � 1þc

2
U
ĝ ;hf 1;3 ¼ �hf � U

ĝ might be negative when Du – 0 (hs1 or hf 3 for
Du > 0, hf 1 or hs3 for Du < 0). Nonetheless, there exists a finite value of ~a that ensures non-negativity of the flow height
h ¼ hs þ hf in all the Riemann solution states, and non-negativity of the middle state quantities hs2; hf 2. This means that only
the phase volume fractions of the lateral states 1 or 3 could possibly be unphysical. In the particular case Du ¼ 0, which
implies hh1 ¼ hh3 ¼ hh2; h ¼ s; f , positivity is fully achieved.
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We obtain the following positivity conditions for h1; h3:
Fig. 2.
us; uf (
include

Please
ation.
~a P
Bþ

minðD1;D3Þ
� ~a1;3 with D1;3 ¼ ĝ�h� 1� c

2
U; ð117aÞ
and the following conditions for positivity of hs2; hf 2, which also imply positivity for all the intermediate states
hhk; h ¼ s; f ; k ¼ 1;2;3, in the particular case Du ¼ 0:
~a P
maxðûBþ;KsþÞ

ĝ�hs

� ~as2; ~a P
maxðð1� ûÞBþ;KfþÞ

ĝ�hf

� ~af 2: ð117bÞ
Note that ĝ�hs; ĝ�hs > 0, and D1;3 > 0 (at least one of the initial states, ‘ or r, is nonzero). Based on (117), we finally define
~a ¼max
ffiffiffiffiffiffi
gĥ

q
; ~a1;3; ~as2; ~af 2

� �
: ð118Þ
Note that the condition for positivity of h2, which is weaker than (117b), is
~a P
K2þ

ĝ�h
� ~a2: ð119Þ
Case DbU – 0.
If ûs – ûf then the intermediate states depend on ~a through the eigenvalues ~kkð~a; ûs; ûf ; ûÞ, which are not explicitly avail-

able, and the analysis is more difficult. First, we will assume here Roe parameters satisfying the first hyperbolic sufficient
condition jDbU j < 2âb̂. Under this hypothesis, if ~a > â, then both the external and the internal speeds are enlarged with re-
spect to Roe’s speeds, that is ~k1 < k̂1 < k̂4 < ~k4, and ~k2 < k̂2 6 k̂3 < ~k3, as it can be deduced from the bounding relations
(17). See Fig. 2. As in the case DbU ¼ 0, the analysis of the behavior of (110) and (111) as ~a increases shows that
hk; k ¼ 1;2;3, and hs2; hf 2 are non-negative for ~a sufficiently large. Leading order terms in ~a in the formulas can be easily
seen by using the expressions of the eigenvalues (18) in terms of ce;i; Ve;i , and the results of Section 3.1.1. Note in particular
that ce;i ¼ OðaÞ as a increases, Ve;i are bounded by quantities independent from a, and that the derivatives P0ðkkÞ that appear
in (111) can be conveniently written as
P0ðk1;4Þ ¼ �2ce ðVe � V i � ceÞ2 � c2
i

� �
Q0; ð120aÞ

P0ðk2;3Þ ¼ �2ci c2
e � ðV i � Ve � ciÞ2

� �
R0; ð120bÞ
from which we deduce that jP0ðkkÞj ¼ Oða3Þ as a grows.
Although we have bounding relations for the eigenvalues ~kk, efficient analytical estimates for ~a sufficiently large for pos-

itivity are difficult to derive, and here we prefer to apply a numerical iterative procedure. We use a first estimate ~a
DbU¼0

com-
puted through the formulas (117) and (118) above for the case DbU ¼ ûs � ûf ¼ 0. Then we take iteratively
0
a

λk(a)

us

uf

|ΔU|/2 |ΔU|/2β

λ1
Re(λ2)

Re(λ3)

λ4

Typical behaviour of the eigenvalues k1;4 and of the real part of k2;3 as a function of a ¼
ffiffiffiffiffiffi
gh

p
for fixed volume fraction u – 1, and fixed velocities

assuming here uf > us). In this example u ¼ 0:6; us ¼ 3; uf ¼ 4; c ¼ 1=2 and g ¼ 9:81. The internal eigenvalues k2;3 become complex in a region
d in the interval ðjDUj

2 ; jDUj
2b Þ; jDUj ¼ jus � uf j.
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Please
ation.
~aðjÞ ¼ ~a
DbU¼0

þ jbjDbU j; j 2 N; 0 6 j 6 nmax; b 2 Rþ; ð121Þ
increasing the counter j from 0 until positivity conditions are met, or until the eigenvalues ~kðjÞk ¼ ~kkð~aðjÞÞ exceed some esti-
mated left and right limiting speeds clim

‘ ; clim
r . Practically, unphysical states appear when a rarefaction occurs at least on

one side of the true Riemann solution, and on that side the external Roe speed is slower than the head of the rarefaction.
Then we define clim

‘ and clim
r as the limiting speeds k1ðq‘Þðh‘ > 0Þ and k4ðqrÞ ðhr > 0Þ of the rarefaction fans possibly occurring

in correspondence of the characteristic fields 1 and 4, respectively (we recall that these external fields are genuinely nonlin-
ear [10]). In case h‘ ¼ 0 or hr ¼ 0, an estimate of the limiting speed of the possible rarefaction on the corresponding side is
made based on the Riemann solution structure of the single-phase model with an initial dry state. In summary, we take
clim
‘ ¼

k1ðq‘Þ if h‘ > 0;

minðusr;ufrÞ � 2
ffiffiffiffiffiffiffi
ghr

p
if h‘ ¼ 0;

(
clim

r ¼
k4ðqrÞ if hr > 0;

maxðus‘;uf ‘Þ þ 2
ffiffiffiffiffiffiffi
gh‘

p
if hr ¼ 0;

(
ð122Þ
and we stop the iteration process if
ðaÞ ~kðjÞ1 < clim
‘ < k̂1 or ðbÞ ~kðjÞ4 > clim

r > k̂4: ð123Þ
Note that if 0 6 clim
‘ for case (a), or clim

r 6 0 for case (b), then taking ~a > â has no effect on the updating formula of the solu-
tion, based on the definition of the fluctuations (34c), and we can simply keep the Roe average. This suggest that a more effi-
cient implementation of the algorithm consists in keeping ~a ¼ â and skipping entirely the positivity check when 0 6 clim

‘ < k̂1

or k̂4 < clim
r 6 0.

The choice of the linear growth of ~a with jDbU j in (121) has been suggested by the inequalities characterizing the eigen-
values (Section 3.1, rel. (24)). About the parameters, in our numerical experiments we have taken b ¼ 1=8 and nmax ¼ 12.
Typically in tests involving dry bed formation the maximum number of iterations needed is about three.

We have not developed here an algorithm specifically aimed to the case of Roe parameters in the second hyperbolic re-

gion jDbU jP 2â. Typical Riemann data do not fall in this region, nonetheless this situation may be encountered when h 
 0.
In this case we again increase ~a with an initial estimate based on positivity conditions only on the total flow height,

~a ¼max
ffiffiffiffiffiffi
gĥ

q
; ~a1;3; ~a2

� �
. In this second hyperbolic zone, as in the first one, the external eigenvalues are enlarged if ~a grows.

On the contrary, the internal eigenvalues get closer until they coincide (Fig. 2). Then we enter a complex eigenvalues region

for values of ~a included in the range
�
jDbU j

2 ; jD
bU j

2b

�
. If the estimated value of ~a for positivity reaches this complex domain, we

attempt to bypass it and enter the first hyperbolic region by further increasing ~a, subject to the stability constraints
~k1 P clim

‘ ; ~k4 6 clim
r .

In conclusion, the technique proposed here allows to guarantee non-negativity of the total flow height in the Riemann
solution, but negative phase volume fractions might still appear. In such a case the computed solution will be clearly dete-
riorated in all the variables, but we never experienced solution blow-up. Potential difficulties related to the computation of
negative volume fractions can be overcome by decreasing the Courant number. Although not rigorously positivity preserv-
ing, the relaxation method proves to model efficiently a large range of flow regimes relevant for applications involving dry
bed regions. Numerical experiments will be illustrated in the next section.

7.4. Roe-relaxation method for the two-phase model

Following the discussion in Section 5.4 for the single-phase case, it results more efficient to apply a hybrid Roe-relaxation
solver that uses the momentum waves given by the Roe solver when the relaxation parameters ~hs;

~hf are taken as the Roe
averages ĥs; ĥf , and the waves given by the relaxation solver otherwise. Hence, if ~a ¼ â, instead of computing the momentum
increments (105b) and (105d), we use the momentum f-wave components of the Roe method:
~kkDkms ¼ ~kkð~kk ~akÞ; ð124aÞ
~kkDkmf ¼ ~kkð~kk

~nk ~akÞ: ð124bÞ
7.5. The problem of complex eigenvalues

In the previous sections we have assumed that no complex eigenvalues arise in the computation. Let us write again the
sufficient condition characterizing the first hyperbolic region, which is the relevant one for the flow regimes that we model:
jus � uf j 6 2ab; a ¼
ffiffiffiffiffiffi
gh

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�uÞ1� c

2

r
: ð125Þ
Complex eigenvalues may appear when phase velocities differences are too large. In the geophysical applications of interest,
we typically consider that drag forces maintain solid and fluid velocities sufficiently close, so that flow conditions are hyper-
bolic. However, regions of complex (internal) eigenvalues may arise even for very small jus � uf j when h! 0 and/or u! 1,
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as suggested by the condition above. Then near vacuum states we face both the problem of positivity and the problem of loss
of hyperbolicity.

Clearly the numerical method cannot be used if the eigenvalues of eA are complex, and the mathematical model itself is no
longer valid for flow conditions that are not hyperbolic. However, sometimes the difficulty is only numerical, and not inher-
ent in the model system. For instance, when h 
 0, occurrence of complex eigenvalues can be caused by the inaccuracy of the
computed velocities, which leads to an overestimation of jus � uf j sufficient to enter the elliptic region. Furthermore, it may
happen that initial Riemann data are hyperbolic in the whole spatial domain, but our first choice ~a ¼ â, the Roe choice of the
parameters, gives complex eigenvalues for some interface Riemann problem. This indicates the tendency of the system to
lose hyperbolicity, however it does not take into account drag effects, which are numerically applied in an alternate step.
If drag forces are strong enough, then the true solution will remain in the hyperbolic regime everywhere as time evolves,
and the numerical scheme should be able to compute it.

7.5.1. Relaxation approach
One natural idea to address the difficulty of complex eigenvalues is to use the flexibility of the relaxation parameters to

ensure that for each local Riemann problem the matrix eA has real eigenvalues. If we set the average phase velocities and the
average volume fraction as in (106a) and (107), respectively, then we need
Please
ation.
~a P
jûs � ûf j

2b̂
: ð126Þ
In practice this approach proves to be stable when initial Riemann data fall in the hyperbolic region. However, if at least one
of the initial Riemann states is characterized by complex eigenvalues, then attempts to use this relaxation technique to
hyperbolize interface linearized systems might lead to instabilities.

In our scheme we apply this relaxation approach (i) in the situation of hyperbolic initial Riemann states and (ii) in the
general case in areas where the flow height approaches zero. When our first Roe choice ~a ¼ â gives complex eigenvalues,
the new parameter ~a for hyperbolicity is defined as
~aC ¼ jûs � ûf j
2Kb̂

; ð127Þ
where K is a positive parameter <1 (K = 0.9 in our tests), and the correction is made subject to the condition that resulting
speeds satisfy the stability constraints ~k1 P clim

‘ , and ~k4 6 clim
r . Here, if k1ðq‘Þ 6 k̂1 (respectively k4ðqrÞP k̂4), which

approximately indicates a rarefaction in field 1 (resp. 4), we take clim
‘ (resp. clim

r ) as the rarefaction head, as in (122). Other-
wise, we allow a maximum speed enlargement jk̂1 � k1ðq‘Þj (resp. k̂4 � k4ðqrÞ), hence clim

‘ ¼ 2k̂1 � k1ðq‘Þ (resp. clim
r ¼

2k̂4 � k4ðqrÞ). When we drive the solver’s parameters in the first hyperbolic region, then we apply the positivity correction
algorithm described previously by taking as starting estimate ~a ¼maxð~aC; ~a1;3; ~as2; ~af 2Þ. This relaxation strategy for hyperb-
olicity is particularly advantageous near wet/dry fronts, where difficulties of both positivity and complex eigenvalues arise
with the Roe average. In fact, increasing ~a helps addressing both the issues. One disadvantage of (127) is that is looses effi-
ciency when b! 0 (that is u! 1). Nonetheless, this situation of appearance of complex eigenvalues with nearly pure solid
does not appear to be tractable via relaxation, and alternative choices of the relaxation parameters such as the appealing
~us ¼ ~uf also show to produce instabilities. Let us mention that to address this difficulty we have developed a special hyper-
bolizing strategy, which is not based on relaxation but uses a modified Roe-type solver that inhibits instability growth. Pre-
sentation of this approach goes beyond the purposes of the present article. In the numerical experiments illustrated in
Section 8 this stabilization method has not been used.

8. Numerical experiments

We present in this section numerical experiments performed with the proposed relaxation solver for both the single-
phase and two-phase shallow flow models. The numerical scheme has been implemented on the basis of the Fortran routines
of the software CLAWPACK [55]. In all tests we set CFL ¼ 0:9, and we apply free flow boundary conditions. Second order correc-
tions are applied with the Minmod limiter (cf. [13]), and with the re-limiting of the correction fluxes (34b) proposed in [44]
to preserve the robustness of the first-order scheme.

Here we are interested in assessing the efficiency of the pure relaxation scheme, and we shall not present results obtained
with the hybrid Roe-relaxation method. Results obtained with the two methods closely agree, but, as previously mentioned,
transonic rarefactions are usually resolved more accurately by the hybrid method.

8.1. Single-phase shallow flow model

We begin by presenting results of two numerical experiments involving dry bed regions for the single-phase model (1).
Both tests are Riemann problems, for which the initial conditions consist of two constant states separated by an interface
located at x ¼ 0. The computational domain is ½�5;5�, and we take 200 grid cells. The flow height h is considered zero
(dry bed) below the tolerance � ¼ 10�6.
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8.1.1. Rarefaction into vacuum
We solve a classical test problem, considered for instance in [14,20], which contains an initial dry bed state. Left and right

Riemann data are h‘ ¼ 1; hr ¼ 0 (right dry bed), u‘ ¼ ur ¼ 0. The gravity constant is g ¼ 1. The exact solution of this problem
consists of a single transonic rarefaction into vacuum associated with the left eigenvalue k1. Second order results for the flow
height h and for the momentum m ¼ hu at t ¼ 1 are displayed in Fig. 3. Furthermore, in Fig. 5(a) we show a zoom of the flow
front zone. The computed solution is compared with the exact solution (solid line), and accurate agreement is observed. The
transonic rarefaction can be resolved only if an entropy fix is applied (a small glitch in the solution is still visible at x ¼ 0).
8.1.2. Dry bed formation
We consider a test proposed by Toro in [14] showing the generation of a dry bed region. The initial Riemann data are

h‘ ¼ hr ¼ 0:1; u‘ ¼ �3; ur ¼ 3, and we set g ¼ 9:81. The exact solution of this problem consists of two opposite rarefaction
waves that form a dry bed area in the middle. This is a typical test for which classical Roe solver fails by computing negative
values of the flow height (cf. [42,14,13]). Right at the first time step Roe solver computes a negative intermediate state
h	Roe ¼ �0:2029 for the Riemann problem corresponding to the initial discontinuity at x ¼ 0. This does not lead immediately
to unphysical cell values of h. Nonetheless, Roe solver crashes after few time steps by computing negative h at the two cells
adjacent to the initial interface, even when the computation is performed with CFL number very small (e.g. CFL ¼ 0:1).

The relaxation solver overcomes these difficulties and is able to preserve positivity and to approximate efficiently the
problem solution. First order and second order results of the relaxation scheme at t ¼ 1 for h and m ¼ hu are shown in
Fig. 4, where the exact solution is also displayed (solid line). In Fig. 5(b) we show a zoom of the dry bed region. We have
tracked the positivity correction of the Roe speeds performed by the first-order relaxation algorithm for this test
ðCFL ¼ 0:9Þ. The correction is made only for the first 14 time steps (until time t ¼ 0:1451) and only for the Riemann problems
corresponding to the initial discontinuity at x ¼ 0. The maximum absolute value of the new speeds j~k1;4j > jk̂1;4j in this loca-
tion is defined at the first time step, when we have ~k1;4 ¼ �3:000 and k̂1;4 ¼ �0:990. Note that j~k1;4j is still less than the max-
imum absolute Roe speed value over the computational domain maxi;kjk̂k;iþ1=2j ¼ 3:990, which determines in this test the
time step Dt at any time level tn 2 ½0;1�, and which arises in the Riemann problems corresponding to the unperturbed flow
regions on the left and on the right of the two opposite rarefactions (where no positivity correction is made and ~kk ¼ k̂k).

As an additional note on the behavior of Roe solver for this experiment, let us remark that the integration of an entropy fix
technique to Roe’s method may significantly alter the performance of the pure classical Roe solver described above. Among
the various versions of the commonly used Harten–Hyman entropy fix [43], the formulation of LeVeque [37], also illustrated
by Toro in [12], would cause difficulties at the first time step, since it uses the square root of the Roe intermediate state flow
height for both the activation criterion and the Roe solution correction. However, alternative forms of the Harten–Hyman
entropy fix may cure, sometimes for CFL number small enough, the positivity difficulties of Roe’s method. In fact, the acti-
vation of an entropy fix with suitable parameters in regions close to vacuum may produce an enlargement of the numerical
speeds that guarantees positivity preservation. Indeed, there exists a choice of the parameters that makes the Harten–
Hyman correction equivalent to the HLL method, this ensuring positivity, see [56]. Nonetheless, relying on an entropy fix
technique for positivity in this test typically gives poor accuracy in correspondence of the dry bed region ðh ¼ 0Þ of the true
solution, where a spurious wet region with h > 0 may be computed. Moreover, we stress that this strategy for positivity is
not applicable to the two-phase model. Note also that we have checked that the entropy fix correction implemented in our
relaxation solver does not intervene in the computation of this particular experiment, where in fact there are no problems of
entropy violating solutions associated to transonic rarefactions. Let us also mention that in [25] the test problem presented
here is solved by a modified Roe method [24,25], called MRoe, which is not rigorously positivity preserving. The authors need
to reduce the CFL number to 0.8 in order to avoid the appearance of negative values of the water height. Yet the first order
MRoe method leaves a small wet zone between the rarefaction waves [25, Fig. 7]. Since the MRoe method modifies the Roe
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Fig. 3. Rarefaction into vacuum for the single-phase shallow flow. Flow height (left) and momentum (right) at t ¼ 1.
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middle dry bed zone for the test in Fig. 4.

24 M. Pelanti et al. / Journal of Computational Physics xxx (2010) xxx–xxx
solution only when dry areas are detected, and wet/dry fronts are not produced by the MRoe method in this test, we presume
that the results in [25] simply correspond to the standard Roe method with automatic (and not ad hoc) activation of the en-
tropy fix correction, implemented by the authors in some Harten–Hyman form. This provides an example of the possible
positivity preserving action of an entropy fix on Roe’s computation for this experiment ðCFL ¼ 0:8Þ. Let us finally recall that
in [25] the problem solution is computed accurately with no spurious wet areas by the third-order extension of the MRoe
method (HMRoe).

8.2. Two-phase shallow granular flow model

We present now numerical results for the two-phase granular flow model (8). In all the experiments we set c ¼ 1=2. As
we have seen, the proposed scheme needs the eigenvalues ~kk of the matrix eA, which are not available in explicit form. These
eigenvalues are computed by Newton’s iteration as explained in [10]. We will present both experiments with no drag forces
and with drag forces infinitely large. Inter-phase drag terms are numerically treated by the fractional step method described
in [10]. Applying infinitely large drag amounts to impose phase velocity equilibrium in the fractional step algorithm, that is
each time step we reset us ¼ uf ¼ ueq, where the equilibrium velocity is ueq ¼

hsusþchf uf

hsþchf
(see [10] for details). Furthermore, for

tests with infinite drag the solution of the two-phase model (8) will be compared with the solution of the reduced model that
can be obtained theoretically from (8) by assuming that drag forces are strong enough to drive instantaneously phase veloc-
ities to equilibrium. This model, presented in [10], consists of conservative equations for the flow height h, for the mass hq,
and for the mixture momentum hqu, where q ¼ uþ cð1�uÞ, and u is the equilibrium velocity of the mixture. While for the
full two-phase model exact solutions are not available (except trivial cases), this reduced model allows an easy derivation of
exact Riemann solutions thanks to its simpler mathematical structure. Moreover, we have also developed a finite volume
method based on a Suliciu’s Riemann solver to numerically approximate the reduced model [10], so that we can solve gen-
eral problems for this system.
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Fig. 6. Riemann problem with data (128). Sub-figures (a), (b) and (c): results at t ¼ 0:5 with 100 grid cells (markers) and 1000 cells (continuous line for
every variable). (a) Flow height h and variables hs and hf ; (b) solid volume fraction u; (c) phase velocities us and uf . Sub-figure (d): Eigenvalues computed
with 1000 grid cells.
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Concerning the plotting style in the figures, when markers are used, we will indicate the total flow height h with circles
ð�Þ, the variables hs and us for the solid phase with crosses ð�Þ, and the variables hf and uf for the fluid phase with pluses (+).

8.2.1. Tests with no dry bed zones
We begin by presenting results of some experiments with no dry bed areas. No drag forces are applied in these tests.

8.2.1.1. Simple Riemann problem. We consider a Riemann problem that was proposed in [10] and solved by means of the Roe-
type scheme. The initial discontinuity is located at x ¼ 0, the left and right initial data are
Please
ation.
ðh;u;us;uf Þ‘ ¼ ð3;0:7;�1:4;0:3Þ and ðh;u;us;uf Þr ¼ ð2;0:4;�0:9;�0:1Þ; ð128Þ
and we set g ¼ 9:81. As in [10], we perform the computation over the interval ½�5;5� with 100 and 1000 grid cells. Second
order results at time t ¼ 0:5 are shown in Fig. 6. In sub-figures (a)–(c) we display the results obtained with the two different
grid resolutions for the flow height variables h; hs; hf , the solid volume fraction u, and the phase velocities us; uf . In sub-
figure (d) we plot the eigenvalues as computed with the finer grid. The Riemann solution of this problem (completely in the
first hyperbolic region) consists of a 1-rarefaction, a 2-shock, a 3-rarefaction, and a 4-shock. Recalling Remark 7.1, we have to
be aware of the possible convergence difficulties related to the discontinuities in the solution. Here we content ourselves by
noticing agreement of our results with the results of the Roe solver in [10], and with the results computed by means of ADER
schemes in [57].

8.2.1.2. Rarefaction into vacuum of the fluid constituent. We simulate a flow with h > 0 over the whole spatial domain and over
all times, but characterized by a vacuum zone for the fluid phase ðhf ¼ 0Þ. We consider a Riemann problem with the follow-
ing data:
ðh;u;us;uf Þ‘ ¼ ð1;0:8;0; 0Þ and ðh;u;us;uf Þr ¼ ð1;1;0;0Þ; ð129Þ
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thus on the right there is pure solid only. The discontinuity is located a x ¼ 0, and g ¼ 9:81. As in the previous experiment, we
compute the solution over ½�5;5� with 100 and 1000 grid cells. Second order results are shown in Fig. 7. The peculiarity of
this problem is the occurrence of a rarefaction into vacuum for the fluid phase, which is associated to k2. This rarefaction is
transonic, as we can see from the profile of the eigenvalue k2 passing through zero (Fig. 7). The Riemann solution consists of
this 2-rarefaction across which hf ¼ hð1�uÞ vanishes, a 1-shock, and a 4-rarefaction occurring in pure solid material. The
third wave associated to k3 is absent, similar to the problem above (Fig. 3) for the single-phase model, where there is not the
wave corresponding to k2 in the solution pattern.

Let us finally remark that, as u approaches 1, the phase velocity difference jus � uf j (which increases) does not satisfies the
sufficient condition for hyperbolicity (125). Nonetheless, the eigenvalues of the solution states are real, and the solution
evolves entirely in the first hyperbolic zone.

8.2.2. Tests with dry bed zones
We present now numerical results for problems that involve dry bed areas. Here the flow height h is considered zero be-

low the tolerance � ¼ 10�5.

8.2.2.1. Spreading of a granular mass. We simulate the spreading of a granular mass on a horizontal surface. The mass is ini-
tially at rest ðus ¼ uf ¼ 0Þ, and the initial profiles of the flow height and of the solid volume fraction are defined by
Fig. 7.

Please
ation.
hðx;0Þ ¼
1 if x 2 ½�1;1�;
0 otherwise;



and uðx;0Þ ¼ 0:3þ 0:4e�x2

: ð130Þ
The gravity constant is g ¼ 1. We compute the solution for both the case of no inter-phase drag forces and the case of drag
forces infinitely large, using 1000 grid cells over the domain ½�10;10�. Second order results for the simulation without drag
are displayed in Figs. 8 and 9. Fig. 8 shows the profiles of the flow height h and of the solid volume fraction u at times
t ¼ 0;1;2;3;4. Fig. 9 shows the eigenvalues and the phase velocity difference ðus � uf Þ at time t ¼ 4. Note that in this prob-
lem, although there are no drag forces, the phase velocity difference approaches 0 as h! 0. Hyperbolic conditions (in the
first region) are then maintained as the flow height vanishes.
−5 0 5
0

0.2

0.4

0.6

0.8

1

 Height at t = 1

 h
 hs
 hf

(a)
−5 0 5

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
φ at t = 1

(b)

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

Velocities at t = 1

 us
 uf

(c)

−5 0 5
−4

−3

−2

−1

0

1

2

3

4
 Eigenvalues at t = 1

λ1
λ2
λ3
λ4

(d)

Rarefaction into vacuum for the fluid constituent. Results at t ¼ 1 obtained with 100 and 1000 grid cells. See caption of Fig. 6 for plot description.
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Second order results for the case of infinitely large drag are reported in Figs. 10 and 11. Fig. 10 shows profiles of h and u at
times t ¼ 0;1;2;3;4 for this situation, and should be compared with the case of no drag forces in Fig. 8. We observe that the
flow height dynamics is not significantly affected by the action of drag. On the other hand, the behaviour of the volume frac-
tion varies noticeably. In Fig. 11 we plot the flow height variables, the solid volume fraction, and the phase velocities at t ¼ 4.
Moreover, we compare these results of the two-phase model with the computed solution of the reduced model theoretically
derived by assuming instantaneous kinematic equilibrium. Accurate agreement is observed between the two sets of results
(lines mostly overlap). Let us finally recall that in the limit of instantaneous phase velocity equilibrium the volume fraction is
simply governed by an advection equation, @tuþ u@xu ¼ 0, where u is the equilibrium flow velocity [10]. Consistently with
this observation, in the case of infinite drag the profile of u widens laterally while preserving the initial shape as time
evolves.

8.2.2.2. Dry bed generation. We solve here test problems showing the formation of a dry bed zone, which are analogous to the
Toro’s test presented previously for the single-phase flow. All the numerical experiments are Riemann problems whose solu-
tion consists of two opposite rarefactions that generate a dry bed region in between. We consider the following sets of Rie-
mann data:
Pl
at
Test
ease cite this article in press as: M. Pelanti et al., A R
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ðh;u;us;uf Þ‘
iemann solver for single-phase and two-phase shallow flow model
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ðh;u;us;uf Þr

1
 ð0:1;0:4;�3;�3Þ
 ð0:1;0:7;3;3Þ

2
 ð0:1;0:4;0;0Þ
 ð0:1;0:7;6;6Þ

3
 ð0:2;0:4;�3;�3Þ
 ð0:1;0:8;3;3Þ
For all the tests the initial interface is at x ¼ 0, g ¼ 9:81, the computational domain is ½�5;5�, and we use 200 grid cells. In
all the simulations we apply drag forces infinitely large, so that ðus � uf Þ is instantaneously driven to zero. This ensures a
solution in the hyperbolic regime over the whole spatial and temporal domain.
s based on relax-
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Test 1 is analogous to the problem in Fig. 4 for the single-phase case, except that here there is an initial discontinuity in
the solid volume fraction. Second order results at t ¼ 1 are reported in Fig. 12. In sub-figure (a) we plot the flow height h and
the variables hs and hf , in sub-figure (b) the phase momenta ms;mf , and the momentum of the mixture mm ¼ ms þ cmf . A
zoom of the dry bed zone from sub-figure (a) is shown in sub-figure (e). The solid volume fraction, the phase velocities
and the eigenvalues are displayed in sub-figure (c), (d), and (f), respectively. The variables h;mm;u and the phase velocities
are compared with the analytical Riemann solution of the instantaneous kinematic equilibrium reduced model (dashed line)
for the corresponding variables. Qualitative agreement is observed.

Test 2 is similar to Test 1, except that we consider a translation of the initial velocities so that the left rarefaction is tran-
sonic. Test 3 shows a case in which there is both an initial discontinuity in the solid volume fraction and in the flow height.
Second order results for these numerical experiments are plotted in Fig. 13, for Test 2, and Fig. 14, for Test 3. For each exper-
iment we also plot the corresponding exact Riemann solution of the reduced model.

Our relaxation scheme is able to preserve non-negativity of the physically non-negative variables. Inaccuracies of phase
volume fractions and phase velocities are observed near wet/dry fronts, but poor resolution of these derived variables in
areas where h 
 0 is a typical drawback of numerical schemes that use updating of mass (flow height) and momentum
variables.

For tests simulating dry bed formation as those reported here the Roe-type method of [10] fails. The difficulties of the
Roe-type solver in this case are not only related to the computation of unphysical negative states, but also to the generation
of complex eigenvalues. Indeed for the three experiments presented here the Roe-type solver cannot even advance of a single
time step, since the local Roe average matrix bA corresponding to the initial discontinuity at x ¼ 0 gives complex eigenvalues
at t ¼ 0. In fact, although clearly all local initial Riemann states are in the hyperbolic domain since us ¼ uf in each grid cell at
initial time, the Roe velocities ûs; ûf for Riemann problems at the interface x ¼ 0 are different, since their definition is
weighted with different left and right volume fractions. The corresponding average velocity differences jDbU j ¼ jûs � ûf j
are sufficiently large compared to 2âb̂ to produce internal complex eigenvalues. For instance, for Test 1, the Roe averages
at x ¼ 0 and t ¼ 0 give 2âb̂ ¼ 0:66441; jDbU j ¼ 0:93173, and we obtain complex eigenvalues k̂2;3 ¼ �0:10898� 0:22026i.
The flexibility of the relaxation solver allows throughout the computation using suitable local parameters ~a P â that ensure
both real eigenvalues and positivity preservation. Here only the relaxation approach is used to overcome the problem of
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Fig. 12. Dry bed formation, Test 1, t ¼ 1. (a): Variables h; hs ; hf ; (b) momenta ms; mf ; mm; (c) solid volume fraction u; (d) phase velocities us ; uf ; (e) zoom
of the dry bed region from sub-figure (a); (f) eigenvalues. The dashed line in sub-figures (a), (b), (c), (d), (e), indicates the exact solution of the reduced
model for h; hqu; u, and u, where q ¼ uþ cð1�uÞ and u is the equilibrium flow velocity.
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complex eigenvalues arising from Roe averages, and the hyperbolicity fix based on a modified Roe solver that we have men-
tioned in Section 7.5.1 does not intervene.
9. Conclusions and extensions

By means of a relaxation approach we have derived a new approximate Riemann solver for single-phase and two-phase
shallow flow models. The resulting scheme maintains the accuracy and sharp shock resolution of Roe and Roe-type solvers,
while improving significantly the robustness of Roe-type methods in handling dry bed regions. For the single-phase shallow
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Fig. 14. Dry bed formation, Test 3, t ¼ 1. (a) Variables h; hs ; hf ; (b) Momenta ms; mf ; mm; (c) Solid volume fraction u; (d) Phase velocities us ; uf . Dashed
line: reduced model.
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system, and more generally for the isentropic gas dynamics system, we obtain a scheme that rigorously preserves non-neg-
ativity of flow height (or density). The formal equivalence of the solver applied to this system with the VFRoe scheme with
conservative variables of [32,33] allows establishing positivity results for this VFRoe method, which originally had been con-
sidered inefficient near vacuum states. For the two-phase model positivity of phase volume fractions is not ensured, and a
suitable restriction on the CFL number might be needed. Nonetheless numerical experimentation suggests that the method
allows modeling effectively a wide range of flow conditions involving dry bed zones and vacuum formation. Moreover, the
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relaxation technique introduced here defines a general strategy suitable for both conservative and non-conservative sys-
tems, which could be of interest for the approximation of similar models such as the two-layer shallow flow model.

Let us mention that at the time of revising this paper we became aware of a recent work of Castro et al. [58] presenting an
extension of Lax–Friedrichs scheme for general non-conservative systems that rigorously preserves positivity. We expect
that our (first-order) method is less diffusive than this Lax–Friedrichs method, based on the comparative results in [58] be-
tween Lax–Friedrichs and Roe.

Our relaxation scheme for the two-phase model has been already extended to two spatial dimensions, and preliminary
work has been done on adding Coulomb bottom friction forces. These results will be reported elsewhere.

Our current work focuses on the extension of the new scheme to the more general two-phase model with variable bottom
topography studied in [10]. In [10] well-balanced treatment of topography source terms was performed via the f-wave meth-
od of [38,23]. This f-wave technique however does not seem directly applicable to the relaxation solver. Instead, the well-
balanced hydrostatic reconstruction method of Audusse et al. [59] appears a suitable option, with the advantageous property
of preserving the robustness of the scheme for the homogeneous system.
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Appendix A. A positivity preserving Roe matrix

We present here a positivity preserving Roe method for single-phase shallow water equations and analogous systems of
conservation laws. We consider the general form of the one-dimensional system of isentropic gas dynamics:
Please
ation.
@tqþ @xf ðqÞ ¼ 0; ðA:1aÞ
where the vector q and the flux function f ðqÞ are defined as
q ¼
.
.u

� �
and f ðqÞ ¼

.u

.u2 þ pð.Þ

� �
: ðA:1bÞ
Here . P 0 represents a density, u the velocity in the x direction, and pð.Þ is a pressure function such that p0ð.Þ > 0. Typi-
cally, we consider a pressure law pð.Þ ¼ j.1, with j > 0 and 1 P 1. The choice j ¼ g

2 ; 1 ¼ 2 corresponds to the shallow
water system (1) (with . ¼ h). The choice 1 ¼ 1 gives the isothermal gas dynamics equations. The Jacobian matrix of the sys-
tem is
AðqÞ ¼ f 0ðqÞ ¼
0 1

�u2 þ p0ð.Þ 2u

� �
: ðA:2Þ
The system is strictly hyperbolic under the assumption p0 > 0, and it has eigenvalues
k1;2 ¼ u�
ffiffiffiffiffiffiffiffiffiffiffi
p0ð.Þ

p
: ðA:3Þ
Right and left eigenvectors are given by
r1;2 ¼
1

u�
ffiffiffiffi
p0
p

� �
and l1;2 ¼

1
2
ffiffiffiffi
p0
p �uþ

ffiffiffiffi
p0

p
;�1

� �
; ðA:4Þ
respectively, with the normalization ljrk ¼ djk.
Classically, Roe’s solver defines the Roe matrix as the Jacobian matrix of the system evaluated at an average state,bA � Aðq̂Þ; q̂ ¼ q̂ðbp0; ûÞ. This in particular implies that the propagation speeds of the waves of the solver are the eigenvalues

of the averaged Jacobian bA. However, we have seen with the example of the shallow water system that this choice of bA does
not let sufficient degrees of freedom for imposing both conservation and positivity. Here we propose a Roe matrix of the fol-
lowing form, which generalizes the classical one:
~bA � eR s1 0
0 s2

 !eL: ðA:5Þ
The matrices eR ¼ ð~r1;~r2Þ, eL ¼ ð~lT
1;

~lT
2Þ

T are the matrices of the right and left eigenvectors of the system evaluated in an average
state ð~p0; ~uÞ, and s1; s2 are the wave propagation speeds of this Roe solver. The matrix beA must satisfy the conservation Roe
property
~bAðqr � q‘Þ ¼ f ðqrÞ � f ðq‘Þ: ðA:6Þ
cite this article in press as: M. Pelanti et al., A Riemann solver for single-phase and two-phase shallow flow models based on relax-
Relations with Roe and VFRoe solvers, J. Comput. Phys. (2010), doi:10.1016/j.jcp.2010.10.001

http://dx.doi.org/10.1016/j.jcp.2010.10.001


32 M. Pelanti et al. / Journal of Computational Physics xxx (2010) xxx–xxx
In addition we require

� Non-negativity of the Riemann solution intermediate state for positivity of the scheme (Lemma 4.2):
Please
ation.
.	 P 0: ðA:7Þ
� s1 < s2, and s1; s2 bounded when .‘ ! 0 and .r > 0, or when .r ! 0 and .‘ > 0.

The idea here is to choose average values ð~p0; ~uÞ that guarantee positivity, and to determine the wave speeds s1; s2 by the
Roe conservation condition (A.6). Note that the two wavesW1; W2 of this new Roe solver correspond to an averaged form of
the system’s eigenvectors, analogously to the classical Roe solver:
Wk ¼ ~ak~rk; k ¼ 1;2; ðA:8Þ
where the coefficients ~ak are given by
~a1 ¼ ~l1Dq ¼ 1

2
ffiffiffiffi
~p0

p ~uþ
ffiffiffiffi
~p0

p� �
D.� Dð.uÞ

� �
; ðA:9aÞ

~a2 ¼ ~l2Dq ¼ 1

2
ffiffiffiffi
~p0

p �~uþ
ffiffiffiffi
~p0

p� �
D.þ Dð.uÞ

� �
: ðA:9bÞ
f-Waves for this solver are Zk ¼ skWk; k ¼ 1;2. The conservation condition (A.6) can be equivalently written as
Z1 þZ2 ¼ s1~a1~r1 þ s2 ~a2~r2 ¼ Df : ðA:10Þ
For a given choice of ð~p0; ~uÞ these two equations form a system in the two unknowns s1; s2:
ð~a1~r1 ~a2~r2Þ
s1

s2

 !
¼ Df : ðA:11Þ
The determinant of the system’s matrix is d ¼ 2~a1 ~a2

ffiffiffiffi
~p0

p
. If ~a1 ~a2–0, then the solution of (A.11) is uniquely determined and

given by
s1 ¼ 1
~a1

~l1Df ¼ 1

2~a1

ffiffiffiffi
~p0

p ~uþ
ffiffiffiffi
~p0

p� �
Dð.uÞ � ðDð.u2Þ þ DpÞ

� �
; ðA:12aÞ

s2 ¼ 1
~a2

~l2Df ¼ 1
2~a2

ffiffiffiffi
~p0

p �~uþ
ffiffiffiffi
~p0

p� �
Dð.uÞ þ Dð.u2Þ þ Dp

� �
: ðA:12bÞ
We now analyze the case ~a1~a2 ¼ 0 in which the matrix in (A.11) is singular. Such a case corresponds to the situation in which
at least one wave has zero strength. First, note that ~a1 and ~a2 are both simultaneously equal to zero if and only if Dq ¼ 0. In
this case waves and f-waves are simply zero vectors. Let us consider now for instance the case ~a1 ¼ 0, and ~a2 – 0. Then
W1 ¼ Z1 ¼ 0, and the Roe condition (A.10) gives
Z2 ¼ s2W2 ¼ s2 ~a2~r2 ¼ Df : ðA:13Þ
Hence the solver structure consists of a single wave W2 ¼ ~a2~r2 that must be collinear with Df through s2. Therefore
s2 ¼ Dð.uÞ
D.

¼ ~uþ ~p0 ðA:14Þ
subject to the compatibility condition
D.ðDð.u2Þ þ DpÞ ¼ ðDð.uÞÞ2: ðA:15Þ
The case ~a2 ¼ 0 is analogous, and corresponds to the case of a Riemann structure made of a single waveW1 ¼ ~a1~r1 moving at
speed
s1 ¼ Dð.uÞ
D.

¼ ~u� ~p0 ðA:16Þ
subject again to the compatibility condition (A.15). Note that the relations above for s1; s2 are Rankine–Hugoniot jump
relations.

We now look for average values ~p0; ~u that ensure the positivity condition (A.7). The strategy that we employ is analogous
to the one used to define the parameters ~h; ~u of our relaxation solver for single-phase shallow flow equations (Section 5.3).
First, we take ~u equal to the classical Roe-averaged velocity:
~u � û ¼
ffiffiffiffiffi.‘
p

u‘ þ
ffiffiffiffiffi.r
p

urffiffiffiffiffi.‘
p þ ffiffiffiffiffi.r

p : ðA:17Þ
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Then, by using the identity
Please
ation.
Dð.uÞ ¼ ûD.þ
ffiffiffiffiffiffiffiffiffiffi
.‘.r

p
Du; ðA:18Þ
the intermediate density state has a the form
.	 ¼ .‘ þ ~a1 ¼ .r � ~a2 ¼
.‘ þ .r

2
�

ffiffiffiffiffiffiffiffiffiffi.‘.r
p

Du

2
ffiffiffiffi
~p0

p : ðA:19Þ
Therefore, we obtain the positivity condition on the parameter ~p0:
~p0 P
.‘.rðDuÞ2þ
ð.‘ þ .rÞ

2 : ðA:20Þ
With the choice ~u ¼ û the speeds s1 and s2 take the form
s1;2 ¼ ûþ Dp�
ffiffiffiffi
~p0

p ffiffiffiffiffiffiffiffiffiffi.‘.r
p

Duffiffiffiffiffiffiffiffiffiffi.‘.r
p

Du�
ffiffiffiffi
~p0

p
D.

: ðA:21Þ
Furthermore, by using (A.18) and the identity
Dð.u2Þ ¼ û2D.þ 2û
ffiffiffiffiffiffiffiffiffiffi
.‘.r

p
Du; ðA:22Þ
the equality (A.15) can be rewritten as
DpD.� .r.‘ðDuÞ2 ¼ 0; ðA:23Þ
and the product ~a1 ~a2 can be expressed as
~a1 ~a2 ¼ �
1

4~p0
ð.‘.rðDuÞ2 � ~p0ðD.Þ2Þ: ðA:24Þ
Compatibility requires that whenever the above quantity ~a1 ~a2 is zero, the condition (A.23) holds.
Let us note that the simple choice
~p0 ¼ bp0 � Dp=D. if D. – 0;
p0 .‘þ.r

2

� 	
if D. ¼ 0

(
ðA:25Þ
gives speeds s1 < s2 defined by
s1;2 ¼ û�
ffiffiffiffiffibp0q
: ðA:26Þ
This definition bp0 corresponds to the classical Roe average, that is it satisfies Aðq̂ðbp0; ûÞÞDq ¼ Df , as it can be easily verified by
means of the identity Dð.u2Þ ¼ 2ûDð.uÞ � û2D.. For example, for the shallow water equations bp0 ¼ g.̂, where .̂ ¼ g

2 ð.r þ .‘Þ.
Moreover, the choice bp0 satisfies compatibility, since
~a1 ~a2 ¼
D.ðDpD.� .r.‘ðDuÞ2Þ=ð4DpÞ if D. – 0;

� .r.‘ðDuÞ2
4p0ðð.‘þ.rÞ=2Þ if D. ¼ 0;

8<: ðA:27Þ
and clearly ~a1 ~a2 ¼ 0 implies (A.23).
In order to ensure the positivity condition (A.20), we propose the following definition for the average ~p0 (anticipated in

(84)):
~p0 � max bp 0;.‘.rðDuÞ2þ
ð.‘ þ .rÞ

2

 !
: ðA:28Þ� �
Let us now write the speeds (A.21) in terms of functions /1;2 ¼ /1;2
ffiffiffiffi
~p0

p
:

s1;2 ¼ ûþ /1;2
ffiffiffiffi
~p0

p� �
; /1;2

ffiffiffiffi
~p0

p� �
¼

Dp�
ffiffiffiffi
~p0

p ffiffiffiffiffiffiffiffiffiffi.‘.r
p

Duffiffiffiffiffiffiffiffiffiffi.‘.r
p

Du�
ffiffiffiffi
~p0

p
D.

: ðA:29Þ
We need to verify that for a choice ~p0 – bp0

@ ffiffiffi

~p0
p /1

6 0 and @ ffiffiffi
~p0
p /2 P 0: ðA:30Þ
Straightforward computations give
@ ffiffiffi
~p0
p /1;2 ¼ �ð.r.‘ðDuÞ2 � DpD.Þ

ð ffiffiffiffiffiffiffiffiffiffi.‘.r
p

Du�
ffiffiffiffi
~p0

p
D.Þ2

: ðA:31Þ
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Fig. 15. Vacuum formation for the isentropic gas dynamics system with pressure function parameters j ¼ 1 and 1 ¼ 1:4. Second order results obtained
with the positive Roe method (circles) and a generalized version of the relaxation method of Section 5 (dash-dot line). Density (left) and momentum (right)
at t ¼ 0:4.
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Then the conditions (A.30) are satisfied if
Please
ation.
DpD.� .r.‘ðDuÞ2 6 0: ðA:32Þ
Note that the equality of the above quantity to zero corresponds to the compatibility condition (A.23). We easily see that, if
DpD.� .r.‘ðDuÞ2 P 0, the definition (A.28) implies that we simply take ~p0 ¼ bp0, observing that ðD.Þ2 6 ð.r � .‘Þ

2. Then the
choice (A.28) allows satisfying all the required conditions.

An alternative definition for ~p0 is
~p0 � bp0 þ ð.‘.rðDuÞ2þ � DpD.Þþ
ð.‘ þ .rÞ

2 : ðA:33Þ
We leave to the reader to verify the fulfillment of positivity and compatibility conditions for this choice.
The positive Roe solver introduced here for the isentropic gas dynamics system represents a simple modification of the

classical solver, which allows maintaining the good properties of the standard method (sharp resolution of shocks, low dif-
fusivity), and in addition rigorously preserves positivity of the scheme. We have previously observed that the relaxation
method introduced in Section 5 can be seen as a modified Roe method where a new definition of the momentum waves en-
sures conservation for any choice of the relaxation averages. For the present positive Roe solver conservation is guaranteed
for any choice of the averages ~p0; ~u, by means of the new definition of the propagation speeds (A.11). Let us remark that also
this positive Roe method can be interpreted as a relaxation method, and the solver enters in the class of relaxation Riemann
solvers introduced by LeVeque–Pelanti in [23]. The associated relaxation model is
@tqþ @xW ¼ 0; ðA:34aÞ

@tW�
~bA2@xqþ 2

~bA@xW ¼ 0; ðA:34bÞ
where W is an auxiliary vector variable approximating f ðqÞ.
We have implemented for system (A.1) both the positive Roe scheme, and a generalized version of the relaxation method

of Section 5 that uses relaxation parameters ~p0; ~u defined as in (A.28), (A.17) (this was mentioned in Section 6.1). We show
an example in Fig. 15, where we report results for a numerical test simulating vacuum formation for a pressure function
pð.Þ ¼ j.1, with parameters j ¼ 1 and 1 ¼ 1:4. We solve a Riemann problem with data .‘ ¼ .r ¼ 1; u‘ ¼ �7; ur ¼ 7 over
the domain ½�5;5�, taking 200 cells. Both schemes are efficient and results are analogous.

Although effective for system (A.1), the positive Roe method does not seem suitable for extensions to the two-phase shal-
low granular flow model. A first difficulty is that the two-phase system is non-conservative. While attempting to use a strat-
egy similar to (A.10), we can write only three conservation conditions (mass of each constituent, momentum of the mixture)
to determine the four wave speeds sk; k ¼ 1; . . . ;4. It is not clear how to devise an appropriate fourth equation to close the
system for the speeds. Even so, another problem would be ensuring monotonic ordering of the speeds s1 < s2 < s3 < s4. Fi-
nally, for the two-phase system it is difficult to express compatibility conditions identifying the singular case in which one or
more waves have zero strength. In conclusion, the relaxation approach illustrated throughout the paper appears more
advantageous for extensions to complex systems.
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