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Summary. In this work we study the modeling of one-dimensional avalanche flows made of a moving layer

over a static base, where the interface between the two can be time dependent. We propose a general model,

obtained by looking for an approximate solution with constant velocity profile to the incompressible Euler

equations. This model has an energy dissipation equation that is consistent with the depth integrated energy

equation of the Euler system. It has physically relevant steady state solutions, and, for constant slope, it gives a

particular exact solution to the incompressible hydrostatic Euler equations. Then, we propose a simplified model,

for which the energy conservation holds only up to third-order terms. Its associated eigenvalues depend on the

mass exchange velocity between the static and moving layers. We show that a simplification used in some

previously proposed models gives a non-consistent energy equation. Our models do not use, nor provide, any

equation for the moving interface, thus other arguments have to be used in order to close the system. With

special assumptions, and in particular small velocity, we can nevertheless obtain an equation for the evolution of

the interface. Furthermore, the unknown parameters of the model proposed by Bouchaud et al. (J Phys Paris I

4,1383–1410, 1994) can be derived. For the quasi-stationary case we compare and discuss the equation for the

moving interface with Khakhar’s model (J Fluid Mech 441,225–264, 2001).

1 Introduction

This work focuses on the mathematical modeling of erosion processes in granular flows. Granular

avalanches generally involve flowing zones and zones at rest. Static particles can be put into motion

by the flowing particles (i.e., erosion) whereas flowing particles may suddenly stop (i.e., deposition).

This static/flowing transition is typical of granular matter. Many industrial or geophysical

applications are related to this problem. For example, when granular materials are mixed for

industrial purposes, the presence of static and flowing zones could significantly affect the efficiency

of the mixing process. This is a major issue in particular when rotating cylinders are used to deal
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with mixing of cereals or pills. In geophysics, erosion processes are expected to play a key role in the

dynamics of snow or rock avalanches in mountainous and volcanic context [16], [18]. Mangeney

et al. [15] show that erosion processes may change drastically the dynamics of an avalanche flowing

over an erodible bed. Actually, when entrainment of granular material lying on the erodible bed is

effective, a decelerating avalanche could become a surge moving at constant velocity along the

slope.

The theoretical description and physical understanding of these processes are still challenging

open problems. In some applications, e.g., avalanches in silos or surface flows over a pile of granular

material, the no-flow and flowing zones can be fairly clearly separated into a granular layer flowing

over a static layer of grains. The interface between the static and the flowing material changes with

time due to the exchange of grains between the static and the flowing layers.

In the numerical modeling of avalanche dynamics, the existence of mass exchange between the

no-flow and flowing zones is generally not taken into account. The models used in geophysics are

based on the pioneering work of Savage and Hutter [17], where the whole column of granular

material is assumed to be flowing. The mass and momentum equations are averaged over the

depth of the granular material and a scaling analysis is performed with respect to the aspect ratio

of the flowing mass, considered to be small. Under this hypothesis the avalanche is modeled by a

Saint-Venant type system derived in a reference frame linked to an inclined plane. The unknowns

are the thickness and the mean (depth-averaged) velocity of the flowing mass. A constitutive

relation based on Mohr–Coulomb plasticity theory is imposed, making it possible to relate the

normal stresses through a coefficient involving the so-called basal and internal friction angles and

to deduce a friction term at the base of the flow. The resulting system, derived for granular flows

over an inclined plane, will be denoted here as the Savage–Hutter (S–H model). Wieland et al.

[19] generalized the S–H model for granular flows over surfaces with small lateral curvature [16].

More recently Bouchut et al. [4] proposed two more general one-dimensional S–H models. The

first one is valid for small variations of the local slope angle and makes it possible to derive an

exact energy equation. The second model is developed for general slopes. In [5] Bouchut and

Westdickenberg generalize the previous models for small or for general slope variation in two

dimensions.

The S–H model has been successfully applied to simulate a wide range of laboratory experiments

[16], as complex as well as self-channeling flows and the levee-channel morphology of their deposit

[14]. However when applied to the collapse of granular columns [13], several limitations of the

model have been detected. Actually, experimental results and discrete element simulations show that

a static/flowing interface appears and changes with time during the collapse. Taking into account this

static/flowing transition in a depth-averaged model requires the determination of an equation for the

evolution of the moving interface. In other words, one has to specify the entrainment/deposition rate,

which is the velocity perpendicular to the interface of mass that changes from the static to the

flowing side or vice versa of the interface. Its parametrization is insufficiently known owing to the

currently unknown appropriate physical or mechanical processes that govern the static/flowing

transition. In order to avoid prescribing the evolution of the interface by ad-hoc physical or

mechanical considerations, several attempts have been made to close the equations by imposing a

given profile of the horizontal velocity and/or a given velocity at the static/flowing interface.

The purpose of this work is to derive mathematically accurate S–H type models for a one-

dimensional flow of a layer made of a granular material moving over a static layer made of the same

material. The closure relation making it possible to derive an equation for the static/flowing interface

will be discussed and compared with different previously proposed models [2], [6], [7], [9], [10]. In

particular, the existence of an energy equation for the different systems will be investigated.
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The proposed models will be discussed using the following notation (see Fig. 1). The horizontal

coordinate is denoted by x and time by t. By b(t, x) we denote the vertical thickness of the static

layer (i.e., the position of the static/flowing interface), by h(t, x) the thickness of the moving layer,

measured perpendicularly to the unknown interface, and by h(t, x) the angle between the horizontal

and the tangent vector to the interface, according to Fig. 1 (indeed, tan h = qxb). The variable Z is a

coordinate normal to the interface, attached to a point X~ in the moving layer.

One of the first models devoted to this erosion problem, proposed by Bouchaud et al. (BCRE

model, see [6], [7]), is simply based on the principle of mass conservation for density preserving

materials. The variation of h is driven by an advection equation with a volume exchange Eðt;xÞ
between the static and the flowing layer, while the time variation of b compensates the volume

exchange, and is equal to �E: The volume exchange Eðt;xÞ and the horizontal velocity component

of the moving grains, Vd; are both parameters of the model,

ot
h

cos h

� �
þ oxðhVdÞ ¼ Eðt;xÞ;

otb ¼ �Eðt;xÞ:

�
ð1:1Þ

Physically, Eðt;xÞ is a volume exchange per unit time and unit horizontal line element. Although the

BCRE model does not ensure conservation of momentum, it has been applied to a lot of practical

problems. A difficulty of this model is to adjust the parameters Eðt;xÞ and Vd: Phenomenological

relations have been proposed for Eðt;xÞ; defined as a function of the angle h minus a neutral angle hn

(if h > hn then erosion occurs, deposition otherwise), see [6]. The exchange term reads

Eðt;xÞ ¼ chðh� hnÞ; ð1:2Þ

where c is an empirical constant (see also [1] and [2]). The model proposed by Boutreux, Raphaël

and DeGennes (BRDG model, see [7]) differs in the form of the exchange term, where h is replaced

by a thickness k smaller than h,

Eðt;xÞ ¼ ckðh� hnÞ: ð1:3Þ

The idea is that only a very thin layer, of the order of the grain diameter, is involved in the exchange

between the static and moving layers. Both expressions (1.2) and (1.3) can be written as

Eðt;xÞ ¼ Vupðh� hnÞ; ð1:4Þ

where Vup is a parameter of the model that has the dimension of a velocity.

In [2] the BCRE and BRDG models are derived from the Saint-Venant equations, making it

possible to deduce the parameters involved in these models when the velocity profile is assumed to

be linear with a constant slope. From this assumption, an equation for the change in time of b and

h can be deduced. Concretely, Vd is simply obtained from the mass conservation equation when a

velocity profile is assumed and Vup is shown to depend on the specific velocity profile when a
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Fig. 1. Interface between the static and the

moving layers, and change of variable
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quasi-stationary assumption is made (h & hn). Khakhar et al. in [10], [11] derive a model based on

the Saint-Venant equations by also assuming a linear velocity profile. The equations are closed by

assuming continuity of the shear stress at the static/flowing interface (this is only in conformity

with the jump conditions of momentum, if E � 0Þ: Based on experimental data, the friction term in

the flowing layer at the interface is written as the sum of a Coulomb term plus a Bagnold term

whereas the friction is assumed to reduce to the Coulomb friction in the static layer at the same

interface. From the equality of both expressions the value of the slope of the velocity profile can

be deduced,

U ¼ U1Z with U1 ¼ f ðh; hs; hmÞ; ð1:5Þ

where hs is the static angle of repose and hm the ‘‘maximum angle of repose’’ (see [10]).

Note that in [10] and [2], the pressure term qx(gh
2/2) arising in the Saint-Venant systems has been

neglected.

In [9], Gray deduces a S–H type model for the erosion problem in avalanches in the case of

rotating drums. He uses similar arguments as in the original S-H model, but by depth-averaging

the equation only within the moving layer. The system of coordinates is fixed over an inclined

plane with a fixed angle. For the kinematic condition he supposes that the particles on the surface

that separates the moving and the static layers move with a velocity which is the sum of the

velocity of the particles in the moving layer and an exchange velocity (db) in the normal direction

to the surface. From this kinematic condition he deduces the exchange velocity d
b for granular

flows in rotating drums. For avalanches over an inclined plane one has d
b = cos h qtb. After

depth integration, a source term depending on d
b appears in the mass balance equation. Moreover,

a term proportional to Ujbotb arises in the momentum equation, where Ujb is the velocity of the

grains in the moving layer at the static/flowing interface. This term corresponds to the impulse of

the entrained mass that must instantly assume the velocity of the moving avalanche at the

interface.

In [10] the authors suppose that the velocity profile is linear with the velocity equal to zero at

the static/moving interface, i.e., Ujb ¼ 0: Instead, by referring to experimental data, Gray in [9]

sets Ujb ¼ u; the averaged velocity over the moving layer. The question is whether these closure

arguments, in particular using the velocity profile and/or the velocity Ujb ; are justified. A

possible way to address this problem is to look for an approximate solution to the Euler

equations that satisfies the required conditions. When simple solutions cannot be calculated,

another criterion is to check that the assumptions lead to a system of equations which exhibits

good mathematical properties, i.e., to have the right steady states and to satisfy an energy

dissipation inequality. The main model that we propose, (3.8)–(3.9) or its simplified version

(3.10)–(3.21), is coherent with these two criteria and is based on the assumption of a uniform

velocity profile. We have not been able to offer such a justification for a model that is based on

the assumption of a linear profile of the velocity. In Sect. 3.6 we nevertheless discuss the energy

equation obtained for the different models by introducing a coefficient d in front of the term

uqtb that appears in the momentum equation in conservative form. The value of this coefficient

depends on the assumptions related to the velocity profile and/or the velocity at the static/flowing

interface. The associated energy equation is shown to be fully energy conservative (i.e., has a

neutral balance independently of b(t, x)) only if d ¼ 1/2. However, the only value that we have

been able to justify in terms of mathematical properties is d ¼ 1. Moreover, we show that if the

term uqtb in the momentum equation is neglected (i.e., d = 0), as is for most models proposed

in the literature, the associated energy equation is not consistent with the depth-averaged energy

equation of the Euler equations.
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In order to close depth-averaged avalanche models, the ‘‘partial fluidization model’’ proposed in

[3] could be a good candidate avoiding the difficulties encountered in the methods discussed above.

Actually, Aranson and Tsimring present a theory based on the introduction of an order parameter q
that describes the transition between the static and the moving phases without any particular

assumption on the velocity profile and/or the velocity at the static/flowing interface. This parameter

is introduced in the hydrodynamic equation and a coupled equation for q is proposed following the

theory of phase transition of Ginzburg and Landau, as presented by Landau and Lifshitz in [12].

Based on this theory, Mangeney et al. in [15] succesfully simulate laboratory experiments of

granular flows over erodible bed.

The remainder of the paper is organized as follows. In Sect. 2 we perform a change of variables,

starting from the incompressible Euler equations over a moving bottom. Actually, two variable

transformations are needed in order to avoid the difficulty that the variation in time of the local

coordinates is not known. Moreover, the mass and energy equations associated to the Euler system

are written down. In Sect. 3 we show how an approximate solution to the Euler system can be built

in new coordinates, by assuming a constant velocity profile. We deduce a new model that satisfies a

conservative energy inequality without any error term, in the sense that for regular solutions the

energy equation is exactly obtained by a combination of the equations of the model. Moreover, it

gives the expected steady-states corresponding to zero velocity (material at rest). For constant slope,

the model gives an exact solution to the hydrostatic Euler equations. Friction terms can also be

introduced in the model. An interesting observation is that this new model contains first-order terms

that do not appear in previously proposed models. Then, we introduce a simplified model which is

energy conservative only up to third-order terms in the aspect ratio. Its associated characteristic

velocities depend on the exchange velocity between the layers qtb. Finally, the developed models are

compared to previously considered models in Sect. 4. The arguments proposed in the former studies

are used in our model to derive an evolution equation for the interface b. In particular, we show that

the parameters of the BCRE model found by [2] through the derivation of the Saint-Venant equations

change by a factor 3/2 if the term Ujbotb; usually neglected in the momentum equation, is taken into

account.

2 Change of variables

In this section we perform a change of variables from Cartesian coordinates to the coordinates

related to the interface. This enables us to reformulate the incompressible Euler equations in a

more suitable form. We also reformulate the energy equation associated to the Euler equations in

order to be able to compare the integrated energy with the energy associated to any integrated

model.

We consider a one-dimensional flow comprising a moving layer over a static one, with a time-

dependent interface between them. Time is denoted by t, the horizontal coordinate is denoted by x,

b(t, x) is the vertical thickness of the static layer, h(t, x) is the thickness of the moving layer,

measured perpendicularly to the unknown interface. The angle between the horizontal and the

tangent vector to the interface is denoted by h(t, x), and we notice that

tan h ¼ oxb: ð2:1Þ

Let X~ be an arbitrary point in the avalanche domain bounded by the basal and free surfaces. We

consider the coordinate Z that measures the position of X~ inside the moving layer, in the direction

normal to the interface, as displayed on Fig. 1. Thus,
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0\Z\hðt;xÞ: ð2:2Þ

Then the relations between the Cartesian coordinates ðt;X~Þ and the coordinates (t, x, Z) related to

the interface is

X~ ¼ x� Z sin hðt;xÞ; bðt;xÞ þ Z cos hðt;xÞð Þ: ð2:3Þ

Notice that (x, b(t, x)) is a point on the interface. We consider also a curvilinear variable X(t, x)

measuring the arc length along the interface. Thus at fixed t, the mapping x 7! X is a change of

variable with

oxX ¼ 1

cos hðt;xÞ ; ð2:4Þ

which, together with (2.1) yields the relation (at fixed t) (db/dx)2 ? 1 = (dX/dx)2, as illustrated in

Fig. 1. However, since there are several ways to choose the origin on the curve, that could make

different dependencies with respect to time, we cannot say a priori what is the value of qtX.

Nevertheless, from (2.1) we get

oth ¼ cos2 ho2
txb; oXbjt ¼ sin h; ð2:5Þ

where the notation |t means that the derivative is taken at fixed t.

2.1 Transformation of the incompressible Euler equations

We denote the velocity field of the moving layer by U~: Then the Euler equations for the moving

layer can be written in Cartesian coordinates ðt;X~Þ as

r
X~ � U~ ¼ 0; ð2:6Þ

botU~ þ U~ � r
X~U~ þr

X~ � P ¼ �rX~ðg~ � X~Þ; ð2:7Þ

where bot ¼ otjX~; g~¼ ð0; gÞ and g is the gravity constant. By P we denote the pressure tensor, the

negative of the stress tensor, divided by density,

P ¼ pxx pxz

pzx pzz

� �
; ð2:8Þ

with pxz ¼ pz x. Here we allow a full matrix, but later on we shall consider only the ‘‘true Euler’’

case where P is isotropic, e.g., P is a scalar times the identity tensor. This system is completed with a

kinematic law for the evolving free surface,

the free surface is advected by the material velocity U~; ð2:9Þ

and with dynamic boundary conditions. At the free surface we just set

Pm~¼ 0 at Z ¼ hðt;xÞ; ð2:10Þ

where m~ is a unit vector normal to the free surface.

For the bottom interface, the incompressibility of the fluid comes into play, and we have to give

precise assumptions on the fluid density, that we have not introduced yet. We assume that the

moving part of the fluid is incompressible with uniform density qm, while the part of the fluid that is

at rest is also incompressible, with uniform density qr. Having different densities qm and qr, the

model allows more generality, and it is physically more relevant, since experimental observations

F. Bouchut et al.



indicate that qr > qm. The physical interpretation of these assumptions is the following. On the one

hand, when qm = qr, the whole fluid (comprising the moving part and the part at rest) is

incompressible with uniform density. On the other hand, when qr > qm, the fluid that is deposited

(e.g., stops moving and stays at rest) has to increase its density from qm to qr, thus is being

compressed through the interface; while the fluid that is eroded (e.g., starts moving), has to diminish

its density from qr to qm, thus is being decompressed through the interface.

The dynamic condition at the interface corresponding to this situation with two densities qm, qr is

deduced from the mass conservation, that can be written

botqþrX~ � ðqU~Þ ¼ 0; ð2:11Þ

where q takes the value qm in the moving part of the fluid, and qr in the part at rest. The velocity U~

is set to 0 in the part at rest. Writing down the Rankine–Hugoniot condition through the interface

gives the boundary condition

½q�; ½qU~�
� �

� N~ ¼ 0; ð2:12Þ

where [. . .] denotes the jump of a quantity through the interface, and N~ denotes a time–space normal

to the interface. Since the interface is defined by z @ b(t, x) = 0, one can take N~ ¼
ð�otb;�oxb; 1Þ ¼ ð� cos hotb;� sin h; cos hÞ= cos h: Denoting by n~¼ ð� sin h; cos hÞ the space

unit vector normal to the interface, oriented upwards, the interface dynamic boundary condition

(2.12) can be written

qmU~ � n~¼ �ðqr � qmÞ cos hotb at Z ¼ 0: ð2:13Þ

For completeness, let us mention that from (2.6)–(2.7) one classically deduces the energy equation,

valid if P is isotropic, e.g., P is a scalar times the identity tensor,

bot

jU~j2

2
þ g~ � X~

 !

þr
X~ �

jU~j2

2
U~ þ PU~ þ ðg~ � X~ÞU~

 !

¼ 0: ð2:14Þ

In what follows we perform a change of variables from Cartesian coordinates ðt; X~Þ to coordinates

attached to the interface, first to the variables (t, X, Z), and then to the variables (t, x, Z). The

velocity components in the frame associated to the interface will be denoted by (U, W),

U

W

� �
¼ cos h sin h
� sin h cos h

� �
U~: ð2:15Þ

The new stress tensor is

P ¼ cos h sin h
� sin h cos h

� �
P

cos h � sin h
sin h cos h

� �
¼ PXX PXZ

PZX PZZ

� �
: ð2:16Þ

We observe that, as pxz = pzx, then PXZ ¼ PZX :

Let us consider first the variables (t, X, Z). In order to avoid confusion in differentiations, we shall

denote the time in these variables by s, so that q/qs means that we differentiate with respect to time

at X and Z fixed. We first compute the Jacobian matrix of the transformation rs; X; Zðt;X~Þ:
According to Eqs. (2.3), (2.4) and (2.5) we have

rX;ZX~ ¼ J cos h � sin h
J sin h cos h

� �
; J ¼ 1� ZoXh ¼ det rX;ZX~

� �
: ð2:17Þ

On new erosion models of Savage–Hutter type for avalanches



Thus,

r
X~ðX;ZÞ ¼ ðrX;ZX~Þ�1 ¼ 1

J

cos h sin h
�J sin h J cos h

� �
: ð2:18Þ

Then

rs;X;Zðt;X~Þ ¼
1 0
B rX;ZX~

� �
; B ¼ osX~; ð2:19Þ

and by inversion

r
t;X~ðs;X;ZÞ ¼

1 0
�ðrX;Z X~Þ�1

B ðrX;Z X~Þ�1

� �
: ð2:20Þ

We deduce from (2.19) that

det rs; X; Zðt;X~Þ
� �

¼ det rX; Z X~
� �

¼ J; ð2:21Þ

and from (2.20) that

botðX; ZÞ ¼ �ðrX; ZX~Þ�1
B: ð2:22Þ

In order to go to the variables (t, x, Z) we shall need the Jacobian matrix between (s, X) and (t, x),

thus we compute

rt;xðs;XÞ ¼
1 0

otX 1= cos h

� �
; rs;Xðt;xÞ ¼

1 0
� cos hotX cos h

� �
: ð2:23Þ

Therefore we deduce the following rule, for any function f (t, x, Z),

os f ¼ ot f � cos hðotXÞoxf ; ð2:24Þ

where

ot � otjx;Z; bot � otjX~; os � otjX;Z: ð2:25Þ

Notice that this definition for qt is coherent with the previous notations whenever f only depends on t

and x, and also that cosh qx f ¼ qX f . With the rule (2.24), we can deduce a formula for B ¼ osX~:

Using Eqs. (2.3) and (2.1), we get

B ¼ � cos hotX

otb� sin hotX

� �
� Zðoth� ðotXÞoXhÞ cos h

sin h

� �
: ð2:26Þ

Using (2.5), we can also rewrite B as

B ¼ �Z cos2 ho2
txb� otXð1� ZoXhÞ

� � cos h
sin h

� �
þ 0

otb

� �
: ð2:27Þ

With this formula we get according to Eqs. (2.22) and (2.18)

botX ¼ �J�1ðcos hB1 þ sin hB2Þ ¼ J�1ðJotX þ Z cos2 ho2
txb� sin hotbÞ; ð2:28Þ

botZ ¼ sin hB1 � cos hB2 ¼ � cos hotb: ð2:29Þ

In order to perform the change of variables in the governing Eqs. (2.6)–(2.7), let us recall the

classical divergence chain rule formula.
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Lemma 2.1 (Divergence chain rule) Let n~ 7! Y~ðn~Þ be a change of variables, and define the

Jacobian matrix by A�1 ¼ rn~Y~; and its Jacobian determinant by J ¼ detA�1: Then for any vector

field U~ one has

Jr
Y~ � U~ ¼ rn~ � ðJAU~Þ: ð2:30Þ

We notice also that with the same notation we have for any scalar f

r
Y~f ¼ Atrn~ f ; ð2:31Þ

where we use the notations A
t for the transpose of a matrix A.

In order to be complete, let us give a simple proof of (2.30).

Proof of Lemma 2.1. Fix a point n~0; and consider a small ball B containing Y~ðn~0Þ; and a smooth

function uðY~Þ vanishing outside of B: Then, applying usual rules of calculus such as Gauss’s law

without boundary term (because u vanishes on the boundary) and changes of variables under an

integral, we get
Z

uðY~Þr
Y~ � U~dY~ ¼ �

Z
ruðY~Þ � U~dY~

¼ �
Z
ruðY~ðn~ÞÞ � U~jJ jdn~

¼ �
Z
Atrn~ uðY~ðn~ÞÞ

� �
� U~jJ jdn~

¼ �
Z
rn~ uðY~ðn~ÞÞ
� �

� AU~jJ jdn~

¼
Z

uðY~ðn~ÞÞrn~ � ðAU~jJ jÞdn~

¼
Z

uðY~Þrn~ � ðAU~jJ jÞ dY~

jJ j :

ð2:32Þ

This identity holds for any function uðY~Þ; thus

r
Y~ � U~ ¼ rn~ � ðAU~jJ jÞ 1

jJ j in B: ð2:33Þ

Since J has a constant sign, this proves the claim. (

2.2 Incompressibility condition

By applying Lemma 2.1 with n~¼ ðX;ZÞ and Y~ ¼ X~; we readily obtain from the incompressibility

equation (2.6) and with (2.21) that

rX;Z � Jr
X~ðX;ZÞU~

� �
¼ Jr

X~ � U~ ¼ 0: ð2:34Þ

But according to Eqs. (2.18) and (2.15),

Jr
X~ðX;ZÞU~ ¼

cos h sin h
�J sin h J cos h

� �
U~ ¼ U

JW

� �
: ð2:35Þ

We deduce that
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oXU þ oZðJWÞ ¼ 0: ð2:36Þ

Notice that we could also use Lemma 2.1 in the time and space variables, by writing

rs; X; Z � Jr
t; X~ðs;X;ZÞð0;U~Þ

� �
¼ Jr

t;X~ � ð0;U~Þ ¼ 0; ð2:37Þ

which gives Eq. (2.36) since by Eqs. (2.20) and (2.18)

Jr
t;X~ðs;X;ZÞ ¼

J 0 0

JbotX cos h sin h

JbotZ �J sin h J cos h

0

@

1

A: ð2:38Þ

In the same spirit, writing down

rs; X; Z � Jr
t; X~ðs;X;ZÞð1; 0Þ

� �
¼ Jr

t; X~ � ð1; 0Þ ¼ 0; ð2:39Þ

we get the identity

osJ þ oXðJbotXÞ þ oZðJbotZÞ ¼ 0; ð2:40Þ

where botX and botZ can be expressed by Eqs. (2.28)–(2.29). Notice that Eq. (2.40) is an identity

related to the change of variables, and does not involve the unknowns U, W . Adding Eqs. (2.40) and

(2.36), this yields

osJ þ oX JbotX þ U

� �
þ oZ JbotZ þ JW

� �
¼ 0: ð2:41Þ

In the sequel we shall use either (2.36) or (2.41) as incompressibility equation. They are of course

equivalent.

2.3 Momentum equations

In order to obtain the equations for U and W , we multiply Eq. (2.7) on the left by the matrix

cos h sin h
� sin h cos h

� �
ð2:42Þ

that appears in (2.15). The result for the first component, multiplied by J, gives an equation for U,

J botU þ U~ � r
X~U

� �
þ Jðr

X~ðg~ � X~ÞÞ �
cos h

sin h

� �

¼ JW bothþ U~ � r
X~h

� �
� Jr

X~ � P
cos h

sin h

� �� �
þ Jðr

X~hÞtP
� sin h

cos h

� �
: ð2:43Þ

Then, according to the incompressibility condition (2.6), we can use for any scalar function f the

identity botf þ U~ � r
X~f ¼ r

t;X~ � ðf ; fU~Þ: Applying Lemma 2.1 with n~¼ ðs;X;ZÞ;Y~ ¼ ðt;X~Þ;
U~ ¼ ðf ; fU~Þ and using (2.38), we get for any scalar function f

J botf þ U~ � r
X~f

� �
¼ Jr

t;X~ � ðf ; fU~Þ ¼ rs;X;Z �
Jf

JðbotXÞf þ fU

JðbotZÞf þ JfW

0

B@

1

CA: ð2:44Þ

We choose successively f = U and f = h in (2.44) and insert the results in (2.43). We use also

Lemma 2.1 as above, but with U~ ¼ ð0;Pðcos h; sin hÞÞ: With the help of formula (2.31) for the two

remaining terms, Eq. (2.43) yields
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rs;X;Z �
JU

JðbotXÞU þ U2

JðbotZÞU þ JUW

0

BB@

1

CCAþ oXðg~ � X~Þ

¼ Wrs;X;Z �
Jh

JðbotXÞhþ hU

JðbotZÞhþ JhW

0

BB@

1

CCA

�rX;Z �
1 0

0 J

 !
cos h sin h

� sin h cos h

 !

P
cos h

sin h

 ! !

þ ðrX;ZhÞt
1 0

0 J

 !
cos h sin h

� sin h cos h

 !

P
� sin h

cos h

 !

: ð2:45Þ

In order to obtain the equation for W , we multiply the first equation of (2.7) by @sinh, and the

second one by cosh. Multiplying the sum by J, we get

J botW þ U~ � r
X~W

� �
þ Jðr

X~ðg~ � X~ÞÞ �
� sin h

cos h

� �

¼ �JU bothþ U~ � r
X~h

� �
� Jr

X~ � P
� sin h

cos h

� �� �
� Jðr

X~hÞtP
cos h

sin h

� �
: ð2:46Þ

Proceeding as above, we obtain

rs;X;Z �
JW

JðbotXÞW þWU

JðbotZÞW þ JW2

0

B@

1

CAþ JoZðg~ � X~Þ

¼ �Urs;X;Z �
Jh

JðbotXÞhþ hU

JðbotZÞhþ JhW

0

B@

1

CA

�rX;Z �
1 0

0 J

� �
cos h sin h

� sin h cos h

� �
P
� sin h

cos h

� �� �

� ðrX;ZhÞt
1 0

0 J

� �
cos h sin h

� sin h cos h

� �
P

cos h

sin h

� �
: ð2:47Þ

At this point, we would like to simplify somewhat the Eqs. (2.45) and (2.47). Taking into account

(2.41) and the fact that h does not depend on Z, we have

Q � osðJhÞ þ oX JðbotXÞhþ hU

� �
þ oZ JðbotZÞhþ JhW

� �

¼ Joshþ JbotX þ U

� �
oXh:

ð2:48Þ

Then, using Eqs. (2.24), (2.5), expression (2.17) of J and (2.28), we get

Q

cos h
¼ J

cos h
othþ JðbotX � otXÞ þ U

� �
oxh

¼ ð1� Z cos hoxhÞ cos ho2
txbþ ðZ cos2 ho2

txb� sin hotbþ UÞoxh

¼ oxðcos hotbÞ þ Uoxh: ð2:49Þ
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2.4 System of equations in (s, X, Z)

Writing down the incompressibility equation (2.36) and the momentum equations (2.45) and (2.47)

in the variables ðs;X;ZÞ gives the system

oXU þ oZðJWÞ ¼ 0; ð2:50Þ

osðJUÞ þ oX ðJbotX þ UÞU
� �

þ oZ JðbotZ þWÞU
� �

þ oXðgðbþ Z cos hÞÞ

¼ W Joshþ JbotX þ U

� �
oXh

� �
� oXPXX � oZðJPZXÞ þ PXZoXh; ð2:51Þ

osðJWÞ þ oX ðJbotX þ UÞW
� �

þ oZ JðbotZ þWÞW
� �

þ JoZðgðbþ Z cos hÞÞ

¼ �U Joshþ JbotX þ U

� �
oXh

� �
� oXPXZ � oZðJPZZÞ � PXXoXh; ð2:52Þ

where botX and botZ can be expressed by Eqs. (2.28)–(2.29). Notice that according to expression

(2.17) for J, one has qZJ = @qXh, thus

�oZðJPZZÞ � PXXoXh ¼ �JoZPZZ þ ðPZZ � PXXÞoXh: ð2:53Þ

2.5 System of equations in (s,x,Z)

We now choose the horizontal coordinate x. We shall see that with this choice, the unknown quantity

qtX from Eq. (2.28) disappears. In order to perform the change of variable to the variables (t, x, Z),

we use Eq. (2.24) and the identity cosh qx = qX that comes from (2.4). Moreover, we still use the

notations (2.25).

At first, since h does not depend on Z, we can write the incompressibility equation (2.50) as

oxU þ oZ

JW

cos h

� �
¼ 0: ð2:54Þ

This equation can also be obtained from Eq. (2.50) by using Lemma 2.1. Indeed, take

Y~ ¼ ðs;X;ZÞ; n~¼ ðt;x;ZÞ: Then, according to (2.23), the matrix JA in (2.30) is

JA ¼
ðcos hÞ�1 0 0
�otX 1 0

0 0 ðcos hÞ�1

0

@

1

A: ð2:55Þ

Multiplying this matrix by the vector U~ ¼ ð0;U; JWÞ appearing in (2.50) gives the vector (0, U,

JW/cosh). Writing that the divergence in (t, x, Z) of this vector vanishes gives (2.54). Similarly, we

can transform identity (2.40) to get

ot

J

cos h

� �
þ ox �JotX þ JbotX

� �
þ oZ

JbotZ

cos h

 !

¼ 0; ð2:56Þ

or more explicitly, according to Eqs. (2.28)–(2.29)

ot

J

cos h

� �
þ ox Z cos2 ho2

txb� sin hotb
� �

þ oZ �Jotbð Þ ¼ 0: ð2:57Þ

Indeed, (2.57) can also be checked directly by using expression (2.17) of J and relation (2.1) relating

h to b. The identity (2.57) is true for any function b(t, x), and does not involve the unknowns U, W .

Finally, adding (2.54) and (2.57), we obtain the combined incompressibility equation
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ot

J

cos h

� �
þ ox Z cos2 ho2

txb� sin hotbþ U
� �

þ oZ

J

cos h
ð� cos hotbþWÞ

� �
¼ 0: ð2:58Þ

Next, consider Eq. (2.51) for U. Applying again the divergence chain rule, and with the use of

(2.49), it takes the form

ot

JU

cos h

� �
þ ox ðJðbotX � otXÞ þ UÞU þ gðbþ Z cos hÞ þ PXX

� �

þ oZ

J

cos h
ðbotZ þWÞU þ JPZX

cos h

� �
¼ W oxðcos hotbÞ þ Uoxhð Þ þ PXZoxh: ð2:59Þ

Combining it with (2.58), we may derive its nonconservative analogue

J

cos h
otU þ ðZ cos2 ho2

txb� sin hotbþ UÞoxU þ J
W

cos h
� otb

� �
oZU

þ ox

�
gðbþ Z cos hÞ þ PXX

�
þ oZ

JPZX

cos h

� �

¼ W oxðcos hotbÞ þ Uoxhð Þ þ PXZoxh: ð2:60Þ

A similar computation for W , again with the aid of Lemma 2.1, transforms (2.52) into

ot

JW

cos h

� �
þ ox ðJðbotX � otXÞ þ UÞW þ PXZ

� �

þ oZ

J

cos h
ðbotZ þWÞW þ JPZZ

cos h

� �
þ J

cos h
oZ gðbþ Z cos hÞð Þ

¼ �U oxðcos hotbÞ þ Uoxhð Þ � PXXoxh: ð2:61Þ

If we combine this again with (2.58) as before and use (2.53), we obtain the nonconservative

equation

J

cos h
otW þ ðZ cos2 ho2

txb� sin hotbþ UÞoxW þ J
W

cos h
� otb

� �
oZW

þ oxPXZ þ
J

cos h
oZ gðbþ Z cos hÞ þ PZZð Þ

¼ �U oxðcos hotbÞ þ Uoxhð Þ þ ðPZZ � PXXÞoxh: ð2:62Þ

In summary, the governing equations, comprising all the balance laws of mass and momentum and

referred to the independent variables (t, x, Z) are defined: (1) in conservative form by Eqs. (2.54),

(2.59), (2.61), and (2), in nonconservative form by Eqs. (2.54), (2.60), (2.62).

2.6 Energy equation

In what follows we consider the case where P is isotropic, P = pzzI. Then we have also P ¼ pzzI;

and for simplicity we shall denote pzz by P.

Starting from the energy equation (2.14) written in Cartesian coordinates Y~ ¼ ðt;X~Þ; we perform

the change of variables to n~¼ ðs;X;ZÞ: Applying Lemma 2.1 with (2.38) and appropriate choices

for U~ lead to
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os J
U2 þW2

2
þ g~ � X~

� �� �
þ oX ðJbotX þ UÞ U2 þW2

2
þ g~ � X~

� �
þ PU

� �

þ oZ JðbotZ þWÞ U2 þW2

2
þ g~ � X~

� �
þ PJW

� �
¼ 0: ð2:63Þ

Then, applying Lemma 2.1 again with Y~ ¼ ðs;X;ZÞ; n~¼ ðt; x; ZÞ; and using (2.55), we obtain the

balance equation for the energy referred to the (t, x, Z) coordinates as follows:

ot

J

cos h
U2 þW2

2
þ gðbþ Z cos hÞ

� �� �

þ ox ðZ cos2 ho2
txb� sin hotbþ UÞ U2 þW2

2
þ gðbþ Z cos hÞ

� �
þ PU

� �

þ oZ

J

cos h
ð� cos hotbþWÞ U2 þW2

2
þ gðbþ Z cos hÞ

� �
þ PJW

cos h

� �
¼ 0: ð2:64Þ

2.7 Integration and kinematic boundary condition

In this section we provide formulas for quantities which are integrated with respect to Z. Moreover,

we derive the kinematic boundary condition associated to the free surface, that gives the evolution of

h(t, x).

According to (2.9), the free surface is advected by the material velocity U~: Consider a material

point X~ðsÞ; where s is the time, that is moving with the flow, and that stays on the free surface. Then

dX~

ds
ðsÞ ¼ U~ðs;X~ðsÞÞ: ð2:65Þ

In the variables (t, x, Z), the free surface is characterized by Z = h(t, x). Thus

Zðs;X~ðsÞÞ ¼ hðs;xðsÞÞ; ð2:66Þ

where (s, x(s)) are the (t, x) coordinates corresponding to ðs;X~ðsÞÞ: Differentiating Eq. (2.66) with

respect to s gives

r
t;X~Zðs;X~ðsÞÞ 1

U~ðs;X~ðsÞÞ

� �
¼ othðs;xðsÞÞ þ oxhðs;xðsÞÞdx

ds
ðsÞ: ð2:67Þ

We compute

dx

ds
¼ osxþ ðoXxÞdX

ds
;

dX

ds
¼ r

t;X~Xðs;X~ðsÞÞ
1

U~ðs;X~ðsÞÞ

� �
:

ð2:68Þ

Using Eqs. (2.18) and (2.23), Eq. (2.67) yields

botZ þW ¼ othþ � cos hotX þ cos hðbotX þ U=JÞ
� �

oxh: ð2:69Þ

With Eqs. (2.28) and (2.29) we get

� cos hotbþW ¼ othþ
cos h

J
ðZ cos2 ho2

txb� sin hotbþ UÞoxh: ð2:70Þ

This must hold at any point on the free surface, therefore the kinematic condition is that for any (t, x),
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Jjh
cos h

othþ ðh cos2 ho2
txb� sin hotbþ UjhÞoxh ¼

Jjh
cos h

ð� cos hotbþWjhÞ; ð2:71Þ

where jh means that we take the value at Z = h(t, x). Now, taking into account the boundary

condition (2.13), which can be written as

WZ¼0 ¼ �
qr

qm

� 1

� �
cos hotb; ð2:72Þ

integrating of the incompressibility equation (2.58) for Z between 0 and h(t, x), and using the

kinematic condition (2.71), gives

ot

Zh

0

J

cos h
dZ þ ox

Zh

0

ðZ cos2 ho2
txb� sin hotbþ UÞdZ ¼ � qr

qm

otb: ð2:73Þ

More explicitly, the mass conservation reads

ot

h

cos h
� h2

2
oxh

� �
þ ox

h2

2
cos2 ho2

txb� h sin hotbþ hU

� �
¼ � qr

qm

otb; ð2:74Þ

where

U ¼ 1

h

Zh

0

UdZ: ð2:75Þ

Notice that with known (2.58) and (2.72), the mass conservation (2.74) is equivalent to the kinematic

condition (2.71).

We can proceed similarly for the energy equation. Assuming that P is isotropic, we integrate the

energy equation (2.64) for Z between 0 and h(t, x). Using the kinematic condition (2.71) and the

boundary conditions (2.72) and (2.10), we obtain the depth-integrated energy equation

ot

Zh

0

J

cos h
U2 þW2

2
þ gðbþ Z cos hÞ

� �
dZ

þ ox

Zh

0

ðZ cos2 ho2
txb� sin hotbþ UÞ U2 þW2

2
þ gðbþ Z cos hÞ

� �
þ PU

� �
dZ

¼ � 1

2
U2

Z¼0 þ
1

2

qr

qm

� 1

� �
cos hotb

� �2

þgb

 !
qr

qm

otb�
qr

qm

� 1

� �
PZ¼0otb: ð2:76Þ

It is not possible to obtain an explicit formula for this integrated equation, unless a particular profile

of the velocity in Z is assumed.

The right-hand sides in Eqs. (2.74) and (2.76) deserve some comments. For the mass conservation

law (2.74), the term
qr

qm
otb can be put on the left-hand side. Then, multiplying the result by qm, what

one obtains is the time variation of the mass of moving fluid plus the mass of fluid at rest, which is

the total mass of the fluid. For the energy equation (2.76), one can similarly put the term
qr

qm
gbotb ¼ otðqr

qm
gb2=2Þ on the left-hand side, since after multiplication by qm, the term qrgb

2/2

represents the potential energy of the static part of the fluid. However, even when qm = qr, there

remains the term � 1
2
U2

Z¼0otb on the right-hand side, that cannot be put in conservative form. This
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term represents the variation of the kinetic energy attached to the displacement of the interface

b(t, x). When qm = qr, the kinetic energy at the interface is completed with the normal term WZ=0
2 ,

which is non zero, and an additional term involving PZ=0 remains on the right-hand side, related to

the mass exchanges through the interface.

2.8 Hydrostatic model

Classically, the hydrostatic assumption consists in removing the normal acceleration in the

momentum equation. Since W is the normal velocity to the bottom interface, doing this means to

remove the first line in (2.62). Therefore, the hydrostatic model, formulated with respect to the

coordinates (t, x, Z), comprises Eqs. (2.54), (2.60), and

oxPXZ þ
J

cos h
oZ gðbþ Z cos hÞ þ PZZð Þ

¼ �U oxðcos hotbÞ þ Uoxhð Þ þ ðPZZ � PXXÞoxh: ð2:77Þ

The kinematic and boundary conditions remain unchanged for this system. If we assume that P is

isotropic, one can directly combine (2.54), (2.60) and (2.77) to obtain a hydrostatic energy equation.

More explicitly, we can proceed as follows. We first transform the equation botðg~ � X~Þ þ rX~ � 0 ¼ 0

to the (t, x, Z) variables; this yields the identity

ot

J

cos h
gðbþ Z cos hÞ

� �
þ ox ðZ cos2 ho2

txb� sin hotbÞgðbþ Z cos hÞ
� �

þ oZ �Jotbgðbþ Z cos hÞð Þ ¼ 0; ð2:78Þ

that can also be checked directly. Then, we add up (2.60) times U plus (2.77) times W plus (2.54)

times U
2=2 ? g(b ? Zcosh) ? P plus (2.57) times U

2=2 plus (2.78). This gives the hydrostatic

energy equation

ot

J

cos h
U2

2
þ gðbþ Z cos hÞ

� �� �

þ ox ðZ cos2 ho2
txb� sin hotbþ UÞ U2

2
þ gðbþ Z cos hÞ

� �
þ PU

� �

þ oZ

J

cos h
ð� cos hotbþWÞ U2

2
þ gðbþ Z cos hÞ

� �
þ PJW

cos h

� �
¼ 0; ð2:79Þ

the only difference with (2.64) being that the term W
2=2 has disappeared. Indeed, the same

computation for the non-hydrostatic model gives (2.64). Therefore, for the hydrostatic model, the

mass conservation still reads (2.74), while the integrated energy equation takes the form

ot

Zh

0

J

cos h
U2

2
þ gðbþ Z cos hÞ

� �
dZ

þ ox

Zh

0

ðZ cos2 ho2
txb� sin hotbþ UÞ U2

2
þ gðbþ Z cos hÞ

� �
þ PU

� �
dZ

¼ � 1

2
U2

Z¼0 þ gb

� �
qr

qm

otb�
qr

qm

� 1

� �
PZ¼0otb: ð2:80Þ
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3 A new erosion model for avalanches

In this section we propose a new erosion model for avalanches, derived from our formulation (2.54),

(2.60), (2.62) for the incompressible equations subject to the boundary conditions (2.72), (2.10) and

the mass conservation (2.74). We first deal with the case where the stress tensor P is isotropic, then

in Sect. 3.3 non-diagonal terms are considered in order to include friction effects.

Our procedure consists, as usual, in assuming for the velocity U(t, x, Z) a particular profile in Z.

An approximate solution to the incompressible system is searched for with this particular profile,

retaining only lower order terms relatively to the aspect ratio characterizing the shallowness of the

moving mass. Indeed, we retain all first and second-order terms, and some third-order terms that are

necessary to obtain a model that verifies exactly an energy inequality. Interestingly, the resulting

model contains some first-order terms that do not appear in previously proposed models.

3.1 Formal derivation

In what follows we consider a moving layer over a given variable bottom interface b(t, x), as

described at the beginning of Sect. 2. Thus, according to Eq. (2.1), h is also known. We denote by e
the aspect ratio between the characteristic lengths normal and parallel to the interface, which is

supposed to be a small parameter. Thus we have the shallowness assumption

h ¼ OðeÞ: ð3:1Þ

We look for a solution with a velocity profile almost constant in Z,

Uðt;x;ZÞ ¼ uðt;xÞ þ Oðe2Þ: ð3:2Þ

Moreover, we assume a small variation in space of the angle h and a small variation in time of b,

oxh ¼ Oð�Þ; otb ¼ Oð�Þ: ð3:3Þ

Under these hypotheses, we make the following approximations. We assume that there are no

singularities in time or space; i.e., qt and qx are formally bounded operators. On the other hand, the

shallowness assumption leads to oZ ¼ Oð1=�Þ: At first, since 0 < Z < h, Eq. (3.1) ensures that

Z ¼ OðeÞ: Notice that (2.54), together with (2.72), can be used to define W(t, x, Z), once U(t, x, Z) is

known. From this we deduce that W ¼ OðeÞ; otW ¼ OðeÞ; oxW ¼ OðeÞ: With Eq. (3.3) we have

J ¼ 1þOðe2Þ; and Eqs. (2.62) and (3.3) give

oZ gZ cos hþ Pð Þ ¼ OðeÞ; ð3:4Þ

implying together with Eq. (2.10) the near hydrostatic pressure

P ¼ g cos hðh� ZÞ þ Oðe2Þ: ð3:5Þ

Substituting this expression into Eq. (2.60), we obtain, on using (3.2),

1� Z cos hoxh
cos h

otuþ ðZ cos2 ho2
txb� sin hotbÞoxuþ ox

u2

2
þ gh cos hþ gb

� �
¼ Oðe2Þ: ð3:6Þ

We observe that the terms depending on Z, i.e., Z coshqx h and Z cos2h qtx
2

b, are second-order terms,

according to Eq. (3.3). Therefore, they can be neglected; thus we get an equation in the variables (t,

x) only. This justifies the compatibility of the choice (3.2) with the Euler system. However, although

the two previously mentioned terms depending on Z can be neglected, we keep them because they

are necessary in order to obtain a system which verifies exactly an energy inequality as will be

discussed in the following section. Indeed, in order to remove the dependence in Z, we can take

Z = h=2 in Eq. (3.6) without changing the order of approximation. We close the system by rewriting
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Eq. (2.74), where U ¼ uþOðe2Þ: This gives an error in Oðe3Þ in (2.74). Finally, by expanding Eq.

(2.76) we obtain the following equation for the energy:

ot

h

cos h
� h2

2
oxh

� �
u2

2
þ gb

� �
þ g

h2 þ qr

qm
b2

2
� g

h3

3
cos hoxh

 !

þ ox

u2

2
þ gh cos hþ gb

� �
huþ h2

2
cos2 ho2

txb� h sin hotb

� �
u2

2
þ gb

� ��

þg
h3

3
cos3 ho2

txb� g
h2

2
sin h cos hotb

�

¼ �u2

2

qr

qm

otb�
qr

qm

� 1

� �
gh cos hotbþOðe3Þ: ð3:7Þ

3.2 Properties of the model

In this section we study the properties of the model obtained as explained above, and dropping the

error terms. The model is defined by the two mass and momentum equations coming from Eqs.

(2.74) and (3.6) (with Z = h=2),

ot

h

cos h
� h2

2
oxh

� �
þ ox

h2

2
cos2 ho2

txb� h sin hotbþ hu

� �
¼ � qr

qm

otb; ð3:8Þ

1

cos h
� h

2
oxh

� �
otuþ

h

2
cos2 ho2

txb� sin hotb

� �
oxuþ ox

u2

2
þ gh cos hþ gb

� �
¼ 0: ð3:9Þ

Notice that when qtb = 0, the system differs slightly from the model proposed in [4]. As usual, (3.9)

is valid for smooth solutions, but for possibly discontinuous solutions, one should rather write the

momentum equation in conservative form

ot

h

cos h
� h2

2
oxh

� �
u

� �
þ ox

h2

2
cos2 ho2

txb� h sin hotbþ hu

� �
uþ g

h2

2
cos h

� �

¼ �g sin h
h

cos h
� h2

2
oxh

� �
� qr

qm

uotb; ð3:10Þ

obtained by multiplying (3.8) by u, (3.9) by h and adding the results. The term g h2

2
sin hoxh on the

right-hand side of (3.10) was introduced by Bouchut et al. in [4]. Here it plays the same role, to

maintain a conservative energy balance and to have the lake at rest solution.

Theorem 3.1 System (3.8)–(3.9) has the following properties:

(i) It admits an energy dissipation inequality

ot

h

cos h
� h2

2
oxh

� �
u2

2
þ gb

� �
þ g

h2 þ qr

qm
b2

2
� g

h3

3
cos hoxh

 !

þ ox

u2

2
þ gh cos hþ gb

� �
huþ h2

2
cos2 ho2

txb� h sin hotb

� �
u2

2
þ gb

� ��

þ g
h3

3
cos3 ho2

txb� g
h2

2
sin h cos hotb

�
� � u2

2

qr

qm

otb�
qr

qm

� 1

� �
gh cos hotb; ð3:11Þ

which is an identity for smooth solutions,
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(ii) it has the lake-at-rest solution u = 0, hcos h ? b = Cst, for arbitrary given b(t, x) if

qm = qr, or for b satisfying qtb : 0 if qm = qr,

(iii) under assumptions (3.1) and (3.3), it provides in the limit e ? 0 an approximation up to error

terms of order e3 in (3.8) and of order e2
in (3.9), with constant velocity profile in the normal

variable, to the free surface incompressible Euler equations (2.54), (2.60), (2.62), (2.72), (2.10)

and (2.74),

(iv) for constant slope (qth = 0, qxh = 0), system (3.8)–(3.9) gives an exact solution to the free

surface incompressible Euler system with hydrostatic assumption (2.54), (2.60), (2.77), (2.72),

(2.10) and (2.74).

Proof For (i), a long calculation shows that for smooth solutions, by multiplying Eq. (3.8) by

u
2/2 ? ghcosh ? gb, Eq. (3.9) by hu and adding the results, using (2.1) and (2.5), we obtain

exactly the equality in (3.11). Since the details of the computation are very tedious, we prefer to omit

them, and rather give an abstract argument. Consider a solution (h, u) to (3.8)–(3.9). Set U(t, x,

Z) = u(t, x), define W by (2.54) with the boundary condition (2.72), and take P = gcosh(h @ Z),

that satisfies the boundary condition (2.10). Then, the mass conservation (2.74) holds, and only the

velocity equations for U and W fail to hold in order to have a solution to the Euler equations. We

have the equation qZ(g(b ? Zcosh) ? P) = 0, thus we can say that the hydrostatic equation (2.77)

holds modulo the term @U (qx(cosh qtb) ? Uqxh ). For U, we can say that Eq. (2.60) holds modulo

the term W(qx(cosh qtb) ? U qxh), with a right-hand side

ðh=2� ZÞ oxhotu� cos2 ho2
txboxu

� �
; ð3:12Þ

just because Eq. (3.9) has been obtained by taking Z = h=2 in Eq. (2.60). Performing the same

computation as for the hydrostatic model, we can derive an energy equation. We observe that the

terms involving qx(cosh qtb) ? U qxh simplify, thus we get the energy equation (2.79) with the

right-hand side u times (3.12). Integrating this equation for Z between 0 and h then gives (2.80),

since the integral in Z of (3.12) vanishes. Finally the evaluation of (2.80) gives (3.11).

The property (ii) can be obtained as follows. We have to prove that if u = 0 and

hcosh ? b = C independent of x and t, then we have a solution to Eqs. (3.8)–(3.9), provided

that ðqr

qm
� 1Þotb � 0: The second equation (3.9) holds trivially, thus we just have to prove the

first, (3.8). We first observe that U~ ¼ 0;P ¼ gC� g~ � X~ gives a solution to Eqs. (2.6)–(2.7).

Since the free surface is defined by h(t, x) such that hcosh ? b = C, it is horizontal. Thus, Eq.

(2.9) is satisfied. The boundary condition (2.13) holds according to the assumption, and the

pressure P also vanishes at the free surface, ensuring that (2.10) holds. Therefore, we have a

solution to the incompressible Euler equations with boundary conditions. Formulating this

solution in the (t, x, Z) coordinates reads in particular as Eq. (2.74), proving the result. Another

proof is to differentiate the relation hcosh ? b = C with respect to t and x, and to put the results

directly in (3.8). Notice that when qm = qr with b depending on time, the lake-at-rest solution is

not strictly speaking a steady state, since h also depends on time. This is due to the fact that in

this case, the interface is artificial and does not have a physical meaning, since the parts of the

fluid above and below it are both at rest.

The property (iii) follows directly from the derivation above.

For (iv), consider a solution (h, u) to Eqs. (3.8)–(3.9). As in the proof of (i), let U(t, x, Z) = u(t,

x), define W by (2.54) with the boundary condition (2.72), and take P = gcosh(h @ Z). According

to the assumptions that qth = 0 and qxh = 0 (but without assuming that qtb = 0), the terms qx(cosh
qtb) ? U qxh and (3.12) vanish. Thus the computations made in the proof of (i) show that we have

an exact solution to the hydrostatic Euler system. (
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3.3 Friction terms

In this section we explain how from the incompressible system with non-isotropic stress tensor we

can derive friction terms in the proposed model (3.8)–(3.9).

In the system (2.54), (2.60), (2.62), the stress tensor P needs to be defined. Making the same scale

analysis as previously performed for (2.62) to obtain (3.4), we obtain oZ gZ cos hþ PZZð Þ ¼ OðeÞ;
provided that PXZ ¼ OðeÞ: Thus,

PZZ ¼ g cos hðh� ZÞ þ Oðe2Þ: ð3:13Þ

In order to specify PXX it is necessary to give a constitutive law. With the purpose of simplicity in

this work we set PXX ¼ PZZ; although the case PXX ¼ KPZZ can be considered, K = Kact/pass

following the S–H model [17]. The friction effects are introduced in the shear stress PZX : Following

the works of Savage–Hutter [17] and Gray [9], and in line with (2.10), we impose as boundary

condition PZX to vanish at the free surface, and a Coulomb friction term at the flowing edge of the

interface,

ðPZXÞjZ¼h
¼ 0; ðPZXÞjZ¼0

¼ �lsgnðUÞðPZZÞjZ¼0
; ð3:14Þ

where l = tanhs and hs is the basal friction angle. Now, if we assume that l ¼ OðeÞ; we obtain

PZX ¼ Oðe2Þ: Arguing as in the beginning of Sect. 3, the only new term appearing in Eq. (2.60) is

oZðJPZX= cos hÞ: Thus, averaging (2.60) between Z = 0 and Z = h, we are led to

1

cosh
�h

2
oxh

� �
otuþ

h

2
cos2 ho2

txb� sinhotb

� �
oxuþox

u2

2
þghcoshþgb

� �
¼PZX jZ¼0

hcosh
þOðe2Þ:

ð3:15Þ

However, according to Eqs. (3.14) and (3.13), we have PZX jZ¼0¼�lghcoshsgnðuÞþOðe3Þ:
Therefore, neglecting terms in e2 in Eq. (3.15), we obtain together with Eq. (2.74) the system

ot

h

cos h
� h2

2
oxh

� �
þ ox

h2

2
cos2 ho2

txb� h sin hotbþ hu

� �
¼ � qr

qm

otb; ð3:16Þ

1

cos h
� h

2
oxh

� �
otuþ

h

2
cos2 ho2

txb� sin hotb

� �
oxuþ ox

u2

2
þ gh cos hþ gb

� �
¼ �glsgnðuÞ:

ð3:17Þ

A more precise argument is indeed to say that taking into account the conditions on PZX ; a possible

ansatz is

PZX ¼ �lsgnðuÞg cos hðh� ZÞ þ Oðe3Þ: ð3:18Þ

Then we obtain

oZ

JPZX

cos h

� �
¼ glsgnðuÞ þ Oðe2Þ: ð3:19Þ

Substituting in Eq. (2.60) gives Eq. (3.17), up to terms of order e2.

3.4 Simplified model

The model (3.8)–(3.9) is a bit complicated, thus it is tempting to try to simplify it, by dropping small

terms. However, doing this, we break the nice properties stated in Theorem 3.1. However, it is

worthwhile to state the result. The simplified system is defined as
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ot

h

cos h

� �
þ ox �h sin hotbþ huð Þ ¼ � qr

qm

otb; ð3:20Þ

1

cos h
otuþ � sin hotbð Þoxuþ ox

u2

2
þ gh cos hþ gb

� �
¼ 0: ð3:21Þ

The corresponding conservative momentum equation is

ot

h

cos h
u

� �
þ ox �h sin hotbþ huð Þuþ g

h2

2
cos h

� �

¼ �g sin h
h

cos h
� h2

2
oxh

� �
� qr

qm

uotb; ð3:22Þ

obtained by multiplying Eq. (3.20) by u, Eq. (3.21) by h and adding the results.

Theorem 3.2 The system (3.20)–(3.21) has the following properties.

(i) It admits an energy dissipation inequality

ot

h

cos h
u2

2
þ gb

� �
þ g

h2 þ qr

qm
b2

2

 !

þ ox

u2

2
þ gh cos hþ gb

� �
huþ �h sin hotbð Þ u2

2
þ gb

� �
� g

h2

2
sin h cos hotb

� �

� � u2

2

qr

qm

otb�
qr

qm

� 1

� �
gh cos hotbþ

1

2
gh2 oxhotb� oxbothð Þ; ð3:23Þ

which is an identity for smooth solutions,

(ii) it has the lake-at-rest solution u = 0, h cosh ? b = Cst, whenever qtb: 0,

(iii) under assumptions (3.1) and (3.3), it provides in the limit e? 0 an approximation up to error

terms of order e3 in (3.20) and of order e2 in (3.21), with constant velocity profile in the normal

variable, to the free surface incompressible Euler equations (2.54), (2.60), (2.62), (2.72), (2.10)

and (2.74),

(iv) for constant slope (qth = 0, qxh = 0), system (3.20)–(3.21) gives an exact solution to the free

surface incompressible Euler system with hydrostatic assumption (2.54), (2.60), (2.77), (2.72),

(2.10) and (2.74).

Proof. Property (iii) follows from the fact that we only dropped terms of order e3 in Eq. (3.20) and

e2 in Eq. (3.21) as compared to Eqs. (3.8)–(3.9). Property (iv) is also obvious since there is no

difference between Eqs. (3.20)–(3.21) and (3.8)–(3.9) when qth = 0, qxh = 0. For (ii), we observe

that qtb = 0 implies that qth = 0. Thus, differentiating the identity h cosh ? b = Cst with respect

to time yields qt h = 0. We deduce obviously that (3.20)–(3.21) hold.

In order to prove (i), one multiplies Eq. (3.20) by u
2/2 ? ghcosh ? gb, Eq. (3.21) by hu and

adds the results. This gives
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gh cos hot

h

cos h

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�1Þ

þot

h

cos h
u2

2
þ qr

qm

gb2

2

� �
þ gbot

h

cos h

� �
þ gh cos hotb

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�2Þ

þ ðu
2

2
þ gbÞox �h sin hotbð Þ � h sin hotboxð

u2

2
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�3Þ

þ gh cos hox �h sin hotbð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R1

þ ox

u2

2
þ gh cos hþ gb

� �
hu

� �
¼ �u2

2

qr

qm

otb�
qr

qm

� 1

� �
gh cos hotb: ð3:24Þ

Then, according to Eqs. (2.1) and (2.5), one sees that

ð�1Þ ¼ ot

gh2

2

� �
þ gh2 sin h cos ho2

txb
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R2

; ð�2Þ ¼ ot gb
h

cos h

� �
�gh sin hoxbotb|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ð�4Þ

: ð3:25Þ

Moreover, we observe that

ð�3Þ þ ð�4Þ ¼ ox �h sin h
u2

2
þ gb

� �
otb

� �
; ð3:26Þ

while a computation gives

R1þ R2 ¼ ox �g
h2

2
sin h cos hotb

� �
þ 1

2
gh2ðsin h cos ho2

txb� oxhotbÞ: ð3:27Þ

Putting the results together, we obtain Eq. (3.23). (

We remark that compared to the original model (3.8)–(3.9), the simplified model (3.20)–(3.21) has

weaker properties, (i) because there is a right-hand side proportional to h
2 (but of order e3), and (ii)

because that property holds only when qtb = 0. We can also observe that keeping the terms

involving @sinh qtb in Eqs. (3.20) and (3.21) is essential in order to maintain an accuracy of second

order.

3.5 Hyperbolicity

In this section we study the hyperbolicity of the simplified model (3.20)–(3.21). We show that it is a

hyperbolic system with eigenvalues depending of the exchange velocity between the static and the

moving layers qtb.

We choose the conservative variables

H ¼ h

cos h
; Q ¼ hu

cos h
; ð3:28Þ

and assume that b(t, x) is a given smooth function. Then, according to Eq. (3.22), the system can be

written as a conservative system with source term

otV þ oxðFðt;x;VÞÞ ¼ Gðt;x;VÞ; ð3:29Þ

with V ¼ H

Q

� �
and

Fðt;x;VÞ ¼ �H sin h cos hotbþ Q cos h
Q2

H
cos h� Q sin h cos hotbþ 1

2
gH2 cos3 h

� �
; ð3:30Þ
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Gðt;x;VÞ ¼
� qr

qm
otb

�gH sin hþ g H2

2
sin h cos2 hoxh� qr

qm

Q

H
otb

 !

: ð3:31Þ

We can compute the eigenvalues of the jacobian matrix qVF. They are given by

k� ¼ cos h u� sin hotb� cos h
ffiffiffiffiffiffiffi
gH

p� �
: ð3:32Þ

The corresponding eigenvectors are

X� ¼ 1
u� cos h

ffiffiffiffiffiffiffi
gH
p

� �
: ð3:33Þ

If we compare this result with the classical Saint-Venant system, we see that the difference in the

expression of the eigenvalues comes from the velocity u @ sinh qt b. We observe that the term sinh
qt b appears because qt b is the vertical exchange velocity between the moving and the static layers

(see [9]). Indeed, sinh qtb is the projection of this velocity in the same direction as u, i.e., parallel to

the interface.

3.6 Comparison with other models

In this section we compare the proposed simplified model (3.20)–(3.21) with other well-known

previously proposed models. We observe that some models have a non-consistent energy equation.

At first, the model (3.20)–(3.21) deserves a comment concerning the energy balance. Indeed, one

could think of a modified model

ot

h

cos h

� �
þ ox �h sin hotbþ huð Þ ¼ � qr

qm

otb; ð3:34Þ

1

cos h
otu� sin hotboxuþ ox

u2

2
þ gh cos hþ gb

� �
¼ ð1� dÞ qr

qm

u

h
otb; ð3:35Þ

for some parameter d (d = 1 for the original model). Then this d-model has the associated energy

equation

ot

h

cos h
u2

2
þ gb

� �
þ g

h2 þ qr

qm
b2

2

 !

þ ox

u2

2
þ gh cos hþ gb

� �
huþ �h sin hotbð Þ u2

2
þ gb

� �
� g

h2

2
sin h cos hotb

� �

�ð1
2
� dÞ qr

qm

u2otb�
qr

qm

� 1

� �
gh cos hotbþ

1

2
gh2 oxhotb� oxbothð Þ:

ð3:36Þ

If we use the variables H, Q as in Sect. 3.5, the only difference between these models is the last term

of the second component of G: the term � qr

qm
uotb is replaced by �d qr

qm
uotb: Thus the d-model can

be written as Eq. (3.29), where F is defined by Eq. (3.30) and

Gðt;x;VÞ ¼
�otb

�gH sin hþ g H2

2
sin h cos2 hoxh� d qr

qm

Q
H

otb

� �
: ð3:37Þ

The particular value d = 1/2 has the property to give a conservative energy equation (3.36), up to

third-order terms, independently of the choice of b(t, x). We could think that this model comes from

a profile of U(t, x, Z) that vanishes at Z = 0, making the corresponding term on the right-hand side
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of (2.80) vanish. However, we have not been able to find such a profile, solution to (2.60). Therefore,

for now, only the model d = 1 is justified.

a. Differences with other models

At first we observe that the most usual way to write erosive avalanche models is in the t, X, Z

variables (see for example [9], [10]). Moreover, it is generally assumed that the axis along which the

X variable is defined corresponds to a fixed constant angle over all the domain. Here we include the

case where h can vary in time and space. Other differences are the following. To our knowledge, the

terms involving sinh qtb in (3.20) and (3.21) do not appear in any other model. This has at least two

consequences:

(i) If a model does not take into account these terms, then it has equations valid only up to first-

order, but not to second-order terms in e (or one has to assume that otb ¼ Oðe2ÞÞ:
(ii) The eigenvalues of the Jacobian matrix are only cos hðu� cos h

ffiffiffiffiffiffiffi
gH
p

Þ; and do not depend on

the exchange velocity between the moving and the static layers qtb.

Concerning the value of d, in [9], Gray deduces a model which corresponds to d = 1, as in our

model. However, in most other papers related to erosion in avalanches, the authors neglect the

term in Q
H

otb in Eq. (3.37), leading to the case d = 0. We have not found in the literature any

model corresponding to d = 1/2. In order to understand the influence of the value of d, we can

focus on the associated energy equation. We observe that for d = 0 or d = 1 the right-hand

side ð1
2
� dÞ qr

qm
u2otb in Eq. (3.36) has either positive or negative sign according to the sign of

qtb. Intuitively, when qtb > 0 for example, part of the fluid that was moving comes to rest. Thus

the effect of qtb > 0 is to remove some kinetic energy, leading to a negative right-hand side in

the energy equation. This indicates that the value d = 0 is not compatible with reasonable

energy considerations. Another argument is to observe that since the model is related to

integrals of the solution to the Euler system, the associated energy equation must be consistent

with the integrated energy equation of the Euler system. Comparing the right-hand side

� UðZ¼0Þ2
2

qr

qm
otb in the integrated energy equation (2.80) to ð1

2
� dÞ qr

qm
u2otb; we conclude that

only the value d = 1 is consistent if U(Z = 0) = u. With d = 0 we get 1
2

qr

qm
u2otb; which

cannot be obtained with any definition of U (Z = 0) in Eq. (2.80).

4 Models with small velocity and equation for b

In this section we show how it is possible to relate our model to previously proposed systems that are

closed with an equation for b. These models assume a small velocity.

4.1 Linear velocity profile

In [2], [8] and [10], the authors obtain an equation that describes the evolution of b in the case of a

linear profile of the velocity, Uðt;x;ZÞ ¼ U1ðt;xÞZ þOðe2Þ: Since U1 is assumed to be bounded,

this implies that U ¼ OðeÞ: The linearity assumption is related to the assumption U(Z = 0) = 0,

which seems reasonable when friction occurs at the interface (but not satisfactory according to

K . Hutter). The model with friction, as described in Sect. 3.3, is considered here. The profile of U is

introduced in Eq. (2.60) and the terms corresponding to different powers of Z are put together. To
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close the equation, a parametrization of the value of oZðPZX= cos hÞ is needed. Let us consider a

linear or parabolic profile for the shear stress

PZX ¼ Cþ AZ þ B
Z2

2
þOðe3Þ: ð4:1Þ

Then, substituting Eq. (4.1) into (2.60) and grouping together the terms that are constant and linear in

Z, respectively, we deduce the following two equations:

oxðgh cos hþ gbÞ � U1otb ¼
�A

cos h
þOðe2Þ; ð4:2Þ

1

cos h
otU1 � sin hotboxU1 ¼

�B

cos h
þOðeÞ: ð4:3Þ

If we consider a linear profile of PZX (i.e., B = 0), the boundary conditions (3.14) give

C ¼ �lsgnðUÞðPZZÞjZ¼0
; A ¼

lsgnðUÞðPZZÞjZ¼0

h
: ð4:4Þ

Moreover, recalling that oxh ¼ OðeÞ and otb ¼ Oð�Þ and neglecting second-order terms (if U1 is

bounded), we obtain the system

oxðgh cos hþ gbÞ � U1otb ¼ �glsgnðU1Þ; ð4:5Þ
otU1 ¼ 0: ð4:6Þ

It is completed by the mass conservation equation obtained from Eq. (2.74),

ot

h

cos h
� h2

2
oxh

� �
þ ox

h2

2
cos2 ho2

txb� h sin hotbþ
1

2
h2U1

� �
¼ � qr

qm

otb: ð4:7Þ

We observe that the system (4.5)–(4.7) has the lake at rest solution

U1 ¼ 0; bþ h cos h ¼ Cst; ð4:8Þ

for arbitrary b(t, x) if qr = qm, or for qt b = 0 otherwise.

4.2 Khakhar’s model

Khakhar et al. in [10] propose an equation for the change of b with time. In their model the

effect of pressure gradient is neglected. Thus, in order to compare theirs with our model, we

neglect first-order terms in Eq. (4.5). Keeping in mind that qxb = tan h and l = tan hs, we

obtain from (4.5)

otb ¼
g

U1
ðtan hþ sgnðU1Þ tan hsÞ: ð4:9Þ

If we consider that 0 B h < p/2 then sgn(U1) ¼ @1 and we obtain

otb ¼
g

U1
ðtan h� tan hsÞ ¼

g sinðh� hsÞ
U1 cos h cos hs

: ð4:10Þ

However, we do not have any expression for U1. Khakhar et al. [10] study this quasi-stationary case,

and they obtain an expression for U1,
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U1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g cos h sinðhm � hsÞ

cd cos hm cos hs

s

: ð4:11Þ

This expression is deduced from the assumptions on the friction term. Following experimental

results, the friction term in the flowing layer is assumed to be the sum of a Bagnold term and a

Coulomb term,

ðPZXÞjZ¼0
¼ �sgnðUÞ cdh

oU

oZ

� �2

þ gh cos h tan hs

 !

; ð4:12Þ

where c 	 1:5 is a parameter of the model, d is the diameter of the particles and hs is the static angle

of repose (for more details see [10]). They identify this expression with the stress of the flowing

particles in the upper layer, which is supposed to be

ðPZXÞjZ¼0
¼ gðhþ dÞ cos h tan hm; ð4:13Þ

where hm, as described by Khakhar et al. in [10], is the ‘‘maximum angle of repose’’. Indeed, tanhs is

the effective coefficient of dynamic friction and tan hm the effective coefficient of static friction.

From Eqs. (4.12) and (4.13), Eq. (4.11) can be deduced.

With the above definition of the velocity profile, Khakhar et al. study the quasi-stationary case,

and deduce the following equation for b:

otb ¼
g

U1
ðtan h� tan hmÞ: ð4:14Þ

If we compare this with Eq. (4.10) obtained for b in our model, hm is replaced by hs. However, we

have only considered a Coulomb friction term. If we consider PZX defined by Eq. (4.12) we also

obtain Eq. (4.14).

4.3 The BCRE model

In [2] the Saint-Venant model is compared with the BCRE phenomenological model. The BCRE

model reflects the exchange of mass and the advection of particles in the upper layer. As described in

the introduction, the BCRE model reads

ot
h

cos h

� �
þ oxðhVdÞ ¼ Eðt;xÞ;

otb ¼ �Eðt;xÞ;

�
ð4:15Þ

with E the mass exchange between the flowing and static layer. In this section we consider h to be

almost constant, and we assume that qm = qr. By Vd we denote the velocity of grains in the upper

layer (see [2], [6], [7]). Owing to Eq. (1.4), the BCRE model can be written as

otb ¼ �Vupðh� hnÞ;
ot

h
cos h

� �
þ oxðhVdÞ ¼ Vupðh� hnÞ;

�
ð4:16Þ

where Vupðh� hnÞ is the exchange term between the static and the mobile layers. By hn one

denotes a neutral angle, which separates the erosion and deposition profile. The factor Vup has the

dimension of a velocity and is a parameter of the model. For more details see [2], [6], [7]. In [2],

Aradian et al. relate this model to the Saint-Venant model to derive the parameters Vup and Vd

involved in the BCRE model. Nevertheless, as usual, they neglect the term Ujbotb in the

momentum equation. We show here that including this term can change the determination of the

parameter Vup by a factor 3=2.
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Let us start as in the derivation of the friction proposed in Sect. 3.3, but instead of a constant

velocity profile, we rather take, as in [2],

U ¼ �C0Z; ð4:17Þ

where C0 ¼
ffiffiffiffiffiffiffiffi
g=d

p
and d is the grain diameter. Thus U < 0 which is coherent with the situation,

when 0 B h < p=2. Observe that Eq. (4.17) gives qtU = 0, qxU ¼ 0. Then, since

u � U ¼ �C0h=2; averaging (2.60) between Z ¼ 0 and Z ¼ h gives

ox gh cos hþ gbð Þ þ C0otb ¼
PZX jZ¼0

h cos h
þ ð1� dÞu

h
otbþOðe2Þ; ð4:18Þ

with

PZX jZ¼0 ¼ �l sgnðUÞgh cos h: ð4:19Þ

In the above, d is a parameter, formally inserted to identify Eq. (4.18) with (3.35). This has to be

completed by the mass conservation equation obtained from Eq. (2.74),

ot

h

cos h
� h2

2
oxh

� �
þ ox

h2

2
cos2 ho2

txb� h sin h otb� C0
h2

2

� �
¼ �otb: ð4:20Þ

Neglecting second-order terms gives

ot

h

cos h

� �
þ ox �C0

h2

2

� �
¼ �otbþOðe2Þ: ð4:21Þ

Combining Eqs. (4.21) and (4.18) where we neglect the term qx(ghcosh), we obtain

ot
h

cos h

� �
þ ox �C0

h2

2

� �
¼ g

C0 cos hð3�dÞ=2
ðsin h� l cos hÞ;

otb ¼ �g

C0 cos hð3�dÞ=2
ðsin h� l cos hÞ:

(

ð4:22Þ

If l = tanhs then

sin h� l cos h ¼ 1

cos hs

sinðh� hsÞ: ð4:23Þ

Then, if h & hs the following system is obtained,

ot
h

cos h

� �
þ ox �C0

h2

2

� �
¼ g

C0 cos2 hsð3� dÞ=2
ðh� hsÞ;

otb ¼
�g

C0 cos2 hsð3� dÞ=2
ðh� hsÞ:

8
><

>:
ð4:24Þ

If we compare Eqs. (4.16) and (4.24), following [2], we obtain the identifications

Vd ¼ �C0
h

2
; hn ¼ hs; Vup ¼

g

C0 cos2 hsð3� dÞ=2
: ð4:25Þ

We observe that since u ¼ @C0h=2, we have Vd ¼ u: Finally, we observe that Vup; the uphill

velocity of exchange from the static to the mobile layers, is modified by the choice of d. In fact, one

has ðVupÞd¼1 ¼ 3
2
ðVupÞd¼0:
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