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a b s t r a c t

Estimating the energy lost in elastic waves during an impact is an important problem in
seismology and in industry. We propose three complementary methods to estimate the
elastic energy radiated by bead impacts on thin plates and thick blocks from the generated
vibration. The first two methods are based on the direct wave front and are shown to be

for laboratory experiments of impacts and are shown to give the same results, with error
bars of 40 percent and 300 percent for impacts on a smooth plate and on a rough block,
respectively. We show that these methods are relevant to establish the energy budget of
an impact. On plates of glass and PMMA, the radiated elastic energy increases from 2
percent to almost 100 percent of the total energy lost as the bead diameter approaches the
plate thickness. The rest of the lost energy is dissipated by viscoelasticity. For beads larger
than the plate thickness, plastic deformation occurs and reduces the amount of energy
radiated in the form of elastic waves. On a concrete block, the energy dissipation during
the impact is principally inelastic because only 0.2–2 percent of the energy lost by the
bead is transported by elastic waves. The radiated elastic energy estimated with the
presented methods is quantitatively validated by Hertz's model of elastic impact.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The quantification of the energy emitted by a source in the form of elastic waves is a common problem in various fields
such as vibroacoustics or shielding. In seismology, the problemwas confronted long ago [1] and many approaches have since
been developed to estimate the energy of natural sources such as earthquakes (see [2–5]), tremors [6], landslides and
rockfalls (e.g. [7–11]). In the literature, the power spectral density (PSD) of the emitted signal is often measured to quantify
the relative energy of different acoustic sources located at the same distance from the sensor and to compare their fre-
quency content. For example, the temporal evolution of the PSD can provide information on river discharge and on the grain
size of the bed load (e.g. [12]). The PSD can also be used to characterize crack formation in brittle [13,14] or granular
materials (see [15], for review) and other crackling or crumpling processes (e.g. [16,17]). Finally, acoustic measurements can
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Nomenclature

B bending stiffness (J)
cP, cS, cR longitudinal, shear and Rayleigh wave speeds

(m s�1)
e coefficient of restitution (–)
etot, ec, epbulk densities of total, kinetic and potential

energies (J m�3)
~etot, ~ec, ~ep time Fourier transform of etot, ec, ep,

respectively (J m�2)
E Young's modulus (Pa)
Ec, ΔEc energy of the impact and energy lost during

the impact (J)
Etot(t) total elastic energy radiated within the struc-

ture at time t (J)
f frequency (s�1)
~G
P
zz, ~G

S
zz, ~G

R
zz vertical Green's functions associated with
compressional, shear and Rayleigh waves
(kg�1 s2)

h plate thickness (m)
k wavenumber (m�1)
L, S, V length (m), surface area (m2) and volume (m3)
m bead mass (kg)
r, θ, z coordinates in the cylindrical reference

frame (m)
Sij strain tensor (–)
t time (s)
Tij stress tensor (Pa)

ui normalized vector of direction i
ui, vi, ai surface displacement, speed and acceleration

in the direction ui
! (m; m s�1; m s�2)

~Ui, ~V i, ~Ai time Fourier transform of ui, vi and ai,
respectively (m s; m; m s�1)

vg, vϕ group and phase velocities (m s�1)
Vz speed of a bead before impact (m s�1)
Wel, Wel

th
radiated energy and theoretical radiated
energy (J)

x, y, z coordinates in the Cartesian reference
frame (m)

β, ξ parameters involved in energy calculations
γ attenuation coefficient of energy with distance

(m�1)
λ, μ Lamé coefficients of compression and

shear (Pa)
ν Poisson's coefficient (–)
πP, πS, πR energy partitions among P, SV and Rayleigh

waves (–)
πsurfP , πsurfS , πsurfR surface energy partitions among com-

pressional, shear and Rayleigh waves (–)
~Π energy density flux (J m�1 s)
ρ density (kg m3)
τ characteristic time of energy attenuation (s)
χ, η viscoelastic coefficients of compression and

shear (Pa s)
ω angular frequency (s�1)
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be useful in industry for particle sizing in powder transport and in particle streams (e.g. [18,19]). However, the PSD does not
provide an absolute estimate of the elastic energy radiated by the source because it depends on the distance of
measurement.

There are three main approaches to determine the absolute radiated elastic energy from acoustic emissions. The first
method consists in computing the energy flux crossing a surface surrounding the source. The integration of the energy flux
over this surface gives the radiated power. This technique is applied in seismology to estimate the energy radiated in elastic
waves during earthquakes (e.g. [5,20]) and rockfalls (e.g. [8–10]).

The second technique to deduce the radiated elastic energy is based on the estimation of the time dependence of the
source force. Miller and Pursey [21] and Goyder and White [22] thus estimated the power radiated in an elastic half-space
and in an infinite plate, respectively, by a monochromatic harmonic force. In most cases, the force profile is generally
unknown but it can be retrieved from the deconvolution of the displacement field with Green's function tensor [3].

These two first methods can however be performed only when the emitted wave front is not mixed with its reflections
off the boundaries of the elastic solid. If multiple side reflections occur, the transported energy becomes homogeneously
distributed within the elastic solid and decreases exponentially with time due to viscoelastic dissipation. This situation is
commonly referred to as a diffuse field in the literature (see [23–25]). A third energy estimation method, called the diffuse
method hereafter, thus consists in extrapolating the radiated energy at the instant of the source from the exponential
decrease of the signal coda (see e.g. [25,26], and references therein).

The energy flux, deconvolution and diffuse field methods to estimate the energy lost in elastic waves are used separately
by different communities and are based on different assumptions. The first two methods require a sufficiently large elastic
solid so that the direct wave front can be clearly distinguished from its reflections off the lateral sides of the elastic solid. On
the contrary, with the diffuse method, the elastic solid must be small enough so that multiple side reflections occur. To our
knowledge, no study has ever compared these three methods in cases where all three can be applied.

The complex seismic signals generated by rockfalls, bed load transport in rivers and granular flows are partially com-
posed of waves generated by the collisions of individual impactors (gravels, boulders, etc.). Therefore, if we hope to
understand these signals, we must first understand the energy budget of individual impacts. The energy that is not radiated
in elastic waves during an impact is lost by plastic deformation i.e., not reversible, of the impactor or of the surface [27], by
local viscoelastic dissipation around the contact [28] and by conversion into other degrees of freedom of the impactor's
motion, such as rotation and other displacement modes. Because of the significant differences between the conditions of
each impact on the field, it is however not clear how the energy budget of the impactor depends on its size and speed.
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In this paper, we propose to use the three methods introduced above to estimate the elastic energy radiated during an
individual impact. Steel beads of various diameters are dropped from different heights on two glass and PMMA plates and
on a concrete block and the vibration emitted by the impacts is measured with piezoelectric accelerometers. Our main
objective is to quantify (i) the differences between the energy estimates and (ii) the errors made using each of the methods.
Thin plates are often used in laboratory experiments because they are easier to manipulate than thick blocks. In contrast, the
problem of waves generation in thick blocks is that encountered on the field. We will show that the methods to estimate the
radiated elastic energy in these two geometries are different because different waves are generated. An advantage of the
laboratory experiments is that the total energy lost by a rebounding bead can be easily measured from the ratio of the bead
velocity after rebound over the approach velocity, i.e. the coefficient of restitution e (e.g. [28]). Therefore, we can establish
the energy budget of the impacts and observe how the percentages of energy radiated in elastic waves and dissipated by
inelastic processes vary for bead impacts of different diameters and impact speeds on the thin plates and thick block
investigated.

Section 2 of the paper presents the three methods to derive the energy lost in elastic waves during an impact on thin
plates and thick blocks from the normal surface vibration. In Section 3, the three methods are compared for laboratory
experiments of beads impacts. We also quantify the proportion of the total energy radiated in elastic waves and dissipated
in inelastic processes. In Section 4, we discuss the conditions of applicability of the presented methods. Finally, we evaluate
the ability of the analytical model of elastic impact of Hertz [29] (see [30]) to predict the radiated elastic energy and the ratio
of this energy over the initial energy of the impactor when inelastic dissipation occurs.
2. Estimation of the radiated elastic energy

2.1. Thin plates

A force FðtÞ ¼ �FzðtÞuz is applied normally at a given position ðx; y;0Þ on the surface (z¼0) of a homogeneous and
isotropic thin plate (Fig. 1). The expression “thin plate” means that the impact duration is longer than the two-way travel
time of the compressional wave in the plate thickness. The emitted elastic waves propagate radially from the impact
location (direction ur , Fig. 1). We consider that the principal mode excited in plates is the fundamental mode A0 of Lamb, for
which the direction of vibration is mainly normal to the plate surface (i.e. direction uz, Fig. 1) (e.g. [31]). This assumption is
verified experimentally in Appendix A. For all the methods tested below, it is therefore assumed that the vibration is only
along direction uz (Fig. 1).

The mode A0 of Lamb is highly dispersive at low frequencies, when the wavelength is much greater than the plate
thickness h, i.e. within the limit kh⪡1 where k is the wavenumber. Indeed, in this regime the mode A0 behaves as a flexural
wave for which the relation between the angular frequency ω and the wavenumber k, i.e. the dispersion relation is [31]:

ω¼ k2
ffiffiffiffiffiffi
B
ρh

s
; (1)

where ρ is the plate density. The bending stiffness B is defined by B¼ h3E=ð12ð1�ν2ÞÞ, where E and ν are Young's modulus
and Poisson's ratio of the plate material, respectively. The propagation speed of the energy, i.e. the group velocity vg ¼ ∂ω=∂k,
therefore also depends on the wavenumber k (i.e. on the angular frequency ω):

vg ωð Þ ¼ 2k

ffiffiffiffiffiffi
B
ρh

s
: (2)

2.1.1. Energy flux method
The first method to estimate the radiated elastic energy is based on energy flux conservation on the first wave arrival.

The energy density flux ~Π ðωÞ at frequency ω is by definition the bulk density of the total energy ~etotðωÞ ¼ ~ecðωÞþ ~epðωÞ,
integrated over plate thickness h, multiplied by the energy speed. But for elastic waves propagating in a homogeneous guide
Fig. 1. Sketch of the thin plate of thickness h, characterized by Cartesian coordinates x, y, z. z¼0 corresponds to the plate free surface. When a normal
impact force �Fzuz excites the plate at the origin ð0;0;0Þ, Lamb waves are emitted radially and generate a displacement field u� uzðr; tÞuz . S is a closed
section of the plate, surrounding the impact position and corresponds here to a cylinder of radius r and height equal to the plate thickness h.
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(for example a plate) such as the A0 mode, the energy speed is equal to the group velocity vgðωÞ [31], so that

~Π ðωÞ ¼̂ vgðωÞ
Z h=2

�h=2
~etotðωÞ dz: (3)

Moreover, for guided waves the bulk densities of kinetic and potential energies ~ecðωÞ and ~epðωÞ are equal (e.g. [31]):

~ec ωð Þ ¼ ~ep ωð Þ ¼ 1
2 ρ

~V z r;ωð Þj2;
��� (4)

where ~V zðr;ωÞ is the time Fourier transform of the surface vibration speed vzðr; tÞ.
By definition, the elastic energy Wel radiated within the plate is given by (e.g. [31])

Wel ¼̂
Z þ1

�1
Fzðr0; tÞvzðr0; tÞ dt; (5)

where r0 is the position of force application. According to Parceval's theorem, this expression is equivalent to the integral
over the frequencies ω of the radiated power, which is the flux ~Π ðωÞ integrated over a line surrounding the impact:

Wel ¼
1
2π

Z þ1

�1

I
~Π ðωÞr dθ

� �
dω (6)

Wel ¼
1
π

Z þ1

0
vgðωÞ∬Sρj ~V zðr;ωÞj2r dθ dz
h i

dω: (7)

As waves propagate radially from the source, one can integrate the surface element r dθ dz over a cylinder of height equal to
the plate thickness h and of radius equal to the distance r between the impact and the position of measurement (Fig. 1). In
Eq. (7), the distance r compensates the geometrical attenuation in 1=r1=2 of the vibration amplitude ~V zðr;ωÞ of the guided
wave. In addition, other dissipation is due to the intrinsic viscosity of the plate. This dissipation can be modeled by
exp �γðωÞrð Þ, where γ is the coefficient representing the frequency-dependent attenuation of energy with distance r in the
plate (see Appendix B):

Wel ¼
Z þ1

0
2rhρvgðωÞj ~V zðr;ωÞj2 exp γðωÞrð Þ dω: (8)

Note that if we consider a constant group velocity vg, we obtain an expression for Wel similar to that used by Hibert et al.
[10] to estimate the energy of surface waves generated by rockfalls in a homogeneous surface layer of depth h in Dolomieu
crater, Réunion Island.

2.1.2. Deconvolution method
As opposed to the energy flux method, here we compute the radiated elastic energyWel using Eq. (5) from the estimation

of the time dependence of the force of impact. Indeed, the energy Wel transferred into the plate at the point of application of
a normal force Fzðr0; tÞ is the time integral of the radiated power, which is given by Goyder and White [22]:

F r0; tð Þ � v r0; tð Þ ¼ Fzðr0; tÞ2
8

ffiffiffiffiffiffiffiffi
Bρh

p : (9)

Then, according to Parceval's theorem,

Wel ¼
1
π

Z þ1

0

j ~F zðωÞj2
8

ffiffiffiffiffiffiffiffi
Bρh

p dω: (10)

We can deduce the normal force ~F zðωÞ in time Fourier domain from the expression of the first arrival of the vertical
vibration speed ~V zðr;ωÞ as a function of the plate Green's function ~Gzzðr;ωÞ [3]:

~V zðr;ωÞ ¼ iω ~Gzzðr;ωÞ ~F zðωÞ; (11)

where the modulus of the plate Green's function can be approximated by, for kr⪢1 (e.g. [32])

�� ~Gzz r;ωð Þ
��¼ 1

8Bk2

ffiffiffiffiffiffiffiffi
2
πkr

r
(12)

Finally, the radiated elastic energy Wel is given by

Wel ¼
1

8π
ffiffiffiffiffiffiffiffi
Bρh

p Z þ1

0
ω�2 j ~V zðr;ωÞj2

j ~Gzzðr;ωÞj2
exp γðωÞrð Þ dω: (13)

where expð�γðωÞrÞ models the viscoelastic dissipation.
Interestingly, if we replace Green's function j ~Gzzðr;ωÞj by its expression [Eq. (12)], we retrieve the same expression of Wel

as for the energy flux method under the condition that ω¼ k2
ffiffiffiffiffiffiffiffiffiffiffi
B=ρh

p
, which is valid for kh⪡1. Therefore, the two methods

are equivalent at low frequencies ω⪡
ffiffiffiffiffiffiffiffiffiffiffi
B=ρh

p
=h2.
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Fig. 2. (a) Fourier transform j ~F ðωÞj of the ideal Hertz's force of elastic impact of a 4-mm diameter steel sphere on PMMA. (b) Green's function j ~Gzzðr;ωÞj [Eq.
(12)] at r¼10 cm multiplied by ω2. (c) Synthetic amplitude spectrum j ~Azðr;ωÞj obtained by the product of the force in (a) and the function in (b).
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Note that the operation of dividing the amplitude of the vibration j ~V zðr;ωÞj by Green's function j ~Gzzðr;ωÞj is not trivial
because the inverse Green's function diverges when k (or ω) tends towards 0 (see e.g. [33,34]). Therefore, we cannot
deconvolve the signal and estimate the energy Wel below a cutoff frequency. In practice, we cut all frequencies below 3 kHz
in the amplitude spectrum j ~V zðr;ωÞj before dividing it by Green's function. Using a synthetic signal obtained by the con-
volution of the Hertz force for the elastic impact of bead diameters smaller than 20 mmwith Green's function in Eq. (12), we
estimate that the energy Wel of the signal after the cutoff at 3 kHz is less than 5 percent smaller than the exact radiated
elastic energy (Fig. 2).

2.1.3. Diffuse method
This technique is derived from classical methods used in room acoustics (see e.g. [25], and references therein). When the

emitted wave is reflected off the boundaries many times, the elastic field becomes diffuse, i.e. homogeneously distributed
over the plate and equipartitioned. When the field is equipartitioned, the potential and kinetic energy are equal. At a given
time t, the average over several periods (noted x) of the total energy Etot(t) within the plate therefore satisfies

EtotðtÞ � ρhSvzðtÞ2 : (14)

where ρ, h and S are respectively the plate density, thickness and surface and vzðtÞ2 is the average of the normal squared
vibration speed vzðr; tÞ2 over several periods. When the field is diffuse, energy losses due to viscoelastic dissipation are
proportional to the total energy within the structure:

dEtotðtÞ
dt

� �EtotðtÞ
τ

; (15)

with τ being the characteristic time of energy dissipation. In a narrow frequency range centered on ω0, this time equals
ðγðω0Þvgðω0ÞÞ�1 (see Appendix B). As a consequence, the energy decreases exponentially with time:

EtotðtÞ � Etotðt0Þ exp �t�t0
τ

� �
; (16)

where t0 is the instant of the impact. The elastic energy radiated in the plate at the instant t0 is therefore

Wel ¼ Etotðt0Þ � ρhSvzðt0Þ2 : (17)

Knowing the instant of impact t0 and the characteristic time τ is sufficient to determine the radiated elastic energy Wel. Note
that vzðt0Þ2 may fluctuate with the position of vibration measurement depending on how the assembly of proper modes of
the plate are excited. Eq. (17) requires that only one mode is excited within the plate because the characteristic time τ of



Fig. 3. Sketch of the thick block configuration, characterized by Cartesian coordinates x, y, z. z¼0 corresponds to the block free surface. When a normal
impact force �Fzuz excites the block normally at the origin ð0;0;0Þ, Rayleigh waves are emitted radially at the surface and generate a displacement field
u¼ urðr; z; tÞurþuzðr; z; tÞuz with an amplitude that decreases exponentially with depth z (see text). S is a closed section of the block, surrounding the
impact position, and corresponds here to a cylinder of radius r and infinite height.

Fig. 4. (a) Hertz's force of elastic impact of a steel bead of diameter d¼ 5 mm dropped from height H¼10 cm on a concrete block is convolved with
(b) Green's functions ~G

P
zz , ~G

S
zz and ~G

R
zz [Eqs. (19), (20) and (21), respectively], multiplied by ω2, at r¼20 cm from the impact to obtain (c) the synthetic

vertical vibration acceleration azðr; tÞ of each mode at the surface. (d) Percentage of the energy transported by compressional, shear and Rayleigh waves at
r¼20 cm from the impact as a function of frequency f. (e) Percentage πRsurf ðrÞ of Rayleigh waves in the surface vibration as a function of the distance r from
the impact for (e) a fall height H¼10 cm and different bead diameters d and (f) for a bead diameter of d¼ 5 mm and fall heights H¼5 cm and H¼50 cm.
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energy attenuation depends on the mode. Therefore, we assume that no mode conversion occurs off the plate boundaries
between the normally vibrating mode A0 and transversal horizontal (TH) or longitudinal (S0) modes. This hypothesis is valid
provided that the plate boundaries are straight and smooth (e.g. [31]).
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2.2. Thick blocks

A force FðtÞ ¼ �Fzuz is applied normally at a given position ðx; y;0Þ over the surface (z¼0) of a homogeneous and iso-
tropic thick block (Fig. 3). The expression “thick block” means that the duration of impact is shorter than the two-way travel
time of the compressional wave from the closest side of the block.

The problem of wave generation in a semi-infinite solid is commonly referred as Lamb's problem [1]. It has been treated
many times for various sources below the surface (e.g. [1,3,35]) and at the surface (e.g. [1,21,35,36]). The elastic energy Wel

initially input by a normal surface force within blocks is distributed among three different modes: compressional wave P,
shear vertical wave SV and surface Rayleigh waves. Sánchez-Sesma et al. [37] give the partitions πP, πS and πR of energy
radiated in P, SV and Rayleigh waves respectively, as a function of the Poisson ratio ν. For a concrete block with ν¼ 0:4, the
energy partition is πR � 61 percent in Rayleigh waves, πS � 35 percent in SV waves and only πP � 4 percent in P waves.

The vibration propagating at the surface of the block contains Rayleigh waves but also compressional and shear waves as
shown by the expression of Green's function ~Gzz owing to a normal surface force (Appendix C):

~Gzz ¼ ~G
P
zzþ ~G

S
zzþ ~G

R
zz (18)

where ~G
P
zz, ~G

S
zz and ~G

R
zz are the contributions of each mode:

~G
P
zz r;ωð Þ � � i

μ
AP

k1
ðk1rÞ2

exp � iωr=cP
� 	

; (19)

~G
S
zz r;ωð Þ � � i

μ
AS

k1
ðk1rÞ2

exp � iωr=cS
� 	

; (20)

~G
R
zz r;ωð Þ � � i

μ
ARk1

ffiffiffiffiffiffiffiffiffiffi
2

πk1r

s
exp � i ωr=cR�

π

4


 �
 �
: (21)

In these equations, AP, AS and AR are functions of Poisson's ratio ν (Appendix C), cP, cS and cR are the compressional, shear and
Rayleigh wave speeds, respectively, μ is the Lamé shear modulus and k1 ¼ω=cP is the wavenumber. The expressions of these
Green's functions show that the energy of compressional and shear waves at the surface decreases with frequency f and
distance r as ðfrÞ�4 while the energy of Rayleigh waves varies as f =r because they are guided at the surface. Therefore, the
Rayleigh waves dominate the signal at high frequencies and far from the impact [1,21].

In the following, we apply the energy flux and deconvolution methods on the Rayleigh waves to deduce the absolute
radiated elastic energy Wel. Consequently, we need to determine the percentage πsurfR ðrÞ of Rayleigh waves in the energy at
the position r from the impact. To that end, we compute the impact force from Hertz's elastic model (e.g. [30]) (Fig. 4a) and
convolve it with Green's functions ~G

P
zz, ~G

S
zz and ~G

R
zz and the total Green's function at r¼20 cm on concrete (Fig. 4b) to obtain

the synthetic vibration acceleration azðr; tÞ associated with each mode (Fig. 4c). The compressional wave arrives clearly
before the other modes. However, shear and Rayleigh waves arrive roughly at the same time and are mixed together. The
total vibration acceleration azðr; tÞ is very similar to that of the Rayleigh waves with the exception of the small wavelet
corresponding to the compressional wave. Because shear and Rayleigh waves are out of phase, the maximum amplitude of
the total vibration acceleration is 12 percent lower than that of the Rayleigh waves only and its squared integral is 18
percent lower.

The contribution of each mode n to the signal energy as a function of the frequency f is therefore simply
j ~An

z ðr; f Þj2=
P

ij ~A
i
zðr; f Þj2, where j ~An

z ðr; f Þj is the amplitude spectrum of the signal anz ðr; tÞ associated with the nth mode (Fig. 4d).
Shear waves dominate the signal at low frequencies up to about f ¼ 7000 Hz, where Rayleigh waves become overriding. The
percentage of compressional waves is much smaller (o10 percent) and decreases with frequency. For frequencies greater
than 30 kHz, the surface vibration contains only Rayleigh waves. The integration of these energy partitions over the fre-
quencies f gives the percentages of Rayleigh, compressional and shear waves at the surface (Fig. 4e and f). For example, the
percentages for a 5 mm diameter steel bead dropped from a height of 10 cm at r¼20 cm on a concrete block (ν¼ 0:4) are
respectively πsurfR ¼ 98:5 percent, πsurfP ¼ 0:1 percent and πsurfS ¼ 1:4 percent. Note that, at a given distance from the impact,
the percentage πsurfR of Rayleigh waves decreases as the bead diameter d increases (Fig. 4e) and the height of fall H decreases
(Fig. 4f). For example, at r¼20 cm, Rayleigh waves represent 99.9 percent of the signal for d¼1 mm while only about 71
percent for d¼20 mm (Fig. 4e). In other words, if we assume that the signal contains only Rayleigh waves at r¼20 cm from
the impact, the error introduced in the energy Wel is negligible for a bead of diameter d¼1 mm but is about 30 percent for
d¼20 mm. On the other hand, the influence of the height of fall H on this percentage is negligible over the range of heights
investigated here (5–50 cm, Fig. 4f).

For the last method, based on the diffuse field approximation, the partitions πR and πsurfR ðrÞ indicated above are no longer
valid because the energy is distributed over the three directions of space x, y and z. In this case, we use the horizontal to
vertical amplitude ratio

H
V

� �
diffuse

¼ j ~V xðr;ωÞjþj ~V yðr;ωÞj
j ~V zðr;ωÞj

; (22)



M. Farin et al. / Journal of Sound and Vibration 362 (2016) 176–202 183
calculated by [37] for diffuse fields, to deduce the radiated elastic energy Wel from the normal surface vibration speed
~V zðr;ωÞ, using the same method as for plates (see Section 2.1.3).

2.2.1. Energy flux method
We can estimate the absolute energy radiated in elastic waves Wel from the energy transported by Rayleigh waves.

Because Rayleigh waves propagate radially from the impact location, their energy WR
el is calculated similar to the radiated

elastic energy in plates [Eq. (7)]:

WR
el ¼

1
π

Z þ1

0
ρvg∬Sj ~V

Rðr; z;ωÞj2r dθ dz
h i

dω: (23)

Rayleigh waves have a elliptical motion parallel to the direction of propagation and normal to the surface, their vibration
speed can therefore be written ~V

R ¼ ~V
R
r urþ ~V

R
zuz (Fig. 3) (e.g. [3]). The asymptotic amplitudes far from the source of the

vibration speeds ~V
R
r and ~V

R
z are given as a function of depth z by Miller and Pursey [21]:

�� ~V R
r r; z;ωð Þ

��� ω
~F zðωÞ
μf 00ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
πk1x30
2r

s
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�ξ2

q
eξ�ð2x20�ξ2Þe1

� �
; (24)

�� ~V R
z r; z;ωð Þ

���ω
~F zðωÞ
μf 00ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πk1x0ðx20�1Þ

2r

s
2x20eξ�ð2x20�ξ2Þe1
� 	

; (25)

where μ is the Lamé shear modulus, k1 ¼ω=cP , with angular frequency ω¼ 2πf and compressional wave speed cP,

f 0ðxÞ ¼ ð2x2�ξ2Þ2�4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðx2�ξ2Þ

q
, x0 is the positive root of f0 (Fig. 5), ξ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�νÞ=ð1�2νÞ

p
, ν is Poisson's ratio,

eξ ¼ expð�k1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�ξ2

q
Þ and e1 ¼ expð�k1z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q
Þ. From these equations, we deduce that the total vibration speed ~V

R
is

related to its vertical component ~V
R
z by

�� ~V R
r; z;ωð Þj2 ¼

�� ~V R
z r; z;ωð Þj2 1þ H

V
� �2

R

" #
(26)

with

H
V

� �
R
¼ jVR

r ðr; z;ωÞj
jVR

z ðr; z;ωÞj
¼ x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

x20�1
q 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�ξ2

q
eξ�ð2x20�ξ2Þe1

2x20eξ�ð2x20�ξ2Þe1
: (27)

Eq. (25) also shows that ~V
R
z decreases exponentially with depth z as

~V
R
z r; z;ωð Þ ¼ ~V

R
z r; z¼ 0;ωð Þ2x

2
0eξ�ð2x20�ξ2Þe1

ξ2
: (28)

The integral over the surface S surrounding the impact in Eq. (23) then becomes

∬S
�� ~VR

r; z;ωð Þj2r dθ dz¼ 2πr
j ~VR

z ðr; z¼ 0;ωÞj2
k1

A νð Þ; (29)

where AðνÞ ¼ R þ1
0 1þ H=V� 	2

R

h i
2x20eξ� 2x20�ξ2

� 	
e1

� 	2
=ξ4 dðk1zÞ is a function of Poisson's ratio ν only and equal to 1.6 for our

concrete block with ν¼ 0:4.
Furthermore, as discussed earlier, the squared vibration speed of Rayleigh waves j ~V R

z ðr; z¼ 0;ωÞj2 represents a proportion
πsurfR ðrÞ of the vertical squared vibration speed j ~V zðr; z¼ 0;ωÞj2 that also includes the effects of compressional and shear
Fig. 5. Value of the real solution x0 of f 0ðxÞ ¼ 0 as a function of Poisson's ratio ν.
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waves. Thus, using Eqs. (23), (26) and (29), we express the energy WR of Rayleigh waves as a function of the sole vertical
component of the vibration speed measured at the surface of the block:

WR
el ¼ 2ρrvgcpπsurfR ðrÞAðνÞ

Z þ1

0
j ~V zðr; z¼ 0;ωÞj2ω�1 exp γðωÞrð Þ dω; (30)

where exp γðωÞrð Þ counterbalances the viscoelastic dissipation of energy. In practice, we cut the frequencies below 3 kHz in
the amplitude spectrum j ~V zðr; z¼ 0;ωÞj to avoid the divergence of the term within the integral as ω tends towards 0 (see
Section 2.1.2).

Finally, the energy WR
el of Rayleigh waves represents only a percentage πR of the total elastic energy Wel radiated within

the block thus

Wel ¼
WR

el

πR
¼ 2ρrvgcp

πsurfR ðrÞ
πR

A νð Þ
Z þ1

0
j ~V z r; z¼ 0;ωð Þj2ω�1 exp γðωÞrð Þ dω: (31)
2.2.2. Deconvolution method
Miller and Pursey [21] deduced an analytical expression for the radiated elastic energy Wel from the surface deformation

created by the action of a point force ~F ðωÞ (in the time Fourier domain) on the surface of a semi-infinite solid, using Eq. (5):

Wel ¼
ξ4β

2π2ρc3p

Z þ1

0
ω2j ~F ωð Þj2 dω; (32)

where β is the imaginary part of

Z X

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

f 0ðxÞ
dx; (33)

with f 0ðxÞ ¼ ð2x2�ξ2Þ2�4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðx2�ξ2Þ

q
, ξ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�νÞ=ð1�2νÞ

p
and X a number greater than the real root x0 of f0. The

coefficient β depends only on Poisson's ratio ν (see Appendix D for details on the calculation of β).
In our case, the impact force ~F ðωÞ is vertical and can be obtained from the normal surface vibration speed ~V

R
z ðr; z¼ 0;ωÞ

using Eq. (11) with Green's function of Rayleigh waves [Eq. (21)]. Therefore, the radiated elastic energy Wel is given by

Wel ¼
ξ4βπsurfR ðrÞ
2π2ρc3p

Z þ1

0

j ~V R
z ðr; z¼ 0;ωÞj2

j ~GR
zzðr;ωÞj2

exp γðωÞrð Þ dω (34)

To compute the radiated elastic energy, we perform the same operation as in Section 2.1.2 because the inverse Green's
function 1= ~Gzz also diverges as ω tends toward 0.

If we replace j ~GR
zzðr;ωÞj by its expression in Eq. (21), we obtain

Wel ¼ 2ρrvgcpπsurfR rð Þ βx0
8πA2

R

Z þ1

0
j ~V z r; z¼ 0;ωð Þj2ω�1 exp γðωÞrð Þ dω (35)

Note that the energy Wel calculated with the energy flux method [Eq. (31)] and the energy calculated from the impact force
[Eq. (35)] are proportional to the same integral. The discrepancy between the energies computed with the two methods can
be estimated by the ratio of the coefficients in front of the integral in Eqs. (31) and (35), i.e. βx0πR=8πA

2
RAðνÞ, which equals

1710�4 regardless of Poisson's ratio ν. These two methods are therefore equivalent.
2.2.3. Diffuse method
After many reflections of the wave front off the block boundaries, we assume that the energy within the block is dis-

tributed along the three directions of space, i.e. that the field is diffuse (e.g. [25]). The ratio of horizontal to vertical
amplitude at the surface of a semi-infinite medium under a diffuse field approximation is given by Sánchez-Sesma et al. [37]
for a normal loading force as a function of the Poisson ratio ν: H=V� 	

diffuse � 1:245þ0:348ν. For our concrete block (ν¼ 0:4),
H=V� 	

diffuse � 1:38. From the hypothesis of energy equipartition, we obtain an expression for the radiated elastic energy Wel

that is similar to that previously demonstrated for plates [Eq. (17)]:

W � 1þ H
V

� �2

diffuse

 !
ρVvzðt0Þ2 ; (36)

where V is the block volume. In the case of blocks, the factor 1þ H=V� 	2
diffuse compensates the energy distribution over the

three directions of space.
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Fig. 6. (a)–(c) Normal surface acceleration azðr; tÞ, filtered below 100 kHz, recorded at r¼6 cm from the source after the impact of a steel bead of diameter
4 mm on the glass plate. (a) and (b) The wave reflects many times off the plate lateral sides and the energy decreases exponentially with time due to
viscoelastic dissipation (red line). In (b), azðr; tÞ is squared, filtered below 2000 Hz and plotted in semi-log form. (c) The plate is sufficiently large to record
the first wave arrival entirely (red frame) before the return of the first side reflections. (d) Time Fourier transform j ~Azðr; f Þj of the first wave arrival as a
function of frequency f. The thick blue line in (c) and (d) is a synthetic signal obtained with the convolution of Green's function in Eq. (12) with the force of
Hertz. The discrepancy of the measured signal with theory is discussed in Section 4. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Table 1
Physical values used for calculation of the radiated elastic energy in the glass plate and the concrete block: density ρ, Young's modulus E, Poisson ratio ν,
compressional and shear wave speeds cP and cS, bending stiffness B, characteristic distance 1=γ and time τ of energy attenuation, group velocity vg (that
depends on the frequency f (in Hz)), phase velocity vϕ and coefficient β. Glass parameters are from Fuegel [44] and PMMA parameters from the MIT
material properties database [45]. Elastic parameters E and ν of concrete are estimated from the compressional and shear wave velocities measured
through the block and the density ρ of concrete is from Elert [46].

Material ρ (kg m�3) E (GPa) ν (–) cP (m s�1) cS (m s�1) B (J) γ (1/m) τ (s) vg (m s�1) vϕ (m s�1) β (–)

Glass kho1 2500 74 0.2 5730 3500 4760 0:014f 1=6 3:8f �2=3 18:6f 1=2 9:3f 1=2 –

kh41

8:5� 10�5f 2=3 3100 3100

PMMA kho1 1180 4.4 0.37 1920 860 357 1 0:09f �1=2 11:7f 1=2 5:8f 1=2 –

kh41

4:8� 10�3f 2=3 0:15f �2=3 1400 1400

Concrete – 2200 16.3 0.4 4030 1620 – 2:3� 10�5f 28f �1 1530 1530 0.3
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Fig. 7. (a)–(c) Normal surface acceleration azðr; tÞ recorded at r¼20 cm from the source after the impact of a steel bead of diameter 5 mm on the concrete
block. (a) and (b) The wave reflects several times off the block boundaries and the energy decreases exponentially with time due to viscoelastic dissipation
(red line). In (b), azðr; tÞ is squared, filtered below 2000 Hz and plotted in semi-log form. (c) The block is sufficiently large to record most of the first wave
arrival (red frame) before the return of the first side reflection that should arrive on the right side of the red frame. (d) Time Fourier transform j ~Azðr; f Þj of
the first wave arrival as a function of frequency f. The thick blue line in (c) and (d) is a synthetic signal obtained with the convolution of Green's function in
Eq. (18) with the force of Hertz. In the temporal synthetic signal in (c), we can discern the compressional wave (noted P) and the Rayleigh waves. The
discrepancy of the measured signal with theory is discussed in Section 4. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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3. Experimental test

3.1. Setup

We conduct impact experiments on two thin plates and a thick block to test the three methods presented in Section 2.
Piezoelectric charge shock accelerometers (type 8309, Brüel & Kjaer) record the normal acceleration generated by impacts at
various positions. The surface vibration is digitalized with an acquisition rate of 0.3 MHz. The accelerometers have a rather
flat response over a wide range of frequencies (1 Hz to 54 kHz). Note that only one accelerometer is necessary to measure
the radiated elastic energy regardless of the method used because the radiated wave field is isotropic. Nevertheless, several
sensors are placed at different distances from the impact to measure wave dispersion (Appendix A) and energy attenuation,
i.e. the coefficients γ and τ (Appendix B and Table 1).

The impactors are spherical steel beads of density 7800 kg m�3 and diameter ranging from 1 mm to 20 mm. The beads
are dropped from various heights from 2 cm to 25 cm, without initial velocity and rotation, on a circular glass plate with a
radius of 40 cm and a thickness of 1 cm, on a 1.2�1 m2 PMMA plate with a thickness of 1 cm and on a 3�1.5�0.6 m3

concrete block. The properties of these structures are presented in Table 1.

3.2. Description of the measured signals

The two plates and the block were selected to check as comprehensively as possible the assumptions made in the
previous section to calculate the radiated elastic energy. On the one hand, after each bead impact on the glass plate and on
the concrete block, the accelerometers record a long coda owing to the multiple side reflections off the lateral sides of the
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Fig. 8. (a) and (b) Normal surface acceleration azðr; tÞ, filtered below 100 kHz, recorded at r¼10 cm from the source after the impact of a steel bead of
diameter 3 mm on the PMMA plate. (a) The direct wave front (red frame) is clearly separated from its reflections off the plate lateral sides. (b) Zoom on the
first wave arrival. (c) Time Fourier transform j ~Azðr; f Þj of the first wave arrival as a function of the frequency f. The thick blue line in (b) and (c) is a synthetic
signal obtained with the convolution of Green's function in Eq. (12) with the force of Hertz. The discrepancy of the measured signal with theory is discussed
in Section 4. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. Frequency of the maximum of the amplitude spectrum j ~Azðr; f Þj, or peak frequency, for impacts of steel beads of different bead diameters d on the
glass plate, PMMA plate and concrete block. The peak frequency is independent of the fall height in the range investigated.
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structure (Figs. 6a and 7a). In these two structures, there are enough reflections for a diffuse field to be set up and we can
apply the diffuse method to estimate the radiated elastic energy. However, it is not possible to use this method on the
PMMA plate because side reflections are too attenuated (Fig. 8a). After about 30 side reflections in the glass plate and 10 in
the concrete block, the averaged squared vibration amplitude jazðr; tÞj2 decreases exponentially with time, until it reaches
the noise level (Figs. 6b and 7b). We can thus estimate the characteristic time τ of energy attenuation in these structures (see
Appendix B and Table 1).

On the other hand, the two plates and the block are sufficiently large to record a majority of the first arrival of the
emitted vibration before the return of the first side reflection (Figs. 6c, 7c and 8a). We can therefore apply the methods
based on the first arrival i.e., the energy flux and deconvolution methods, to determine the elastic energy radiated by the
impacts on each investigated structure.

The time Fourier transform of the first arrival gives the amplitude spectrum j ~Azðr; f Þj (Figs. 6d, 7d and 8c). Impacts of
beads excite a wide frequency range up to about 80 kHz and are characterized by an energy peak with a central frequency



Fig. 10. Comparison of the radiated elastic energy Wel calculated using the three methods [Eqs. (8), (13) and (17)] for impacts of steel beads of various
diameters from 1 mm to 20 mm dropped from various heights from 2 cm to 25 cm on (a) and (b) the glass plate and (c) the PMMA plate. Error bars (71
standard deviation) are estimated from reproducibility tests conducted on a series of 12 identical experiments.
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between 2 kHz and 40 kHz (Fig. 9). The duration of impact increases with the bead diameter and consequently the peak
frequency of the generated vibration decreases. Interestingly, for impacts of beads of diameter smaller than 5 mm on the
glass plate, the peak frequency is constant and equals 34 kHz. This is discussed in Section 4.2.

3.3. Radiated elastic energy

For experiments of bead impacts on the glass and PMMA plates, the energy flux and deconvolution methods give almost
identical results (Fig. 10a and c). The energy obtained with deconvolution is 2 percent greater than that obtained with the
energy flux method on the glass plate and 5 percent greater on PMMA. On the glass plate, we also observe a fair agreement
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Fig. 11. Comparison of the radiated elastic energy Wel calculated using the three methods [Eqs. (31), (35) and (36)] for impacts of steel beads of various
diameters from 2 mm to 20 mm dropped from various heights from 5 cm to 43 cm on the concrete block. Error bars (71 standard deviation) are estimated
from reproducibility tests conducted on a series of 12 identical experiments.

el el
PMMA

Fig. 12. Ratio of the radiated elastic energy Wel to the energy lost during the impact ΔEc , as a function of (a) the bead diameter d for drops tests from height
H¼10 cm and (b) the fall height H for a bead diameter d¼ 5 mm, on the glass plate, PMMA plate and concrete block. Error bars (71 standard deviation)
are estimated from reproducibility tests conducted on a series of 12 identical experiments.
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between the energy estimated using the energy flux method and the diffuse method (Fig. 10b). The lower signal to noise
ratio for small beads (i.e. for Welo10�7 J, Fig. 10b) leads to an error of þ20 percent on the radiated elastic energy Wel with
the diffuse method with respect to the energy flux method. However, the discrepancy between the methods is lower than
the uncertainties on the energy Wel (71 standard deviation). The error is about 737 percent with the energy flux method,
736 percent with the deconvolution method and 753 percent with the diffuse method. The error is greater (760 percent)
for beads smaller than 2 mm (i.e. for Welo10�7 J, Fig. 10) because of the lower signal to noise ratio.

For impacts on the concrete block, the radiated elastic energy Wel obtained with the deconvolution method is equal to
that computed with the energy flux method, as discussed in Section 2.2.2 (Fig. 11a). The energy estimation error with these
two methods is that of the integral

R þ1
0 j ~V zðr; z¼ 0;ωÞj2ω�1 exp γðωÞrð Þ dω in Eqs. (31) and (35) and is about 775 percent.

We cannot use the diffuse method for beads smaller than 2 mm in diameter because not enough side reflections can be
recorded. For larger beads, the energy measured with the diffuse method is between 0.3 and 3 times that obtained with the
other methods (Fig. 11b). Error bars with the diffuse method are between 770 percent and 7300 percent and are of the
same order of magnitude as the difference between the methods.

Let us discuss the possible source of errors in our experiments. For the energy flux and deconvolution methods, the error
bars are greater on the block (� 75 percent) than on the plates (� 36 percent). This is probably because we can less clearly
identify the first emitted wave train from the side reflections in the concrete block than in the plates (Figs. 6c, 7c and 8b).
Moreover, the rough surface of the concrete block is a likely cause for greater scattering of the results than on the smooth
glass and PMMA plates, in particular for beads of diameter do3 mm for which the depth of penetration into the concrete is
of the same order of magnitude as the surface roughness. The diffuse method is based on statistical assumptions that induce
additional errors. First, the diffuse regime is reached after at least 30 side reflections in the glass plate and 10 in the concrete
block. Consequently, if damping is important, as it is the case in concrete, the diffuse field is not completely set, the
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exponential decay of the energy is not clear and the characteristic time τ of energy dissipation is not well estimated (Fig. 7b).
The error on τ therefore leads to either overestimate or underestimate the radiated elastic energy. Secondly, an exponential
decay of the energy assumes that the energy dissipation is frequency independent, which is not completely the case here
(Table 1).

3.4. Elastic transfer efficiency

We measure the total energy ΔEc lost by the beads from their vertical coefficient of restitution e (e.g. [28,38]). The
proportion of energy radiated in elastic waves Wel with respect to the lost energy ΔEc, i.e. the elastic transfer efficiency,
increases with bead diameter up to d¼5 mm and decreases for dZ10 mm (Fig. 12a). The ratio Wel=ΔEc does not depend on
the fall height H for impacts on the PMMA plate and concrete block (Fig. 12b). On the glass plate, for bead diameters d
between 2 mm and 5 mm and fall heights H45 cm, the radiated elastic energy Wel is greater than the lost energy ΔEc,
which is impossible. We will explain this discrepancy in the discussion section. More energy is converted into elastic waves
for impacts on the glass plate and on the PMMA plate than on the concrete block. Indeed, the ratio Wel=ΔEc is never greater
than 2 percent on the concrete block while on the PMMA plate, almost all the lost energies are radiated elastically for bead
diameters dZ5 mm (Fig. 12a), regardless of the fall height H (Fig. 12b).
4. Discussion

4.1. Comparison between the different methods

It is valid to use the energy flux and deconvolution methods when the first wave arrival can be discerned from side
reflections or when the side reflections are very attenuated. The diffuse method is applicable provided that enough side
reflections occur to equipartition the energy. The diffuse method therefore becomes very efficient in a small structure.
Another advantage of the diffuse method is that there is no assumption on the direction of the impact force.
el
el

el
el

el el

PMMA

th th

Fig. 13. Ratio of the radiated elastic energy Wel measured with the energy flux method (a) and (b) to the theoretical radiated energy Wel
th

and (c) and (d) to
the energy of the impact Ec ¼ 1

2 mV2
z , withm being the bead mass and Vz the impact speed for impacts of steel beads of (a)–(c) different diameters d for a fall

height H¼10 cm and (b)–(d) different fall heights H for a diameter d¼5 cm, on the glass plate, PMMA plate and concrete block. In figures (c) and (d), the
dashed lines represent the ratio of the theoretical radiated elastic energy Wel

th
to Ec.
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The three methods can be used with only one sensor to measure the radiated elastic energy but the precision of the
energy estimation can be enhanced when several sensors are used. For the direct wave methods, the use of several sensors
can take into account an anisotropic emission. For the diffuse method, it can compensate for a not completely equiparti-
tioned field because we estimate the averaged value of the energy over the surface of the structure.

4.2. Comparison with Hertz's model of elastic impact

Impacts of spherical beads on a plane surface are often compared with Hertz's [29] theory of elastic impact (e.g.
[19,30,33,28,39,40]). For example, using Eq. (5) with an expression of the impact force Fzðr0; tÞ based on Hertz's theory,
Hunter [39] and Reed [40] estimated the theoretical value Wel

th
of the elastic energy emitted by beads impacting thick elastic

blocks. However, their approach has never been extended to the case of impacts on thin plates. Moreover, if inelastic energy
dissipation occurs during the impact, the amplitude of the impact force is expected to decrease with respect to the elastic
case [30,28,41] and Hertz's model may overestimate the radiated elastic energy.

To interpret our results, we compare the measured signals and amplitude spectra with synthetic signals obtained by
convolution of Green's function [Eqs. (12) and (18) with Hertz's force of elastic impact (Figs. 6c, d, 7c, d, 8b and c). Moreover,
we also compare the measured radiated elastic energy Wel with the energy Wel

th
of the synthetic signal (Fig. 13).

A good agreement with elastic theory is observed for the PMMA plate in terms of amplitude and frequencies (Fig. 8b and
c). The measured radiated energy Wel in PMMA is generally of the same order of magnitude but smaller than the theoretical
one Wel

th
by up to a factor of 3 (Fig. 13a and b). We used a laser Doppler vibrometer to measure the exact vibration dis-

placement of the glass plate surface after a bead impact (Fig. 14). This reveals that the system constituted by the accel-
erometer and the glass plate shows a resonance frequency around 38 kHz. As a consequence, the accelerometer records a
greater amplitude than that of the generated vibration at frequencies close to 38 kHz (Fig. 14). This is clearly visible both on
the temporal signal and amplitude spectrum when we compare them with their synthetic counterparts (Fig. 6c and d).
Indeed, the measured signal lasts much longer than the synthetic signal (Fig. 6c) and the measured spectrum has a higher
amplitude than the synthetic spectrum around the resonance frequency (Fig. 6d). Because of the resonance, the measured
radiated elastic energy Wel is up to 4 times greater than Wel

th
for impacts of beads of diameter do10 mm on the glass plate,

regardless of the fall height H (Fig. 13a and b). More importantly, Wel is even greater than the lost energy ΔEc (Fig. 12a and
b), which is impossible owing to energy conservation. This resonance seems excited by impacts of beads of diameter
dr5 mm because the peak frequency of the amplitude spectrum generated by the impacts of these beads is constant and
equals 34 kHz (Fig. 9), while it should increase for decreasing bead diameter d [33]. The origin of this resonance is still
under study.

It is not clear whether the resonance is also observed for impacts on the concrete block because the synthetic signal is
very different from the measured signal (Fig. 7c and d). For example, we can discern the compressional wave and the
Rayleigh wave in the synthetic signal but not in the measured signal (Fig. 7c). That said, on concrete, the peak frequency of
the amplitude spectrum decreases for increasing bead diameter d, which does not suggest resonance (Fig. 9). The measured
signal on concrete has smaller frequencies than the synthetic signal, probably because the duration of the impact of steel
beads on this block is longer than that predicted by Hertz (Fig. 7c and d). On the concrete block, the measured radiated
energyWel is smaller than the theoretical energyWel

th
by up to a factor of 7 for bead diameters do5 mm and d410 mm (Fig.

13a and b).
For impacts on the thin plates, the variation of the energy ratio Wel=Ec with diameter d is well reproduced by Hertz's

theory up to d¼ 10 mm, but the agreement is not quantitatively good on the glass plate, probably due to the resonance (Fig.
13c and d). For larger beads, however, Hertz's theory leads to values of the radiated elastic energy Wel

th
greater than the

impact energy Ec, which is impossible (Fig. 13c). On the concrete block, Hertz's model fails to reproduce the variation of the
ratio Wel=Ec with bead diameter d (Fig. 13c). Indeed, for an elastic impact, the ratio W th

el =Ec is independent of the bead
diameter d while the measured ratio Wel=Ec first increases, reaches a maximum for d¼5 mm and then decreases (Fig. 13c).



PMMA

Fig. 15. Coefficient of restitution e as a function of the impact speed Vz for different bead diameters d (different colors) on the (a) glass plate, (b) PMMA
plate and (c) concrete block. The dashed and dash-dotted lines represent the fitting of the experimental data with the scaling laws e¼ 1�cV1=5

z and
e¼ cV �1=4

z , respectively, where c is a constant that depends on the bead diameter.
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Similarly, the measured ratio Wel=Ec is roughly independent of the fall height H while theory predicts that it should increase
(Fig. 13d). The average measured ratio Wel=Ec on the block is between 0.1 percent and 2 percent, which is in agreement with
previous bead-drop experiments on thick blocks [39–41]. This is however several orders of magnitude higher than the ratios
Wel=Ec ¼ 10�5 to 10�3 measured for rockfalls in the field, for which plastic deformation is much more important [9,10].

To sum up, it is valid to use Hertz's force of elastic impact to qualitatively predict the variation of the radiated elastic
energy Wel with bead diameter d and fall height H on a smooth plate when the bead diameter d is smaller than the plate
thickness h. However, the small ratio of Wel to the lost energy ΔEc for beads of diameter do3 mm and d410 mm suggests
that our experiments involve a range of bead diameters and impact speeds in which viscoelastic and plastic dissipation may
occur (Fig. 12a). Hertz's model does not take into account inelastic dissipation during impact, which can reduce the
amplitude of the impact force and thereby decrease the amount of energy radiated by elastic waves (see [30]). The dif-
ference observed between the measured radiated elastic energy Wel and that predicted by Hertz's model Wel

th
can therefore

be partly explained by the presence of inelastic dissipation. A more complex model is therefore needed to account for these
energy losses, as discussed in the next paragraph.

4.3. Inelastic energy dissipation

For a viscoelastic impact, Ramírez et al. [42] showed that the coefficient of restitution e decreases with the impact speed
Vz as 1�cV1=5

z where c is a constant depending on bead diameter. This scaling law agrees well with our experimental results
on the glass and PMMA plates but not with those on the concrete block (Fig. 15). Some energy may therefore be dissipated
viscoelastically on plates. Although not explicitly indicated by the authors, the model of Ramírez et al. [42] shows that the
energy lost by viscoelastic dissipation is greater for small beads. This is in agreement with our data because the discrepancy
between the measured and the theoretical energy is larger as the bead diameter d decreases (Fig. 12a). Additional energy
losses may also occur for the smallest beads investigated (do3 mm) due to surface imperfections and adhesion [33]. These
effects are even greater on the concrete block with its surface roughness of � 0:5–1 mm. Therefore, the energy that is not
radiated in elastic waves for beads of diameter do5 mm is likely dissipated in viscoelasticity as well as in adhesion and
rotational and translational modes. On the PMMA plate, this inelastic dissipation represents from 99 percent to 10 percent of
the lost energy with increasing diameter d from 1 mm to 4 mm (Fig. 12a). On the concrete block, this represents almost all
the lost energies because the percentage of lost energy radiated in elastic waves is very small (0.1–2 percent) (Fig. 12a).
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The minimum impact speed necessary to deform a structure plastically is very low (C0:1 m s�1 for steel impacting steel
[30]) and this velocity is clearly exceeded in all our experiments. However, the minimum impact speed to cause fully plastic
deformation is much higher and such impacts are characterized by a coefficient of restitution e that decreases with impact
speed as V �1=4

z [30]. Our data do not fit this scaling law, even for the largest beads investigated (Fig. 15). The impacts in our
experiments are therefore elastic–plastic but not fully plastic. Plastic deformation is more likely to occur for the largest
beads because higher stresses are developed during the impact. As a matter of fact, plastic deformation is evidenced on glass
and concrete, but not on PMMA, by the presence of small indentations on the surface after impacts of beads larger than
10 mm. As a consequence, the elastic transfer efficiency decreases for beads of diameter d45 mm (Fig. 12a). For a given
bead diameter d410 mm, the impact seems more elastic on PMMA than on glass or on concrete because the ratio Wel=ΔEc
decreases less on PMMA than on the other structures (Fig. 12a). As suggested by McLaskey and Glaser [33], PMMA is a more
compliant material than glass and concrete and thereby the impacts last longer and over a larger area of contact, reducing
the maximum stresses applied on the surface. On the plates, we estimate that the plastic deformation represents up to 20
percent of the lost energy for d¼ 20 mm (Fig. 12a). This is however not quantifiable on the concrete block because the
surface roughness may contribute to a high proportion of the energy losses.

Finally, note that even when inelastic dissipation occurs, the three methods of energy calculation compared in this paper
give very similar results (Figs. 10 and 11). However, plastic deformation (or surface roughness) may generate an impact force
with a greater tangential component, as suggested by Buttle and Scruby [18]. This can therefore affect our estimation of the
radiated elastic energy because we make the assumption that the impact force is normal to the surface. For example,
Sánchez-Sesma et al. [37] showed that the stronger the tangential force is on the surface of a semi-infinite block, the smaller
the generated vertical displacement is with respect to the radial displacement.
5. Conclusions

We presented and validated experimentally three methods to estimate the elastic energy radiated by an impact on a thin
plate and a thick block from the measurement of the surface normal vibration at a single location. The energy flux method
and deconvolution methods are based on the direct wave between the impact and are shown to give the same results for
both plates and blocks. The diffuse method makes use of the diffuse coda during which multiple reflections occur off the
structure's borders. This last method slightly overestimates the radiated elastic energy with respect to the other methods on
plates (þ5–20 percent), but gives results of the same order of magnitude (i.e. within a factor of 3) as the other methods
when applied to blocks. The differences between the estimates are however less than the uncertainty of each method, with
standard deviations between 40 percent and 70 percent for the energy flux and deconvolution methods and between 50
percent and 300 percent for the diffuse method.

The presented methods have the major advantage of estimating the radiated elastic energy independently with respect
to the other energy dissipation processes, without knowledge of the impact force. This allowed us to establish an energy
budget for the impacts:

� On thin plates, the percentage of energy lost in elastic waves increases with the bead diameter. This percentage is less
than 2 percent of the total energy lost when the bead diameter is smaller than 10 percent of the plate thickness. The rest
of the energy lost by the bead is likely dissipated by viscoelasticity. On the other hand, most of the lost energy is radiated
in elastic waves for bead diameters greater than the plate thickness and the rest is lost in plastic deformation (up to 20
percent in our experiments).

� On rough thick blocks, the radiated elastic energy represents only between 0.2 percent and 2 percent of the lost energy,
regardless of the bead diameter and fall height. Inelastic dissipation (i.e. viscoelastic, plastic, rotational, etc.) is therefore
the major energy consumption process.

The elastic impact model of Hertz well reproduces the measured radiated elastic energy on thin plates for bead dia-
meters smaller than the plate thickness, but overestimates the energy for larger beads. On thick blocks, the model gives
quantitatively good results but overestimates the radiated elastic energy by a factor of 2–10 when inelastic dissipation
occurs.

Further work is required to investigate how surface roughness affects the amount of energy radiated in elastic waves and
dissipated by inelastic processes during an impact. For example, it would be interesting to establish the energy budget of
beads impacts on thick blocks with a surface as smooth as that of the thin plates.
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Appendix A. Experimental determination of the relations of dispersion

In this section, we detail how to determine the relations of dispersion of the structures used for impacts experiments. In
order to observe wave dispersion, we measure the emitted wave front at several distances r from a given bead impact (e.g.
for PMMA, Fig. 16a). The double Fourier transform in time and space of the vibration acceleration azðr; tÞ allows us to deduce
the relation between the angular frequency ω and the wavenumber k, i.e. the dispersion relation (Fig. 16b and c).



Fig. 17. Relation between the angular frequency ω and the wavenumber k (i.e. dispersion relation) for the direct wave front in (a) the glass plate and (b) the
concrete block. Light and dark shading represent respectively low and high power spectral energy (normalized). Red line: (a) theoretical dispersion relation
for the fundamental mode of Lamb A0 in a glass plate of thickness h¼1 cm and elastic parameters reported in Table 1; (b) linear fit of the data. In the
concrete block, the group velocity vg ¼ ∂ω=∂k equals the phase velocity vϕ ¼ω=k and is about 1530 m s�1. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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As expected, for the plates of PMMA and glass the dispersion relation corresponds exactly to that of the fundamental
mode A0 of Lamb (Figs. 16c and 17a). At low frequencies, i.e. for kho1, the dispersion relation can be approximated by
ω� 5:5k2 in PMMA and ω� 13:8k2 in glass, thus satisfying Eq. (1) with a bending stiffness B¼357 J and B¼4760 J,
respectively. On the other hand, the mode A0 is not dispersive at higher frequencies, for kh41. Indeed, the relation between
the frequency and the wavenumber becomes roughly linear and the group velocity vg ¼ ∂ω=∂k tends towards the Rayleigh
wave velocity that is � 1400 m s�1 for PMMA and � 3100 m s�1 for glass [31].

For the glass and PMMA plates, we estimate the energy associated with the longitudinal S0 mode with an accelerometer
on the plate border. In both plates, the energy of this mode is about 0.2 percent of that of the vertical A0 mode and is
consequently negligible. The plate's vibration is therefore mostly normal to the surface. The lowest secondary mode in
plates is the mode A1 that has a cutoff frequency equal to cS=4h� 82 kHz in glass and 22 kHz in PMMA, where cS is the shear
wave speed. The accelerometers record frequencies up to 80 kHz, therefore we do not measure modes higher than the A0

mode in glass. In PMMA, however, the mode A1 may be present but its amplitude is too low to be detected in the dispersion
curve ω¼ f ðkÞ (Fig. 16c).

For the concrete block, the relation between the angular frequency ω and the wavenumber k is roughly linear with a
slope of 1530 m s�1 that corresponds to both the phase vϕ and group vg velocities (Fig. 17b).
Appendix B. Energy dissipation model in a viscoelastic solid

In this Appendix, we show that the viscous dissipation of energy with distance r in a Kelvin–Voigt viscoelastic solid can
be modeled by a factor expð�γrÞ where 1=γ is a characteristic length of energy dissipation that depends on frequency. To
that end, we have to demonstrate the equation of energy conservation in such a solid. We start from the equation of
momentum conservation in the solid, stating that

ρ
∂2ui

∂t2
¼ ∂Tij

∂xj
; (B.1)

where ui is the wave displacement and Tij is the stress tensor. The summation on repeated indices is implicit. In a homo-
geneous and isotropic viscoelastic solid modeled by Kelvin–Voigt model, Hooke's law is [31]

Tij ¼ Tel
ij þT inel

ij ; (B.2)

with

Tel
ij ¼ λδijSþ2μSij; (B.3)

and

T inel
ij ¼ χδij

∂S
∂t

þ2η
∂Sij
∂t

; (B.4)

where Sij ¼ 1
2 ∂ui=∂xjþ∂uj=∂xi
� 	

is the strain tensor and S¼ ∂uj=∂xj. The constants λ, μ and χ, η are the elastic and viscous
coefficients associated to compression and shear, respectively. Note that these coefficients generally depend on frequency f.
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Multiplying Eq. (B.1) by ∂ui=∂t, we obtain

∂ec
∂t

¼ ∂Tel
ij

∂xj
∂ui

∂t
þ∂T inel

ij

∂xj
∂ui

∂t
; (B.5)

where ec is the bulk density of kinetic energy.
We can develop the second term of Eq. (B.5) noting that

∂Tel
ij

∂xj
∂ui

∂t
¼ ∂
∂xj

Tel
ij
∂ui

∂t

� �
�Tel

ij
∂2ui

∂t∂xj
; (B.6)

According to Royer and Dieulesaint [31], the Poynting vector is defined by

Pj ¼ �Tel
ij
∂ui

∂t
: (B.7)

and verifies, for guided waves

∂Pj

∂xj
¼ cj

∂etot
∂xj

; (B.8)

where cj is the energy speed, i.e. the group velocity, in the direction xj and etot ¼ ecþep is the bulk density of total energy
within the structure. Moreover, because of the symmetry Sij ¼ Sji of the strain tensor, we can show that

Tel
ij
∂2ui

∂t∂xj
¼ 1
2

λδijþ2μ
� 	 ∂

∂t
∂ui

∂xj
∂uj

∂xi

� �
; (B.9)

which is the derivative of the bulk density of potential energy ep.
Substituting Eqs. (B.6), (B.8) and (B.9) in Eq. (B.5), we obtain

∂etot
∂t

þcj
∂etot
∂xj

¼ ∂T inel
ij

∂xj
∂ui

∂t
; (B.10)

where the last term can be developed using Eq. (B.4).
If we assume that the wave is longitudinal and propagates in direction x1 (u2 ¼ 0), the wave displacement is

u1 ¼ A1 sin ðωðt�x1=cPÞÞ; (B.11)

where A1 is the amplitude, ω is the angular frequency and cP is the compressional wave speed. Thus we get

∂T inel
ij

∂xj
∂ui

∂t
¼ � χþ2ηð ÞA2

1
ω4

c2P
cos 2 ω t�x1=cP

� 	� 	
: (B.12)

If we remark that the bulk density of energy etot is equal to

ρ
∂u1

∂t

� �2

¼ ρω2A2
1 cos 2 ω t�x1=cP

� 	� 	
; (B.13)

we obtain

∂T inel
ij

∂xj
∂ui

∂t
¼ � χþ2ηð Þω

2

ρc2P
etot: (B.14)

Using Eqs. (B.10) and (B.14), we have finally demonstrated that the equation of energy conservation of a longitudinal
wave propagating in a viscoelastic solid is

∂etot
∂t

þvg � ∇etot ¼ �etot
τ
; (B.15)

with vg¼cP being the group speed and τ the characteristic time of energy dissipation (see e.g. [31,43])

τ¼ ρc2P
ðχþ2ηÞω2 ¼

1
γvg

: (B.16)

In Eq. (B.15), the term �etot=τ represents energy dissipation with time when the source force is not acting on the
structure any more (e.g. [32]). Multiplying this equation by expðt=τÞ gives

∂etot
∂t

þetot
τ

� �
exp

t
τ

� �
þvg � ∇etot exp

t
τ

� �
¼ 0: (B.17)

Writing e0tot ¼ etotexpðt=τÞ leads to

∂e0tot
∂t

þvg:∇e0tot ¼ 0 (B.18)
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Thus energy e0tot ¼ etot expðt=τÞ ¼ etot expðγrÞ is conserved. Therefore, multiplying the energy by the factor expðγrÞ com-
pensates the viscoelastic dissipation of energy with distance.

Note that if the wave is transversal and polarized along direction x2 and propagates along direction x1, we have

∂T inel
ij

∂xj
∂ui

∂t
¼ �ηA2

2
ω4

c2S
cos 2 ω t�x2=cS

� 	� 	
; (B.19)

and we retrieve the conservation equation (B.15) with a different coefficient τ¼ ρc2S=ηω
2, with cS being the shear wave speed.

Practically, the waves propagating in thin plates and thick blocks are a complex combination of longitudinal and transversal
waves. If we consider only one of these modes, either the mode A0 of Lamb or the Rayleigh waves, Eq. (B.15) of energy
conservation is still verified provided that we integrate it over the depth [31] but the expression of the characteristic
coefficient τ is much more complicated.

Here, we validate experimentally the model of energy attenuation in expð�t=τÞ or in expð�γrÞ in the thin plates and the
thick block investigated. To do so, we estimate the coefficient γ by measuring the first arrival of the emitted vibration at
different distances r from an impact (Fig. 18a) and filtering this vibration in different frequency ranges. For example in the
PMMA plate, the squared amplitude of the A0 mode decreases with distance r as ð1=rÞ expð�γrÞ (Fig. 18b–d). We deduce the
value of γ as a function of frequency f (Fig. 18e).
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When the first arrival cannot be separated from the side reflections or when numerous side reflections occur in the
structure after an impact, we can determine energy attenuation with an other method. For example on the glass plate, after
an impact the envelope of the squared signal averaged over several periods decreases exponentially with time as

AðtÞ2 ¼ Aðt ¼ 0Þ2 exp � t
τ

� �
; (B.20)

where t¼0 is the impact time (Fig. 19a). The characteristic time τ at frequency f is simply the inverse of the slope of AðtÞ2 in
semi-log scale, filtered in a frequency range centered on f (Fig. 19b–d). We thus show how the characteristic time τ decreases
as the frequency f increases (Fig. 19e). Note that for a diffuse field, the inverse of τ is given by the average of the inverse of
the characteristic times τ of each modes of propagation weighed by their percentage of partition.
Appendix C. Green's functions owing to a vertical load at the surface of an elastic half-space

Here we recall the expression of the time Fourier's transform of Green's function ~Gzzðr;ωÞ at the surface of a half-space
owing to a vertical load on the surface.

Miller and Pursey [35] determined the exact expression of the surface vertical displacement ~Uzðr; z;ωÞ generated at a
distance r by a normal force F¼ ~F zðωÞuz on the surface of an elastic half-space [Eq. (72) of their paper with z¼0]:

~Uz r;ωð Þ ¼
~F zðωÞξ2
πaμ

Z þ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

f 0ðxÞ
J1 k1axð ÞJ0 k1rxð Þ dx; (C.1)

where a is the radius of the loading area, μ the Lamé shear modulus, k1 ¼ω=cP , with the angular frequency ω¼ 2πf and the



Fig. 20. Values of the coefficient AP, AS and AR as a function of Poisson's ratio ν.
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compressional wave speed cP, f 0ðxÞ ¼ ð2x2�ξ2Þ2�4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðx2�ξ2Þ

q
, ξ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�νÞ=ð1�2νÞ

p
and ν is Poisson's ratio. J0 and J1

are Bessel's functions of the first kind.
For very small values of the radius of contact a, J1ðk1axÞ can be approximated at a first order by k1ax=2þOða2Þ so that

~Uz r;ωð Þ �
~F zðωÞξ2
2πμ

k1

Z þ1

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

f 0ðxÞ
J0 k1rxð Þ dx: (C.2)

A first-order approximation of the integral in Eq. (C.2) was calculated by Miller and Pursey [21] for large values of
k1r¼ 2πfr=cP . From a practical viewpoint, this approximation is valid for impact problems because the impact generates high
frequencies 1 kHz o f o 80 kHz (Figs. 6d, 8c and 7d) and k1r⪢1 even for small distances r from the impact location. Using
this computation, we can show that the vertical Green's function ~Gzzðr;ωÞ ¼ ~Uzðr;ωÞ= ~F zðωÞ is the sum of contributions of
compressional, shear and Rayleigh waves, respectively, ~G

P
zz, ~G

S
zz and ~G

R
zz:

~Gzz ¼ ~G
P
zzþ ~G

S
zzþ ~G

R
zz (C.3)

with

~G
P
zz r;ωð Þ � � i

μ
AP

k1
ðk1rÞ2

exp � iωr=cP
� 	

; (C.4)

~G
S
zz r;ωð Þ � � i

μ
AS

k1
ðk1rÞ2

exp � iωr=cS
� 	

; (C.5)

~G
R
zz r;ωð Þ � � i

μ
ARk1

ffiffiffiffiffiffiffiffiffiffi
2

πk1r

s
exp � i ωr=cR�

π

4


 �
 �
; (C.6)

where cP, cS and cR are the compressional, shear and Rayleigh waves' speeds, respectively, and where AP, AS and AR are only
functions of Poisson's ratio ν (Fig. 20):

AP νð Þ ¼ ξ2

2πð2�ξ2Þ2
; (C.7)
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AS νð Þ ¼ 2ðξ2�1Þ
πξ3

; (C.8)

AR νð Þ ¼ ξ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðx20�1Þ

q
f 00ðx0Þ

; (C.9)

with x0 being the real positive root of f 0ðxÞ.
Appendix D. Detailed calculation of coefficient β

We detail here the calculation of the coefficient β that appears in the expression of the elastic energy Wel radiated in a
block [Eq. (35)]. β is defined as the imaginary part of

Z X

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

f 0ðxÞ
dx; (D.1)

where f 0ðxÞ ¼ ð2x2�ξ2Þ2�4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðx2�ξ2Þ

q
, ξ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�νÞ=ð1�2νÞ

p
and ν Poisson's ratio of the block. X is a number greater

than the real root x0 of f0, which is represented in Fig. 5.
Let the function f be

f : x⟶
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

ð2x2�ξ2Þ2�4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðx2�ξ2Þ

q : (D.2)

For most materials, Poisson's ratio ν is between 0 and 0.5, corresponding to values of ξ from 1.4 to 10. To calculate β we
have to look at the definition of f over the intervals ½0;1½, ½1; ξ½ and xZξ:
� For xA ½0;1½, x2�1o0 and x2�ξ2o0, we can then write

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�ξ2

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2�x2

p
where i is the

complex number
ffiffiffiffiffiffiffiffi
�1

p
. Over this interval, f(x) is a pure imaginary number:

f xð Þ ¼ ix
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

ð2x2�ξ2Þ2þ4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þðξ2�x2Þ

q (D.3)

and

Im f xð Þð Þ ¼ f 1 xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

ð2x2�ξ2Þ2þ4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�x2Þðξ2�x2Þ

q : (D.4)

Regardless of the value of ξ, f1 is continuous over ½0;1� with f 1ð0Þ ¼ f 1ð1Þ ¼ 0 and f1 is C1 over ½0;1½.
� For xA ½1; ξ½, x2�140 and x2�ξ2o0, therefore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�ξ2

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2�x2

p
. Over this interval:

f xð Þ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p

ð2x2�ξ2Þ2�4ix2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðξ2�x2Þ

q : (D.5)

Multiplying the numerator and the denominator by the complex conjugate of the denominator leads to

f xð Þ ¼
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�1

p
ð2x2�ξ2Þ2þ4ix2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�1Þðξ2�x2Þ

q� �
ð2x2�ξ2Þ4þ16x4ðx2�1Þðξ2�x2Þ

(D.6)
Fig. 21. Coefficient β defined by Eq. (33) as a function of Poisson's ratio ν.
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and

Im f xð Þð Þ ¼ f 2 xð Þ ¼ 4x3ðx2�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2�x2

p
ð2x2�ξ2Þ4þ16x4ðx2�1Þðξ2�x2Þ

: (D.7)

Regardless of the value of ξ, f2 is continuous over ½1; ξ� with f 2ð1Þ ¼ f 2ðξÞ ¼ 0 and f2 is C1 function over ½1; ξ�.
� For xZξ, x2�140 and x2�ξ240, therefore f is a real function over this interval and its imaginary part is null, except for

the contribution of the pole x0 of f0, which is always greater than ξ (Fig. 5). The integral of f over this interval is due to half
of its residue in x0:

Z X

ξ
f xð Þ dx¼ � iπ

x0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q
f 00ðx0Þ

: (D.8)

Finally, β¼ R 1
0 f 1ðxÞ dxþ

R ξ
1 f 2ðxÞ dx�πx0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�1

q
=f 00ðx0Þ. β is represented as a function of Poisson's ratio ν in Fig. 21.
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