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Supplementary Figure 1 | Landslides metrics in different scenarios. (a) The dam break scenario, (b) a
geometry used in numerical simulations and (c) the most frequent geometry for natural landslides1. Here θ is
the mean slope angle averaged along the path of the avalanche front from destabilization to the final deposit,
H the maximum elevation difference between the deposit front and the maximum elevation of the initial
mass, H0 the maximum initial thickness, L0 the initial length and ∆L the total length travelled by the front
of the landslide. HG and LG are the difference in elevation and horizontal distance between the position of
the centre of mass of the initial released mass and that of the final deposit, respectively. The dash-lines show
the shape of the initial released mass.
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Supplementary Figure 2 | Centre of mass travel ratio. Ratio between the difference in elevation and the
difference in horizontal distance of the centre of mass from the initial state to the final deposit HG/LG as a
function of the volume V . HG/LG is close to H/∆L′ (and to µeff ) and decreases with the volume, following
a similar trend (HG/LG = V −0.0949). For the sake of clarity, error bars are not shown but are approximately
the size of each symbol on the horizontal axis and twice the size of each symbol on the vertical axis.
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Supplementary Figure 3 | Location map of Martian landslides studied. Shaded relief if obtained from
MEGDR MOLA.
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Supplementary Figure 4 | First and second terms of the Heim’s ratio and of the effective friction coef-
ficient equations. (a) Investigation of the first (only represented by its fit of tan θ) and second terms (empty
circles) of µeff (supplementary equation (11)) and of their dependence in volume. (b) Investigation of the
first term (plain circles) and second term (empty circles) of H/∆L′ (supplementary equation (18)) and of
their dependence on volume. Each landslide is represented by a given colour chosen arbitrarily (but the same
on both panels). For (a) and (b), plain and dashed curves are the best fit for the first and second terms, respec-
tively. For the sake of clarity, error bars are not shown but are approximately the size of each symbol on the
horizontal axis and twice this size on the vertical axis.
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Supplementary Figure 5 | Interdependence analysis for well constrained landslides on Earth, Mars, Io
and Iapetus. Each landslide is represented by a full circle. (a) Friction coefficient µeff as a function of
the volume V , where the colour of each point represents the initial thickness of the released mass H0. (b)
Scaling law between the initial thickness H0 and the volume V where the colour of each point represents the
associated effective friction µeff . (c) Effective friction µeff as a function of the initial thickness H0. (d) The
normalized runout (∆L/L0) as a function of the initial aspect ratio (a = H0/L0). Each circle represents a
landslide where the colour inside the circle scales with µeff and the colour of its contour scales with the mean
slope s = tan θ. The plain lines represent the theoretical curves calculated from supplementary equation (25)
with some chosen values of µ = tan δ and s = tan θ. For the sake of clarity, error bars are not shown but are
approximately twice the size of each symbol. Data from Supplementary Tab. 1.
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Supplementary Figure 6 | Examples of numerical simulation of landslides with a constant friction co-
efficient µs over a wide range of volumes and planetary environments for which we have a DTM. Ob-
servations are on the left column and simulations on the right column. (a) Experimental dry granular flows2.
(b) Fei Tsui landslide in Hong Kong (c) Ganges Chasma landslides on Mars and (d) Malun Crater landslide
on Iapetus.
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Supplementary Figure 7 | Steady-state friction coefficient µss from rock friction laboratory experiments
as a function of the slip rate. Summary of experiments involving only the igneous rocks reported3. The red
curve is the best fit of equation (8), leading to µo = 0.76, µw = 0.15, and Uw = 0.1 ms−1.
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Supplementary Figure 8 | Simulation of landslides over 3D topography, taking into account friction
weakening. The friction coefficient is derived from equation (3) with µo = 0.84, µw = 0.11, Uw = 4.1 ms−1.
Thickness, velocity and friction coefficient at three different times during the flow are shown for (a) Fei Tsui
(Hong Kong) (b) Frank slide (Canada) and (c) Coprates (Mars).
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(b)

figure 8 continued
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(c)

end of Supplementary Fig. 8
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Supplementary Figure 9 | Mean friction coefficient µ(U) in velocity-weakening simulations. versus time.
(a) Fei Tsui (b) Frank slide and (c) Coprates (see figure 5 and supplementary figure 8), when using the friction
weakening law derived from flash heating concept (equation (3)) with µo = 0.84, µw = 0.11, Uw = 4.1 ms−1.
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Supplementary Table 1 | Landslide Summary Characteristics

Name Vol. [m3] H/∆L′ ∆L′ [m] H0 [m] ∆L [m] H0/L0 tan θ µeff Reference Data Origin

Earth (g=9.81)
Po Shan Road 4.00E+04 0.51 231.66 12 148.31 0.13 0.40 0.48 King (1999) Field survey
Tsing Yi 1 2.40E+04 0.65 66.25 10 66.09 0.13 0.32 0.47 King (1999) Field survey
Tsing Yi 2 4.00E+03 0.7 23.76 7 23.76 0.24 0.16 0.46 King (1999) Field survey
Tuen Mun 8.00E+04 0.61 80.15 12 80.13 0.13 0.30 0.45 King (1999) Field survey
Fei Tsui 1.40E+04 0.49 68.31 15 30.04 0.32 0.13 0.49 King (1999) Field survey
Tin Wan 2.44E+04 0.58 72.75 11 72.43 0.15 0.26 0.41 King (1999) Field survey
Island Road 8.00E+02 0.47 63.44 4 18.71 0.08 0.34 0.56 King (1999) Field survey
Siu Sai Wan 1.01E+04 0.51 37.42 6 37.38 0.15 0.18 0.34 King (1999) Field survey
Sham Shui Kok 4.00E+04 0.53 120.96 23 120.94 0.17 0.17 0.36 King (1999) Field survey
Lai Ping Road 1.00E+05 0.38 142.84 20 42.77 0.18 0.13 0.60 King (1999) Field survey
Ville de Cascade 1.00E+04 0.6 46.29 12 46.29 0.22 0.12 0.38 King (1999) Field survey
Ching Cheung 3.00E+03 0.38 81.22 2.5 49.38 0.06 0.25 0.30 King (1999) Field survey
Fei Ngo Shan 2.50E+03 0.58 170.61 3.23 117.9 0.08 0.55 0.57 King (1999) Field survey
Shum wan 2.60E+04 0.41 137 10 137 0.15 0.31 0.37 King (1999) Field survey
Frank slide 3.60E+07 0.20 3800 350 3800 0.22 0.18 0.24 Hungr (1981) DTM + field survey
Thurwieser 2.00E+06 0.41 2500 350 2500 0.07 0.36 0.47 Sosio et al. (2008) DTM + field survey
Valpola 3.80E+07 0.45 2035 500 2035 0.08 0.23 0.40 Crosta et al. (2007) DTM + field survey
Socompa 3.60E+10 0.05 40000 2000 40000 0.25 0.07 0.11 Kelfoun & Druitt (2005) DTM + field survey
Blackhawk 0.3E+09 0.09-0.13 9000 800 8000 ? 0.08 0.15 Shreve (1987) Field survey
St Helens 2.8E+09 0.09 23000 ? ? ? ∼0.08 ∼0.15 Voight et al. (1983) Field survey
Montserrat 4.00E+07 0.25 3500 180 4500 0.26 0.18 0.23 Young et al. (1998) Field survey
Mount Steller 6.00E+07 0.24 9120 135 ∼7000 0.08 0.11 0.22 Moretti et al. (2012) Field survey
Dry Experiments 2.80E-03 0.35-0.49 0.47-1.87 0.14 0.27-1.17 0.7 0-0.44 0.50-0.53 Mangeney et al. (2010) Experimental work
Dolomieu Crater flow 4.00E+02 0.71 420 20 407 0.2-0.3 ∼0.67 0.71 Hibert et al. (2011) DTM + field survey

Mars (g=3.73)
Ophir 8.33E+11 0.14 52000 5600 42020 0.56 0.030 0.16 Lucas et al., (2011) DTM (PEDR MOLA)
Ophir West 1.50E+12 0.15 47000 4400 38000 0.53 0.001 0.11 Lucas et al., (2011) DTM (PEDR MOLA)
Coprates 7.30E+11 0.08 62000 4400 51000 0.41 0.040 0.12 Lucas et al., (2011) DTM (PEDR MOLA)
Ius 2.60E+12 0.12 66000 5800 53120 0.45 0.022 0.13 Lucas et al., (2011) DTM (MeX/HRSC)
Ganges Landslide 1 5.30E+11 0.10 50000 3290 42800 0.51 0.020 0.09 Lucas et al., (2011) DTM (PEDR MOLA)
Ganges Landslide 2 1.90E+10 0.13 22300 500 16410 0.08 0.120 0.15 This study DTM (MRO/CTX)
Ganges Landslide 3 9.95E+09 0.14 22316 750 17125 0.12 0.080 0.12 This study DTM (MeX/HRSC)
Olympus Mons 1.65E+08 0.40 3460 320 2879 0.47 0.270 0.38 This study DTM (MRO/CTX)
Crater ManySlides 1 3.11E+07 0.24 1810 45 1182 0.07 0.240 0.27 This study DTM (MRO/CTX)
Crater ManySlides 2 5.76E+07 0.23 2169 40 1699 0.08 0.220 0.24 This study DTM (MRO/CTX)
Crater ManySlides 3 3.49E+07 0.30 1920 35 1271 0.05 0.258 0.28 This study DTM (MRO/CTX)
Equatorial Crater 1.13E+10 0.13 4600 200 4468 0.08 0.190 0.23 This study DTM (MeX/HRSC)
Shalbatana Vallis 1 3.19E+10 0.07 11500 400 8419 0.13 0.170 0.21 This study DTM (MeX/HRSC)
Shalbatana Vallis 2 1.00E+09 0.20 5600 80 4082 0.05 0.210 0.22 This study DTM (MeX/HRSC)

Iapetus (g=0.223)
Malun 2.40E+13 0.123 65000 6000 56666 0.72 ∼0 0.1 This studya DTM (Cassini/ISS)
Iapetus2 1.60E+12 0.118 80000 5000 76875 1.6 ∼0 0.119 Singer et al., (2012) DTM (Cassini/ISS)
Iapetus3 3.00E+12 0.1333 60000 5000 42760 0.29 ∼0 0.12 Singer et al., (2012) DTM (Cassini/ISS)

Io (g=1.796)
Euboea Montes 2.50E+13 0.0846 125000 6000 81000 ? ∼0 0.07 This studyb DTM (Galileo/ISS)

Vesta (g=0.25)
Landslide 1 4.5E+9 ×

∑
Hc 0.2-0.3 45000 ? 29000 ? ∼0 ? This study DTM (Dawn/FC)

Landslide 2 6.8E+9 ×
∑
Hc 0.2-0.3 68800 ? 48000 ? ∼0 ? This study DTM (Dawn/FC)

Landslide 3 4.7E+9 ×
∑
Hc 0.2-0.3 58000 ? 24000 ? ∼0 ? This study DTM (Dawn/FC)

aA different volume has been found for this landslide7, but we completely reconstruct the landslide and
thus use our calculation. bPreviously analyzed8 but the data are not accessible.cThe Dawn mission offers
stereo over Vesta’s landslides9. We built the DTMs but they cannot resolve accurately the deposits in height.
Therefore, only the area of the deposits are presented, but in order to estimate the volume this value need to
be multiplied by the integral thickness

∑
H . These values are shown here only for comparison but are not

discussed in the main text. Topography for landslides on the Moon, Venus, Callisto and Rhea could not be
derived as the resolution or the coverage of the current data does not allow deposit analysis. References listed
in the table correspond to cited studies4–7, 10–18 and references therein. Locations of Martian landslides are
shown in supplementary figure 3.
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Supplementary Table 2 | Weakening Model Parameters for Landslide Characteristics

Earth Mars Iapetus
Models Considered Soil Rock LR Rock LR Rock LR Ice-Rock Mix LR Ice
Gravity [m/s2] 9.81 9.81 9.81 3.73 3.73 0.224
Maximum Velocitya, Umax [m/s] 12 60 90 132 132 56
Median Velocitya, UQ50 [m/s] 0.5 - 10 5 - 15 10 - 20 15 - 30 15 - 30 15
Mean Velocitya, Ū [m/s] 2 - 10 8 - 15 20 - 50 10 - 20 10 - 20 10
Normal Stressa, σn [MPa] 0.43 1.24 69 49 35 2.93
Contact Shear Strengthb, τc [MPa] 10 - 30 800 - 1200 1500 - 3000 3000 3000 250 - 650
Thermal Diffusivityc,αth [mm2/s] 0.18 1.4 1.4 1.4 0.7 1.18
Heat capacityc, ρc [MPa/K] 1.4 2.7 2.7 2.7 2.2 1.3
Temperature rised, ∆T = Tw − T [K] 900 900 900 906 925 150
Friction coefficienta, µeff 0.49 0.43 0.11 0.115 0.115 0.12
Sliding distance of asperity contactc, Da [µm] 0.5 - 100 0.5 - 100 0.5 - 100 0.5 - 100 0.5 - 100 0.5 - 100
Runout distancea, ∆L [m] 30 2000 50 x 103 52 x 103 52 x 103 65 x 103

Weakening sliding Velocity, Uw [m/s] 3 - 5700 0.05 - 26 0.01 - 8 0.01- 2 0.003 - 0.7 0.001 - 1.5
a values obtained from our simulations. bThe contact shear strength τc is estimated from the shear wave ve-
locity in different materials and gives a possible range for landslide application. cValues taken from previous
work19 and references therein and adapted for landslide application. d∆T is estimated for a given initial
depth and a simplistic estimate of geothermal heat for each of the planets. We typically used 10.6 K/km for
dry zones and 6.4 K/km for ice-saturated zones on Mars. No geothermal heat is assumed for Iapetus which
probably leads to an overestimation of ∆T as all Iapetian landslides are deep-seated. Tw for rocks are taken
from previous work19 and references therein. For rock-ice and ice, values have been estimated to within an
order of magnitude. e The mean velocity Ū has been used. The sliding velocity weakening has been estimated
using a sliding distance of asperity contact Da with a range of three orders of magnitude.
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Supplementary Table 3 | Variables list

Variable Name Description and units
αth Thermal diffusivity [mm2/s]
γ̇ Shear rate [s−1]
d grain diameter [mm]
Da Sliding distance of asperity contact [µm]
δ Friction angle (= atan(µ)) [o]
∆L Front travel distance [m] (see Supplementary Fig. 1)
∆L′ Maximum distance travelled [m] (see Supplementary Fig. 1)
∆T = Tw − T Temperature rise [K]
θ Mean slope of the bottom topography [o] (see Supplementary Fig. 1)
g Acceleration due to gravity [m/s2]
H Total fall height [m] (see Supplementary Fig. 1)
H0 Initial height [m] (see Supplementary Fig. 1)
I Inertial number [*]
I0 characteristic inertial number [*]
L0 Initial length [m]
µ friction coefficient [*]
µeff effective friction coefficient [*]
µw Weakening friction coefficient [*]
ρs Solid density [kg/m3]
ρc Heat capacity [MPa/K]
σn Normal Stress [MPa]
τ Shear stress [MPa]
τc Contact Shear Strength [MPa]
Ū Mean Velocity [m/s]
Umax Maximum Velocity [m/s]
UQ50 Median Velocity [m/s]
Uw Weakening sliding Velocity [m/s]
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Supplementary Table 4 | Regression Statistics

Metrics f(x) R2 σ s
H/∆L′ vs V 1.2× V −0.089 0.765 0.10605 0.10747
∆L′ vs V (a) 6.01× V −0.371 0.918 0.14164 0.14266
∆L′ vs V (b) 3.23× V −0.354 0.956 0.25778 0.26115
HG/LG vs V V −0.0459 0.791 0.071 0.075
µs vs µeff µs = µeff 0.966 0.0237 0.0248
µeff vs V V −0.0774 0.84 0.0667 0.0675
µeff vs U (c) 5.3× U−0.87 0.934 0.050 0.0545
H0 vs V 1.86× V 0.28 0.974 228.3 232.2
L0 vs V 7.5× V 0.397 0.985 411.35 418.15

R2 is the coefficient of determination, σ the standard deviation and s the sample standard deviation. aFit
obtained using data from literrature20. bBest fit obtained with our datasets (see table 1). cMaximum velocity
values obtained in our terrestrial simulations.
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Supplementary Note 1
Analysis and limitations of the landslide data sets

Landslide data are frequently analysed using simple considerations on the energy balance between their
initial and final states. For the simple case of a rigid block sliding over a rigid topography, the loss of potential
energy between the initial released mass and the final deposit is equal to the work of the resisting force over
the total sliding distance of the block. If the resisting force is governed by Coulomb friction with constant
friction coefficient, this energy balance gives21, 22

MgHG = µMgLG, (1)

where g is acceleration due to gravity, M the mass, µ the friction coefficient between the block and the
bed, HG the falling height of the centre of mass of the block and LG its travel distance in the horizontal
direction. Supplementary equation (1) leads to the following relationship between the friction coefficient and
the characteristic lengths of the block trajectory:

HG

LG
= µ. (2)

Note that this relationship does not depend on gravity or mass. The common idea is to use this relationship
for a landslide even though its real energy balance is different from that of a sliding block. As HG and LG
are very difficult to measure in the field, it has been proposed21 to replace these quantities by the difference
in height H and in horizontal distance ∆L′ between the maximum elevation point of the initial mass and the
minimum elevation point of the deposit (see supplementary figure 1). For this reason, studies often consider
the so-called Heim’s ratio H/∆L′, and interpret it as an effective friction coefficient µeff , assumed to be
characteristic of the mean dissipation forces at work during the flow20 (see supplementary figure 2).

Figure 2-a reports the Heim’s ratio as a function of landslide volume, inferred from a compilation of
terrestrial and planetary data extracted from the literature and new data from Digital Topography Models
(DTM) we built and/or from very accurate field observations10, 11. These high quality data are represented
by symbols with thick black contours. These data consist of measurements of the maximum runout distance
∆L′ and of the total falling height H as defined in supplementary figure 1 for several geometries. These
two parameters can be easily estimated from field studies and from aerial/satellite imagery analysis. A more
difficult measurement is the landslide volume. The volume can be recovered by image processing when
the initial scar is not covered by the deposits or from the difference between pre and post-event Digital
Topography Models as previously discussed12 for Martian landslides. Note that a variation of up to 20%
between the initial released mass and the final deposit can be observed due to dilatancy effects11, 12, 23.

In the literature, measurements of Terrestrial landslide characteristics (volume, initial shape of the re-
leased mass, underlying topography, etc.) are not always available, in particular due to post-event weathering
processes that overprint critical information. Paradoxically, more data can be sometime recovered remotely
for landslides on planetary bodies such as Mars, because of their lower erosion rate, the absence of vegeta-
tion and free access to satellite imagery data from planetary missions (e.g. Magellan, Lunar Reconnaissance
Orbiter, Mars Express, Mars Reconnaissance Orbiter, Cassini/Huygens and Galileo).

For more than forty landslides, we were able to derive a DTM or had access to high quality data from
detailed field surveys (symbols with thick black contours in figure 2-a and supplementary table 1). However,
for most of the planetary landslides other than Martian landslides, volume measurements were not possible
due to the absence of an accurate DTM. This is the case for the selected landslides on the Moon, Venus
and on Icy Moons represented in figure 2. For these landslides, the volume was roughly deduced from the
measurement of ∆L′ using the empirical scaling law observed for Terrestrial events for which ∆L′ and V are
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known, as done or suggested by previous studies7, 24, 25. When using the well constrained data for which we
have a DTM or precise field data (see inset in figure 2-a), we find:

∆L′ = 3.2× V 0.35. (3)

Note that the best fit to the Terrestrial data20 (blue circles of figure 2-a) gives ∆L′ = 6× V 0.37. The origin of
this scaling law, essentially related to geometrical effects, is discussed here, based on an analytic solution for
granular flows (see supplementary equations (22)–(24)). When plotted in figure 2-a, these landslides follow
a trend similar to the better constrained Terrestrial and Martian data (Figure 2). However, we did not include
these low accuracy data in the following.

Except for the previous data on Martian landslides26, all the data, including our Martian landslides, follow
a similar trend, clearly showing a decrease of the Heim’s ratio when the volume increases (Figure 2-a,b),
whatever the gravitational acceleration, the material involved or the physical processes specific to the different
environments.

For Martian landslides within the Valles Marineris area, a large morpho-tectonic complex near the equator
with troughs of almost 5 km depth, there is indeed a strong discrepancy between our dataset obtained from
satellite imagery and that reported previously26 (respectively orange squares and pink squares in figure 2-a).
The difference between these two datasets is mainly related to their origin. Actually, the previous study26

used the gridded MOLA (Mars Orbiter Laser Altimeter) data providing a 463 m/post interpolated DTM from
the individual Precision Experiment Data Records (PEDRs) altimetry profiles. This was the best dataset
available at the time of their study. Our volume calculation was based on DTMs that we derived from stereo
pairs of CTX (Context Camera) images more recently collected by the Mars Reconnaissance Orbiter mission.
This provides a spatial sampling of ∼5 m/pixel and therefore ∼25 m/post for the altimetry grid27. When no
CTX stereo pairs were available, we used HRSC (High Resolution Stereo Camera) images that can provide
DTMs with 50-100 m/post of resolution28. Our DTMs can resolve smaller landslides than the ones identified
previously26, leading to wider range of volumes. Furthermore, while they26 have carried out a very large
inventory of Martian landslides (i.e. the largest to date), we have only selected here landslides that were free
to flow, i.e. those that were not stopped by the opposite walls as this is mostly the case in the Valles Marineris
system (the locations of our examples is shown in supplementary figure 3). Unfortunately, most of these large
landslides were actually stopped26. As a result, their values of H/∆L′ ratio are systematically greater than
ours, a point that has been already discussed29.

In order to quantify the decrease of the Heim’s ratio with volume, we only consider the data subset for
which DTM and/or field survey investigations provide accurate volume estimates and associated uncertainties
(symbols with thick black contours in figure 2-a). The best fit of these selected data gives the following
empirical relationship (Figure 2-a):

H

∆L′
= 1.2× 1

V 0.089
. (4)

For the data subset where DTMs are available, we can estimate the ratio between the elevation drop and the
travel distance of the centre of mass, i.e. HG/LG. Supplementary figure 2 shows that this ratio also decreases
with the volume, as already shown previously4, in a very similar way as the Heim’s ratio:

HG

LG
=

1

V 0.0859
. (5)
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Supplementary Note 2
Analytical formulation of the effective friction

Analytical development
Following former studies of our group16, 18, 30, we use the analytical solution developed previously31–33

that describes the collapse over an inclined plane of angle θ of a granular mass of effective friction coefficient
µeff = tan δ, where δ is the effective friction angle of the granular material. This solution is derived from
the 1D thin-layer depth-averaged equations of mass and momentum conservation with a Coulomb friction
law, using the method of characteristics (see previous works31, 33 for more details). The friction coefficient
formally appears in the basal friction force in the momentum equations. However, once fitted to reproduce
specific experiments or natural landslides, this friction coefficient can be interpreted as an empirical friction
coefficient that describes the mean dissipation during the flow, including the dissipation within the bulk (e.g.
see previous study34). Note that the thin-layer depth-averaged models give reasonable estimates of granular
flow deposits for initial aspect ratios smaller than one, which is the case for all the natural events considered
here, as listed in table 1 (refer to the previous study35 for discussion).

The analytical solution of the one-dimensional dam-break problem over inclined planes31 provides the
evolution of the mass profile and therefore of the front with time (see equation (21) in 31 and the following
text as well as case 1.1 of section 3.1 in 33). The front position xf (called xL on p. 1086 of 31) is given by

xf (t) = 2t
√
kgH0 cos θ − g

2
cos θ(tan δ − tan θ)t2. (6)

where k is considered here to be an empirical coefficient (see p. 1086 of 31 and 32 for more details) and H0

is the initial thickness of the released mass. The front velocity then reads:

vf (t) = 2
√
kgH0 cos θ − g cos θ(tan δ − tan θ)t. (7)

The front stops when the velocity vanishes (vf = 0) at time:

tf =

√
kH0

g cos θ

2

tan δ − tan θ
. (8)

Replacing t in (6) by tf from (8) gives ∆L = xf (tf ):

∆L =
2kH0

tan δ − tan θ
. (9)

Supplementary equation (9) with an empirical coefficient k = 0.5 reproduces quantitatively the results of
experiments of granular collapse over horizontal and inclined beds, in particular the dependence of ∆L on
inclination angle, on initial aspect ratio and on initial thickness of the released mass16, 35. We hence set k = 0.5
and adopt here the following semi-empirical relationship:

∆L =
H0

tan δ − tan θ
. (10)

The effective friction coefficient µeff = tan δ can be simply derived from supplementary equation (10) as:

µeff = tan θ +
H0

∆L
. (11)

According to supplementary equation (11), the effective friction coefficient µeff can be retrieved from field
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measurements of the initial thickness of the released mass H0, the downslope runout distance ∆L and the
mean slope angle along the landslide path θ.

Now, let us calculate the Heim’s ratio H/∆L′. From supplementary figure 1 we obtain:

H = H ′ +H”, (12)

with
H” =

H0

cos θ
, (13)

and
tan θ =

H ′

∆L′
. (14)

Combining these relationships gives:

H

∆L′
= tan θ +

H0

∆L′ cos θ
. (15)

Noting that
∆L′ = (∆L+ L0) cos θ −H0 sin θ, (16)

supplementary equation (15) gives

H

∆L′
= tan θ +

H0

cos2 θ (∆L+ L0 −H0 tan θ)
. (17)

If we replace (9) in (17) the Heim’s ratio reads:

H

∆L′
= tan θ +

1

cos2 θ
(

2k
tan δ−tan θ

+ L0

H0
− tan θ

) . (18)

Supplementary equation (18) shows that H/∆L′ depends on the slope of the topography, the aspect ratio
a = H0/L0 and the effective friction tan δ.

Supplementary equations (11) and (18) show that the Heim’s ratio H/∆L′ is generally not equal to the
effective friction. Indeed, only the first term in these two equations, tan θ, is the same. This first term
corresponds to HG/LG for a block sliding over an inclined plane. Note that for a block sliding over a curved
topography, from steep to gentle slopes, the mean slope experienced by its centre of mass depends indirectly
on the friction coefficient. Indeed, for high friction the block will stop on high slopes, while it will reach
gentler slopes for smaller friction. For a mass spreading over such a curved topography, the mean slope
calculated along the path of the avalanche front will be smaller than HG/LG, because the front is located
downslope compared to the centre of mass. The second terms of supplementary equations (11) and (18) take
into account the spreading of the mass over the topography. Consequently, the two regimes (i.e. sliding and
spreading) described in 36 are clearly identified here. While the expression of the second term is very simple
for the effective friction (supplementary equation (11)), for the Heim’s ratio (supplementary equation (18)) it
results from a complex interplay between different quantities.

Application to real data
We estimate µeff for the well constrained data presented previously by replacing the parameters in sup-

plementary equation (11) by the measurements on real landslides. The mean slope for natural landslides
is taken as the slope averaged along the path travelled by the landslide front. Figure 3-a compares µeff to
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H/∆L′, and shows that the two quantities are almost equal for small values, while they differ significantly for
larger values. In other words, H/∆L′ ' µeff for landslides with large volumes, whereas they are different
for small volumes, typically V < 106 m3. For example, while H/∆L′ = 0.7 and µeff = 0.46 for the Tsin Yi
2 landslide (V = 4× 103 m3), we find H/∆L′ ' µeff ∈ [0.11− 0.15] for the Martian Ophir West landslide
(V = 1.5 × 1012 m3). For very large volumes, V > 108 m3, the Heim’s ratio is equal to or overestimates
the effective friction. Figure 2-c shows that the effective friction µeff decreases with increasing volume for
natural landslides. For small volumes V < 1000 m3, the friction coefficient is about 0.7, and it reduces to
µeff < 0.1 for V > 1010 m3 following the empirical relationship (see Supplementary Fig. 5-a)

µeff =
1

V 0.0774
. (19)

While a similar trend is observed for the Heim’s ratio H/∆L′ (supplementary equation (4), Figures 2-b,c,
4-b and 5-a), the use of µeff instead of H/∆L′ significantly reduces the scatter in the data (see Table 4),
especially for small and intermediate volumes (Figure 2-b,c). Interestingly, the observed trend of µeff (V ) is
closer to HG/LG(V ) (supplementary equation (5)) than to H/∆L′(V ) (supplementary equation (4)). Note
that if we include the results from granular flow experiments (glass beads), the dataset as a whole is consis-
tent with saturation of the friction coefficient at small volumes approaching a value typical of the material
involved (0.6 for glass beads, 0.7 for rocks). Indeed, for laboratory experiments, µeff has been shown to
be approximately constant16, 37. However, the small range of volumes investigated in laboratory experiments
makes it difficult to verify the weak volume dependence suggested by supplementary equation (19).

Interestingly, the main trends of H/∆L′ and µeff as a function of volume result from significant contri-
butions of both the first and second terms of supplementary equations (11) and (18), respectively (Supple-
mentary Fig. 4). For instance, for the Lai Ping Road landslide (V = 1 × 105 m3), the effective friction is
µeff = 0.60, while tan θ = 0.13 and H0/∆L = 0.46. Whatever the volume, the two terms are of the same
order of magnitude. More precisely, for small volumes, the first term is higher than the second term and they
are equal at about V = 106 m3 and V = 5 × 107 m3, respectively, for H/∆L′ and for µeff (Supplementary
Fig. 4).

An important observation is that the mean slope angle globally decreases as the landslide volume increases
(Supplementary Fig. 4-a). While small landslides can be observed on a very large range of slopes, from gentle
to steep (up to tan θ ' 0.6), large landslides are only observed on gentle slopes (tan θ smaller than 0.1). This
is probably related to the limited characteristic length of relief variation. For large landslides (larger than
106 m3), the mean slope on which they deposited provides a first estimate of the effective friction coefficient
(see supplementary equation (11)). Supplementary figure 5 shows the dependencies among all variables
(µeff , V,H0 and L0). As shown above, µeff decreases as the volume increases. As the volume is a function
of the initial thickness H0, µeff also decreases with increasing H0 (Supplementary Fig. 5-a-c).

Finally, the analytical solution can be used to investigate the origin of the scaling law between ∆L′ and
V . Assuming that V is proportional to H3

0 , our well constrained natural data (Supplementary Fig. 5-b) results
in

H0 = α× V 1/3. (20)

with α = 0.28 (relaxing this assumption gives H0 = 0.45× V 0.32).
Supplementary equation (10) then implies that the runout distance along the slope is

∆L =
α

tan δ − tan θ
V 1/3. (21)

Supplementary figure 1-b shows that ∆L′ = (∆L+ L0 −H0 sin θ) cos θ, so that
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∆L′ =

[
α cos θ

tan δ − tan θ
V 1/3 + L0 −H0 sin θ

]
. (22)

In the data set considered here, L0 −H0 sin θ << ∆L′, so that supplementary equation (22) reduces to

∆L′ ' βV 0.33, (23)

where

β =
α cos θ

tan δ − tan θ
. (24)

As a result, the dependence of µeff on the volume is expected to manifest itself in the pre-factor β and not
in the exponent of the scaling law which seems to simply arise from geometrical considerations. This implies
that recovering the geometrical scaling in the empirical relationships between ∆L′ and V does not cast doubt
on the dependence of the effective friction on the volume, which contradicts what was advanced by 38 and
36. From supplementary equation (11), we have 1

tan δ−tan θ
= ∆L

H0
. Our data set shows that 1.7 < ∆L/H0 <

54. For natural data 0◦ < θ < 30◦, so that 0.87 < cos θ < 1. For α = 0.28, this gives approximately
0.5 < β < 15. Hence, the analytical solution predicts the same form of the scaling law for large and small
volumes (i.e. ∆L′ ∝ V 0.33) but with a smaller pre-factor for smaller volumes. This is in good agreement with
natural observations, which in an overall manner follow supplementary equation (3), implying β = 3.2 and a
volume dependence on V 0.35. Fitting small and large landslides separately, we find β ' 10 for V < 106 m3

and β ' 20 for V > 108 m3, with only slightly different volume dependencies (see inset in Figure 2-a).
Note that numerical simulations12 show that for a givenH0, the shape of the initial scar affects the volume

of the released mass but only weakly affects the runout distance ∆L′. As a result, variability in the shape of the
initial scar can affect the function ∆L′(V ) and generate some scatter in the data. Nevertheless, the empirical
relationship ∆L′(V ) for our well constrained data set shows a good coefficient of correlation, R2 ' 0.956
(table 4).

As discussed in 30, 32, 35, and 29, supplementary equation (9) gives

∆L

L0

=
a

tan δ − tan θ
, (25)

where a = H0/L0 is the initial aspect ratio. This relationship fits granular collapse experiments well16, 29, 39, 40.
Consequently, natural landslide runout distances are well reproduced by supplementary equation (25) for
typical values of µeff calculated from supplementary equation (11) and θ (Supplementary Fig. 5-d). However,
the initial aspect ratio is not clearly defined if the initial scar and the morphology of the released mass are
complex.

Supplementary Discussion
Potential mechanisms at the origin of the frictional weakening

The idea that reduced apparent friction could explain the high mobility of large landslides is not new.
Several mechanisms have been proposed, such as lubrication by water or air, thermal pressurization, frag-
mentation, acoustic fluidization, flash heating or erosion7, 13, 16, 20, 38, 41–51. Based on discrete elements simu-
lations with varying particle size, 52 found significant shearing of the flowing mass and postulated that the
apparent friction coefficient is proportional to the shear strain rate. While erosion processes may explain
the increase of mobility for landslides over steep or moderate slopes,47 laboratory experiments show that the
erosion efficiency decreases as the slope decreases16, 53 and hence large landslides flowing over slopes of only
a few degrees, such as the Valles Marineris landslides on Mars or the Socompa debris avalanche in Chile,
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would hardly be affected by erosion processes unless they are fluidized54. Airless environments on the Moon,
small asteroids like Vesta or on icy satellites like Iapetus rule out the air lubrication hypothesis as a unifying
mechanism. Fluidization during the spreading phase, an idea recently re-visited51, requires a fluid or a gas
to permeate through the granular material and is unlikely in airless environments. While free water may be
absent in some planetary environments, the fragmentation of particles may release water during the spreading
phase. Evidence for this mechanism of decomposition has been found in field studies55 and in laboratory
experiments56, 57, indicating that weakening during slip may be due to several factors, but the most important
is probably chemical pressurization, i.e. the dramatic increase of fluid pressure during a chemical reaction58.
Acoustic fluidization could occur in vacuum environments and is a good candidate for explaining long-runout
landslides throughout the Solar System. Unfortunately, this hypothesis is difficult to test in natural cases, even
on Earth.

The type of velocity-weakening friction law derived from the flash heating mechanism makes it possible
to reproduce the behaviour of a large range of landslides (equations (3) and (4)) as shown in the main text.
Even though another mechanism could be at the origin of similar friction laws, flash heating seems to be
one of the possible mechanisms. Indeed, as stated in a recent study49 and references therein, deformation
in landslides and other granular flows could be localized. Laboratory observations of velocity-weakening
have been previously interpreted within the framework of flash heating for both rock sliding59, 60 and granular
flows61. Note that velocity-weakening has been also observed for water ice62, which is relevant for icy ground
observed on the moons of giant planets such as Iapetus or Callisto where numerous landslides are observed.
The friction derived from flash heating involves a characteristic velocity for the onset of weakening Uw. This
velocity, controlled by competition between frictional heating and heat conduction, is defined19 as :

Uw =
αth
Da

(
ρc∆T

τc

)2

, (26)

where αth is the thermal diffusivity, Da a characteristic micro-contact size, c the heat capacity, ρ the density,
τc the local yield strength under shear loading and ∆T the difference between the initial temperature and
the temperature at the onset of thermal weakening of the micro-contact. Realistic values of the weakening
velocity for landslides (supplementary equation (26)) are proposed in supplementary table 2. The complexity
of natural flows leads to a very large range for the possible values of the parameters involved in the friction
law (equations (3) and (4)), in particular of Uw. Here we determine the empirical parameters that best fit the
relationship between the effective friction and the velocity obtained with our constant-friction simulations
(Figure 4-b). We find µo = 0.75, µw = 0.08 and Uw = 4 ms−1. Note that Uw is in the range of the weakening
velocities estimated for landslides (Supplementaty Tab. 2). Examples of simulations of real landslides taking
into account the velocity-weakening friction law (3)-(4) with these parameters are given in supplementary
figure 8 and 9. These figures show the variation of the friction coefficient for the different landslides, which
can reach values as small as µ = 0.1 during the first part of the flow and values as small as µ = 0.7 during
the decelerating phase. Note that the friction at the very beginning of the flow is quite high (0.3 < µ < 0.5).
The value of Uw fitted from our simulations is one order of magnitude larger than the value estimated19

or by fitting the sliding friction experiments3 (Supplementary Fig. 7). One possible explanation is that, in
our case, the velocity Uw corresponds to the averaged velocity of the granular layer. However, in granular
flows, the velocity varies on a thickness of several grains: granular flow experiments show almost linear or
Bagnold velocity profiles but strain localisation near the bottom is expected to occur in natural flows. If we
assume that the velocity varies on a layer larger than ten grains (which is a characteristic correlation length
in granular flows), the grain-grain velocity would be lower than Uw/10, and then comparable to the velocity
found previously3, 19.

In addition, some recent experimental works63 showed velocity strengthening at high slip rates. This
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strengthening of the friction coefficient is typically less than 0.1 while their weakening drop (from slow
slip rate to high slip rate) is of 0.8 in the same experiments (note that our drop is similar: ∼0.7). This
strengthening in the experiment at high velocity is therefore small. In addition, in our integrated approach, it
will be difficult to observe such "high-rate" strengthening after the weakening phase. Finally, the number of
landslides studied (and/or for which we can have access to the velocity) is limited compared to the numerous
samples in the laboratory experiments. It is therefore difficult to distinguish between actual strengthening
at high velocity and the scattering of the data set. Consequently these experimental observations are not in
contradiction with our results presented here. These two last aspects have to be investigated more deeply in
the future. They possibly lead to specific behaviours that could be identified in the field or in the generated
seismic signal17, 64.
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