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Abstract: Flows of dense granular materials comprise regions where the material is flowing, and
regions where it is static. Describing the dynamics of the interface between these two regions is
a key issue to understanding the erosion and deposition processes in natural environments. A free
interface simplified model for non-averaged thin-layer flows of granular materials has been previously
proposed by the authors. It is a coordinate-decoupled (separated variables) version of a model derived
by asymptotic expansion from an incompressible viscoplastic model with Drucker-Prager yield stress.
The free interface model describes the evolution of the velocity profile as well as the position of
the transition between static and flowing material. It is formulated using the coordinate Z in the
direction normal to the topography and contains a source term that represents the opposite of the net
force acting on the flow, including gravity, pressure gradient, and internal friction. In this paper we
introduce two numerical methods to deal with the particular formulation of this model with a free
interface. They are used to evaluate the respective role of yield and viscosity for the case of a constant
source term, which corresponds to simple shear viscoplastic flows. Both the analytical solution of
the inviscid model and the numerical solution of the viscous model (with a constant viscosity or the
variable viscosity of the µ(I) rheology) are compared with experimental data. Although the model
does not describe variations in the flow direction, it reproduces the essential features of granular flow
experiments over an inclined static layer of grains, including the stopping time and the erosion of the
initial static bed, which is shown to be closely related to the viscosity for the simple shear case.

Keywords: granular materials; static/flowing transition; non-averaged thin-layer flow; interface
dynamics; velocity profile; erosion; stopping time

1. Introduction

Understanding and theoretically describing the static/flowing transition in dense granular flows is
a central issue in research on granular materials, with strong implications for industry and geophysics,
in particular in the study of natural gravity-driven flows. Such flows (e.g., landslides or debris

Appl. Sci. 2017, 7, 386; doi:10.3390/app7040386 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2017, 7, 386 2 of 27

avalanches) play a key role in erosion processes on the Earth’s surface and represent major natural
hazards. In recent years, significant progress in the mathematical, physical, and numerical modeling of
gravity-driven flows has made it possible to develop and use numerical models for the investigation
of geomorphological processes and assess risks related to such natural hazards. However, severe
limitations prevent us from fully understanding the processes acting in natural flows and predicting
landslide dynamics and deposition, see e.g., [1]. In particular, a major challenge is to accurately
describe complex natural phenomena such as the static/flowing transition.

Geophysical, geotechnical, and physical studies have shown that the static/flowing transition
related to the existence of no-flow and flow zones within the mass plays a crucial role in most granular
flows and provides a key to understanding their dynamics in a natural context, see [1] for a review.
This transition occurs in erosion-deposition processes when a layer of particles flows over a static layer
or near the destabilization and stopping phases. Note that natural flows often travel over deposits
of past events, which may or may not be made of the same grains, and entrain material from the
initially static bed. Even though erosion processes are very difficult to measure in the field, e.g., [2–4],
entrainment of underlying material is known to significantly change the flow dynamics and deposition,
e.g., [5–10].

Experimental studies have provided some information on the static/flowing dynamics in granular
flows, showing for example that the presence of a very thin layer of erodible material lying on an
inclined bed may increase the maximum runout distance of a granular avalanche flowing down the
slope by up to 40% and change the flow regimes [9,11,12]. In these experiments that mimic natural
flows over initially static beds (Figure 1), quasi-uniform flows develop when the slope angle θ is
a few degrees lower than the typical friction angle δ of the involved material [12]. Figures 2 and 3
show new data extracted from the experiments performed by [12] on the change with time of the
static/flowing interface position b and the velocity profiles U(Z) within the granular mass, where Z is
the direction normal to the bed. At a given position X along the plane, the flow is shown to excavate
the initially static layer immediately when the front reaches this position. The static/flowing interface
rapidly penetrates into the static layer, reaching a lowest position (that depends on the slope angle)
for significantly high slopes and then rises almost linearly or exponentially toward the free surface
until the whole mass of material stops (Figure 2). A theoretical description of these observations is still
lacking. In particular, questions remain as to what controls the change with time of the static/flowing
interface position and the velocity profiles and how these characteristics are related to the rheology of
the granular material and the initial and boundary conditions.

Figure 1. Experimental setup from [9,12] to study granular column collapse over inclined planes
covered by an initially static layer made of the same grains as those released in the column. For slope
angles θ a few degrees smaller than the typical friction angle δ of the involved material, a quasi-uniform
flow develops behind the front.
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Figure 2. Position of the static/flowing interface b as a function of time t until the granular mass stops,
measured at X = 90 cm from the gate, from experiments of granular collapse over an initially static
granular layer of thickness b0 = 5 mm on an inclined channel of slope angle θ = 19◦ (green squares),
θ = 22◦ (blue stars), θ = 23◦ (red crosses), and θ = 24◦ (black vertical crosses). Time t = 0 s corresponds
to the time when the front of the flowing layer reaches the position X = 90 cm. The approximate
upward velocity ḃ of the static/flowing interface is indicated in m/s for each slope angle. These new
results have been extracted from the experiments performed by [12,13] for granular columns of initial
down-slope length r0 = 20 cm, initial thickness h0 = 14 cm, and width W = 20 cm (i.e., volume
V = 5600 cm3). Note that the position of the free surface when the mass stops, i.e., when b = h,
represented by the upper point for each angle, slightly depends on the slope angle and decreases as the
slope angle increases, from about 0.025 m at θ = 19◦ to about 0.018 m at θ = 24◦.

t = 0.1 s

t = 0.4 s

t = 0.7 s

z
(m

)

0

0.005

0.010

0.015

0.020

0.025

U(m/s)

0 0.5 1.0

(a) ! = 19¡

t = 0.1 s

t = 0.3 s

t = 0.5 s

t = 0.8 s

t = 0.9 s

t = 1.0 s

z
(m

)

0

0.005

0.010

0.015

0.020

0.025

U(m/s)

0 0.5 1.0

(b) ! = 22¡

t = 0.15 s

t = 0.5 s

t = 1.0 s

t = 2.0 s

z
(m

)

0

0.005

0.010

0.015

0.020

0.025

U(m/s)

0 0.5 1.0

(c) ! = 24¡

Figure 3. Velocity profiles U(Z) at different times until the granular mass stops, measured at X = 90 cm
from the gate, in experiments of granular collapse over an initially static granular layer of thickness
b0 = 5 mm on an inclined channel of slope angle (a) θ = 19◦; (b) θ = 22◦; and (c) θ = 24◦. Time t = 0 s
corresponds to the time when the front of the flowing layer reaches the position X = 90 cm. These
new results have been extracted from the experiments performed by [12,13] for granular columns of
initial down-slope length r0 = 20 cm, initial thickness h0 = 14 cm, and width W = 20 cm (i.e., volume
V = 5600 cm3).

In order to alleviate the high computational costs required to describe the real topography and
the rheology, which both play a key role in natural flow dynamics, thin-layer (i.e., the thickness of
the flow is assumed to be small compared to its down-slope extension) depth-averaged models are
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generally used to simulate landslides [14]. Such models have been rigorously derived for arbitrary
topography, but the static/flowing transition has generally been neglected, e.g., [15–18]. Several
attempts have been made to describe this transition in thin-layer (i.e., shallow) models, in particular
by deriving an equation for the static/flowing interface position or by establishing erosion/deposition
rates, e.g., [19,20]. However, these approaches are generally based on debatable phenomenological
laws and/or are too schematic to be extended to natural flows [21]. The simplifications used in some
previous models lead to an inconsistent energy Equation [22]. Indeed, some of these models prescribe
a given velocity profile to deduce the entrainment rate (see e.g., [23] or references in [22]). However,
in transient flows, the velocity profile changes with time as shown for example in the multilayer
shallow model of [24]. A better understanding of the non-averaged case is necessary before defining
more physically relevant depth-averaged models including the static/flowing transition. This is why
we focus here on non-averaged thin-layer models.

Recent work has shown that viscoplastic flow laws with yield stress describe well granular flows
and deposits in different regimes, from steady uniform flows [25–28] to transient granular collapse
over rigid or erodible horizontal beds [29–31] and inclined beds [24,32,33] or accelerating/decelerating
channel flows [34]. Very good agreement with experiments is obtained even though these laws, and
in particular the so-called µ(I) rheology, where I is the inertial number [28], have been shown to be
ill-posed in the quasi-static regime, i.e., for small I (and also for large I) [35]. These promising results
may be related to the use of a coarse mesh, whereby simulations avoid the ill-posedness by damping
the fast-growing high wavenumbers [33]. In any case, the quasi-static regime near the static/flowing
interface is known to be very complex, involving strong and weak force chains and local rearrangement
of particles, e.g., [36,37] and has been widely studied, in particular using discrete element methods,
e.g., [1,38,39]. This regime is not accurately described by the proposed viscoplastic laws involving
a simple yield stress. Questions however remain as to whether such ‘simple’ viscoplastic laws are able
to describe quantitatively the change with time of the static/flowing interface position and the velocity
profiles observed experimentally for flows over an initially static bed and how the viscosity affects
these processes.

Based on such a viscoplastic model with yield stress, an analytic expansion in the non-averaged
thin-layer regime is provided in [40], giving a theoretical basis for equations describing the
static/flowing interface dynamics in a dry granular material. A key point in this approach that
fundamentally differs from previous thin-layer models (see [21] for a review) is that even if the
flow is assumed to be thin, the normal coordinate Z is still present (there is no depth-averaging).
The static/flowing interface is free in this approach, in the sense that it has no explicit equation
defining its evolution. Its time variation is instead implicitly determined by an extra boundary
condition on the velocity at this interface. The model from [40] being still too complicated, however
a formal decoupling of the coordinates X in the down-slope direction and Z normal to the topography
is proposed in [41], leading to a model with only the coordinate Z, but including a source term S
that represents the opposite of the net force acting on the flow, including gravity, pressure gradient,
and internal friction. We propose here to evaluate the dynamics produced by the free interface model
of [41], for the most simple case involving a constant source S. This corresponds to assuming no
dependency on the down-slope coordinate X in the model of [40]. It is also equivalent to considering
simple shear solutions to the original viscoplastic model, which shows that in this case the model is
valid without a smallness assumption. Although the down-slope coordinate X plays a key role in real
flows, taking into account the fluctuations of the free surface, topography, and inflow information,
we must first understand the dynamics when X is not involved. We show that the analysis of this
simple shear system provides new insight into the change of the static/flowing interface position and
the velocity profiles with time.

Because the boundary conditions and interface evolution are formulated in an uncommon way,
specific methods must be used to deal numerically with the free interface model. We introduce two



Appl. Sci. 2017, 7, 386 5 of 27

numerical methods that give similar grid-independent results, thereby showing that our model is
well-posed for the case considered here involving only Z dependency.

The paper is organized as follows. The model of [40,41] for the case of a constant
source (corresponding to simple shear flows of the viscoplastic model) is recalled in Section 2.
Then, in Section 3, we derive an analytical solution for the inviscid model with a constant source term,
which partly reproduces the experimental observations and shows explicitly how the static/flowing
interface position and the velocity profiles are related to the flow characteristics and to the initial
and boundary conditions. In Section 4, we introduce two new numerical methods for the simulation
of the viscous model, with a constant viscosity or the variable viscosity associated with the µ(I)
rheology. The numerical results show that, as opposed to the inviscid model, viscosity makes it
possible to reproduce the initial penetration of the static/flowing interface within the static bed and
the exponential shape of the velocity profiles near this interface. Finally, in Section 5, these results are
discussed based on comparison with former experimental and numerical studies on granular flows,
showing the key features and the limits of the non-averaged thin-layer model for providing a better
understanding and modeling of laboratory and natural flows.

2. The Free Interface Model

2.1. Origin of the Model: Viscoplastic Rheology with Yield Stress

The initial governing equations express the dynamics of an incompressible (∇ ·U = 0) viscoplastic
material with Drucker–Prager yield stress,

∂tU + U · ∇U−∇ · σ = −g, (1)

with the rheological law

σ = −p Id + 2νDU + µs p
DU
‖DU‖ , (2)

where U is the velocity, −g gravitational acceleration, σ the stress tensor (normalized by the density),
p the scalar pressure (also normalized by the density), and DU the strain rate tensor DU = (∇U +

(∇U)t)/2. Here the norm of a matrix A = (Aij) is ‖A‖ = ( 1
2 ∑ij A2

ij)
1/2. The coefficients µs > 0 and

ν ≥ 0 are the internal friction and the kinematic viscosity, respectively. In general ν and µs could
depend on ‖DU‖ and p, but we shall consider µs constant here since the so-called µ(I) law can be
written in this form for some viscosity ν, see Section 4.5.

2.2. Free Interface Model with Source Term

A non-averaged thin-layer model for flows described by Equations (1) and (2) with a
static/flowing interface has been derived in [40]. It is formulated for the coordinates X in the direction
tangent to the topography and Z normal to the topography. The topography is described by its angle
θ(X) with respect to the horizontal (see Figure 4 for a flat topography). For the case of simple shear
(no dependency on X), no smallness assumption is necessary ([40] Section 2.3) and the model can be
written as the following free interface problem with a source term. The unknowns are U(t, Z) (velocity
in the direction tangent to the topography) defined for b(t) < Z < h, where h > 0 is the given constant
thickness of the layer and b(t) the unknown position of the static/flowing interface, 0 < b(t) < h.
They obey the following equations,

∂tU(t, Z) + S(t, Z)− ∂Z
(
ν∂ZU(t, Z)

)
= 0 for all Z ∈ (b(t), h), (3)
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with the following boundary conditions for all t > 0,

U = 0 at Z = b(t), (4a)

ν∂ZU = 0 at Z = b(t), (4b)

ν∂ZU = 0 at Z = h. (4c)

The source S(t, Z) is assumed to be given and represents the opposite of the net force, excluding
the viscous force (see [41] and (10) below). The viscosity ν can a priori depend on t and Z in the model.
The velocity is extended by defining U(t, Z) = 0 for 0 ≤ Z ≤ b(t), corresponding to the static domain.
The initial condition is formulated as

U(0, Z) = U0(Z) for all Z ∈ [0, h], (5)

where U(0, Z) is the limit of U(t, Z) as t ↓ 0. The initial velocity U0(Z) is given for Z ∈ [0, h], such that
for some b0 ∈ (0, h) (initial position of the interface), the function U0 satisfies U0(Z) = 0 for Z ∈ [0, b0],
and ∂ZU0 > 0 for Z ∈ (b0, h). The system is completed by the static equilibrium condition

S(t, b(t)) ≥ 0 for all t ∈ (0, T], (6)

that states that the net force must be resistive in the static layer. The velocity U obtained when
solving (3)–(6) is expected to satisfy ∂ZU > 0 for b(t) < Z < h. As proved in [41], this is the case as
soon as ∂ZS ≤ 0 and ν > 0.

The unusual nature of the system (3)–(6) lies in the fact that the interface position b(t) is free,
meaning that it has no given equation relating ḃ(t) ≡ db/dt to other quantities. Its evolution is
instead implicitly governed by the boundary conditions (4a) and (4b). An interesting property of the
model (3)–(6) is that a differential equation can nevertheless be derived for the time evolution of the
position of the interface, valid under some conditions, as follows (see [41]).

• If ν > 0 then
∂Z
(
ν∂ZU

)
(t, b(t)) = ν∂2

ZZU(t, b(t)) = S(t, b(t)), (7)

and whenever S(t, b(t)) 6= 0, one has

ḃ(t) =

(
∂ZS(t, b(t))− ∂2

ZZ(ν∂ZU)(t, b(t))
S(t, b(t))

)
ν. (8)

• If ν = 0 and ∂ZU(t, b(t)) 6= 0, then

ḃ(t) =
S(t, b(t))

∂ZU(t, b(t))
. (9)

These formulas show the strong interrelationship between the velocity profile in the direction
perpendicular to the inclined plane and the evolution of the static/flowing interface position.
Erosion, i.e., penetration of the static/flowing interface into the erodible bed, occurs when ḃ(t) < 0,
and deposition when ḃ(t) > 0.

The full model of [40] is indeed more general than (3)–(6), since it includes a possible dependency
on X. It is derived under the assumptions that the thickness of the layer, the curvature of the
topography, and the viscosity are small, the internal friction angle is close to the slope angle, the velocity
is small, and the pressure is convex with respect to the normal coordinate Z. Then an intermediate
model with formal decoupling of the X and Z coordinates has been proposed in [41], corresponding to
a non-constant source term S in (3)–(6). An important motivation for our simple shear study is the
possibility to later deal with the full X-dependent case.
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Under the present assumption of simple shear, the source term S is indeed constant (see below
Section 2.3). Interestingly, Equation (9) shows that ḃ(t) ≥ 0 (i.e., the static/flowing interface never
drops) when ν = 0 because S(t, b(t)) ≥ 0 and ∂ZU > 0. This means that for the inviscid model,
a layer flowing on top of an initially static layer will not erode, i.e., the static material will not be
put into motion (this property is however not true when S depends on Z, in which case we can
have ḃ(t) < 0 together with ∂ZU(t, b(t)) = 0 and S(t, b(t)) = 0, see [41]). For the viscous model
(Equation (8)), and still with constant source term S, erosion or deposition can occur, depending on
whether ∂2

ZZ(ν∂ZU)(t, b(t)) is positive or negative, respectively.

2.3. Free Interface Model with Constant Source

The most simple case in the free interface model (3)–(6) is when we take the source term S to be
constant in time and space. Indeed, according to ([40] Section 2.3), when all quantities are independent
of X, the pressure becomes hydrostatic p = g cos θ(h− Z), and the source takes on a constant value

S = g(− sin θ + µs cos θ), (10)

where g > 0 is gravitational acceleration, θ > 0 the constant slope angle (note that this sign convention
differs from [40,41]), and µs = tan δ > 0 the friction coefficient with δ the friction angle related to
the material. The source term is thus the result of the balance between the driving force due to
gravity (−g sin θ < 0) and the friction force (µsg cos θ > 0). Indeed according to ([40], Proposition 2.1),
for the source term (10), the solution to the system (3)–(6) is an exact solution to the two-dimensional
original viscoplastic model (1) and (2) without dependency on X. This means that the free interface
model (3)–(6) with a constant source term (10) exactly describes the simple shear flows of (1) and (2),
corresponding to the configuration shown in Figure 4.

θ

x

z

flowing layer

static layer

h

X

b(t)

Z

Figure 4. Simplified flow configuration consisting of a uniform flowing layer over a uniform static
layer, both parallel to the rigid bed of slope angle θ. The static/flowing interface position is b(t) and
the total thickness of the mass h is constant.

We observe that with (10) and µs = tan δ, the static equilibrium condition (6) is simplified and
becomes tan θ ≤ µs, i.e.,

θ ≤ δ, (11)

meaning that the internal friction must at least neutralize the gravity force due to the slope. This is
a necessary condition for the existence of a solution to the free interface model (3)–(6). Indeed, if this
condition is not satisfied, we expect that “b = 0”, meaning that the entire layer immediately flows
down the inclined plane.

The remainder of the paper is devoted to the evaluation of this constant source term model.
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3. Analytical Solution for the Inviscid Model with Constant Source Term

3.1. Analytical Solution

For the inviscid model where ν = 0, the free interface model (3)–(6) can be written

∂tU(t, Z) + S(t, Z) = 0 for all Z ∈ (b(t), h), (12)

with the following boundary condition for all t > 0,

U(t, b(t)) = 0, (13)

and with the initial condition (5) and the static equilibrium condition (6). Moreover, if the source term
is chosen constant and uniform as in Equation (10), i.e.,

S(t, Z) = S := g cos θ(tan δ− tan θ) ≥ 0, (14)

with µs = tan δ, θ ≤ δ, then we can infer an analytical solution. Specifically, the solution to Equations (5),
(12) and (13) is given by

U(t, Z) = max
(

U0(Z)− St, 0
)

for all Z ∈ [0, h]. (15)

Equation (15) shows that the velocity profile (at all times when a flowing layer exists) has the
same shape as the initial velocity profile: it is just shifted towards decreasing velocities at constant
speed S and clipped below the value 0. Note that the velocity profile only depends on g, θ, δ through S
in (14). If S = 0, the solution is steady, whereas if S > 0, the velocity decreases with time until the flow
stops. Furthermore, the interface position b(t) results from the following implicit equation:

U0(b(t)) = St. (16)

This equation has a unique solution in [b0, h] for all times t ≤ tstop, where tstop is the time when
the whole mass stops, defined by

tstop =
U0(h)

S
=

U0(h)
g cos θ(tan δ− tan θ)

. (17)

The complete stopping of the flow occurs at t = tstop. For all times t > tstop, the velocity U can be
extended by setting U(t, Z) = 0 for all Z ∈ [0, h], and b(t) = h.

3.2. Choice of the Parameters and Initial Conditions

In order to compare the analytical solution to the results presented in Figures 2 and 3 extracted
from the experiments performed by [12], we have to define the friction angle δ, the slope angle θ,
the thickness of the granular layer h, the thickness of the initially static layer b0, and the initial velocity
profile U0(Z). Glass beads of diameter d = 0.7 mm were used, with repose and avalanche angles of
about 23◦ and 25◦, respectively. Because wall effects are known to increase the effective friction for
granular flows in channels such as those of [12], we use here a friction angle of δ = 26◦ [27,32,42].
We perform different tests by varying the slope angle θ from 19◦ to 24◦. Indeed, for slope angles θ much
lower than δ, the interface reaches the top of the layer very quickly, preventing us from observing
a possible erosion of the static layer. We set b0 = 5 mm, which is the thickness of the initial static layer
in the experiments, and h = 0.02 m, corresponding to the mean thickness at the position X = 90 cm
where the measurements were performed, see Figure 3. Thus unless specified, we always take

δ = 26◦, b0 = 0.005 m, h = 0.02 m. (18)
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The objective here is only to compare the order of magnitude and the general trend of the
analytical solution to the experimental results, since the experiments are more complicated than the
uniform granular layer and the initial conditions defined in the model. In particular, the thickness of
the granular layer in the experiments may vary by up to 20% during the flow and slightly depends on
the inclination angle (see Figure 3). Furthermore, the initial velocity profiles and the maximum velocity
also depend on the inclination angle, whereas we impose here the same velocity profile for all the tests.

Velocity profiles in experimental granular flows have been extensively measured in different
regimes, see e.g., [25]. For free surface flows over rigid inclined beds, the velocity profiles vary with
inclination, thickness of the flow, and time. Essentially, the velocity profiles may vary from a linear
profile for thin layers over small slope angles to Bagnold-like profiles for higher inclinations. The same
general trend is observed for thicker flows (see Figure 5 of [25]). For surface flows over a pile of static
grains, the velocity profiles roughly exhibit an upper linear part in the flowing layer and a lower
exponential tail near the static/flowing interface (see Figure 6 of [25]). This is consistent with the
measurements shown in Figure 3. Furthermore, experimental results suggest that the shear rate ∂ZU

is almost constant and equal to 0.5
√

g
d (see e.g., Equation (11) of [25]). As a result, for a linear profile

of slope α1 (see case (a) below), we choose α1 = 70 s−1, which is consistent with the velocity profiles
measured at t = 0 s (see Figure 3).

In order to investigate the different possible profiles of the velocity, we choose three initial velocity
profiles defined, for all Z ∈ [b0, h], as:

1. linear profile U0(Z) = α1(Z− b0), with α1 = 70 s−1,
2. exponential profile U0(Z) = α2(eβZ − eβb0

), with α2 = 0.1 ms−1 and β = 130 m−1,

3. Bagnold profile U0(Z) = α3((h− b0)
3
2 − (h− Z)

3
2 ), with α3 = 545 m−1/2s−1.

In each case, the maximum velocity is U0(h) ' 1 ms−1. For each profile, Equation (9) provides
explicitly the time evolution of the static/flowing interface position as follows:

1. b(t) =
S
α1

t + b0,

2. b(t) =
1
β

log
(

S
α2

t + eβb0
)

,

3. b(t) = h−
(
(h− b0)3/2 − S

α3
t
)2/3

.

These formulae are valid as long as t ≤ tstop = U0(h)/S, i.e., b(t) ≤ h.

3.3. Results and Comparison with Experiments

We compare here our analytical results with the experimental data shown in Figures 2 and 3.
The velocity profiles at the position X = 90 cm from the gate at different times for slope angles θ = 19◦,
22◦, 23◦, and 24◦ were taken from the experiments of [9,12,13]. The position of the static/flowing
interface has been calculated using a velocity threshold of 1cm/s. The material has been assumed to
be static when the particle velocity is lower than this threshold. In order to observe velocity profiles on
one side of the flow (through the transparent channel wall) and monitor the evolution of the interface
separating flowing and static grains, black beads have been used as tracers at a volume fraction of
about 50%. Measurements have been made from successive frames during short time intervals of
0.01–0.04 s ([13]).

The b(t) curves are plotted in Figure 5 and the U(Z) profiles in Figures 6 and 7. The evolution of
the static/flowing interface position b(t) obtained from the analytical solution (Figure 5) reproduces
to a certain extent the experimental observations. The shape of b(t) is directly related to the velocity
profile, as demonstrated by Equation (9). For the analytical solution, depending on the initial velocity
profile, the stopping time is in the range 2.75–3 s for θ = 24◦, 1.35–1.5 s for θ = 22◦, and 0.75–0.85 s
for θ = 19◦, whereas tstop ' 3.4 s, tstop ' 1.4 s, and tstop ' 0.9 s in the experiments, respectively.
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As a result, the stopping time is well reproduced by the analytical solution, even though its strong
increase for θ = 24◦ is underestimated in the analytical solution. On the other hand, the penetration of
the static/flowing interface within the initially static bed is not reproduced by the analytical solution
that instead predicts a static/flowing interface rising towards the free surface at all times.
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Figure 5. Static/flowing interface position b as a function of time t for the inviscid model, different
slope angles and an initially static granular layer of thickness b0 = 5 mm, using (a) a linear, (b) an
exponential, and (c) a Bagnold initial velocity profile. The experimental results from Figure 2 are shown
for comparison.
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Figure 6. Velocity profiles U(Z) at different times for the inviscid model, with a linear initial velocity
profile and an initially static granular layer of thickness b0 = 5 mm over an inclined plane of slope
(a) θ = 19◦ and (b) θ = 24◦. The experimental results from Figure 3 are shown for comparison.
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Figure 7. Velocity profiles U(Z) at different times for the inviscid model, with an initially static
granular layer of thickness b0 = 5 mm over an inclined plane of slope (a,c) θ = 19◦ and (b,d) θ = 24◦,
using (a,b) an exponential and (c,d) a Bagnold initial velocity profile. The experimental results from
Figure 3 are shown for comparison.

The decrease of the velocity with time is relatively well reproduced up to about 0.8 s. With the
analytical solution, the velocity profiles maintain the same shape whereas the maximum velocity
decreases, as roughly observed in the experiments. The decrease of the maximum velocity in the
experiments and with the analytical solution are very similar (Figure 7). At later times (t ≥ 1 s) and
at θ = 22◦ and θ = 24◦, the experiments show a clear change in the velocity profile (see Figure 3c at
t = 1 s and t = 2 s) that is not reproduced by the constant shape of the velocity profiles predicted by
the analytical solution. Furthermore, the maximum velocity decreases much faster in the experiments.
In the experiments, the velocity profiles seem to be closer to linear for smaller slopes (θ = 19◦ and
θ = 22◦) and more exponential for θ = 24◦. Referring to Equation (16) and Figure 5, this may explain
why b(t) measured experimentally has an exponential shape at θ = 24◦, whereas it is closer to linear
for smaller slope angles.

4. Numerical Solution to the Viscous Free Interface Model

In this section, we consider a numerical solution to the free interface model (3)–(6) with viscosity
ν > 0 and constant and uniform source term S given by (14). We first present two robust numerical
methods to obtain the numerical solution. Then, we describe the main features of the transient regime
by a scale analysis. Finally, we compare our numerical results with experiments, first with constant
viscosity and then with variable viscosity deduced from the µ(I) viscoplastic rheology.

Given the unusual form of our model with a free moving interface, some comments are in
order. From the mathematical standpoint, it is not obvious that the boundary formulation (4) gives
a well-posed problem. Actually, it is known [35] that the µ(I) rheology can lead to an ill-posed problem.
We claim that for the simple shear configuration considered here, the model is well-posed (although this
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would not be the case if X dependency were involved, see [40]). To support this claim, we observe that
we consider two different numerical methods which both deliver stable, grid-independent solutions.
Moreover, the second numerical method is related to an optimal problem under a very classical form
(see (26) below), for which well-posedness is well-known. From a numerical standpoint, we point
out that both numerical methods are computationally effective. Let us mention in passing that none
of these methods uses the differential Equation (8) which would require an intricate treatment of the
third-order derivative, but use instead the boundary conditions (4).

4.1. Discretization by Moving the Interface

The first numerical method involves rewriting (3), (4), (5) for a normalized coordinate 0 ≤ Y ≤ 1.
We perform the change of coordinates

t = τ, Z = b(τ) + (h− b(τ))Y, (19)

that leads to the differential relations ∂τ = ∂t + ḃ(τ)(1− Y)∂Z and ∂Y = (h− b(τ))∂Z. Here, ∂t and
∂τ denote the differentiation with respect to time at constant Z and Y, respectively. The change of
coordinates (19), and hence the discretization method presented in this subsection, is appropriate as
long as there is a flowing layer so that h− b(τ) > 0. Another discretization method dealing with the
stopping phase when b(t) reaches the total height h is presented in Section 4.2. The discretization
method considered in this subsection has the advantage of tracking explicitly the position of the
static/flowing interface, whereas the method of Section 4.2 requires post-processing to evaluate the
interface position.

Using the change of coordinates (19), Equation (3) becomes

∂τU − ḃ
1−Y
h− b

∂YU + S− 1
(h− b)2 ∂Y(ν∂YU) = 0 for all Y ∈ (0, 1), (20)

and the boundary conditions (4) become

U = 0 at Y = 0, (21a)

ν∂YU = 0 at Y = 0, (21b)

ν∂YU = 0 at Y = 1. (21c)

We split the space domain (0, 1) into nY cells of length ∆Y with nY∆Y = 1 and denote the center
of the cells by Yj = (j− 1/2)∆Y, for all j = 1 . . . nY. For n ≥ 0, the discrete times tn are related by
tn+1 = tn + ∆tn, where ∆tn is the time step (chosen according to the CFL condition (25) below) and
t0 = 0. We write a finite difference scheme for the discrete unknowns Un

j ' U(tn, Yj) and bn ' b(tn),

for all j = 1 . . . nY and all n ≥ 1, using the initial conditions U0 (and b0) to initialize the scheme. For all
n ≥ 0, given (Un

j )1≤j≤nY and bn, the equations to compute (Un+1
j )1≤j≤nY and bn+1 are

Un+1
j −Un

j

∆tn − (1−Yj)

h− bn an+ 1
2

j + S(tn, Yj)−
νn

j+1/2(U
n+1
j+1 −Un+1

j )− νn
j−1/2(U

n+1
j −Un+1

j−1 )

(h− bn)2∆Y2 = 0, (22)

for all j = 1 . . . nY, with

an+ 1
2

j =


ḃn+ 1

2
Un

j −Un
j−1

∆Y
if ḃn+ 1

2 ≤ 0,

ḃn+ 1
2

Un
j+1 −Un

j

∆Y
if ḃn+ 1

2 ≥ 0,
with ḃn+ 1

2 =
bn+1 − bn

∆tn , (23)
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together with the boundary conditions

Un+1
0 = −Un+1

1 , (24a)

Un+1
0 = Un+1

1 , (24b)

Un+1
nY+1 = Un+1

nY
. (24c)

In Equation (22), the values νn
j+1/2 are assumed to be known, and they are computed as interface

values from a given variable viscosity ν(t, Z). Equations (24a) and (24c) are used to provide the
ghost values Un+1

0 and Un+1
nY+1 needed in Equation (22) for j = 1 and j = nY, respectively, whereas

Equation (24b) is used to determine bn+1 as described below. We observe that in Equation (22),
the diffusive term is treated implicitly in time, and the first-order derivative of U is treated explicitly
using upwinding. As a result, we impose the CFL condition

∆tn|ḃn+ 1
2 |

h− bn ≤ ∆Y. (25)

This CFL condition is evaluated approximately using the value ḃn− 1
2 from the previous time step,

since ḃn+ 1
2 is unknown at the beginning of the time step; for n = 0, the value 0 is used (hence, no CFL

condition is initially enforced, but the time step is taken small enough). Typical values are ∆t0 = 10−4 s
for the initial time step and ∆Y = 10−4.

The solution to Equations (22)–(24) is obtained as follows. We can solve the system (22) together
with the boundary conditions (24a) and (24c) for any value of bn+1 since it is a linear system in Un+1

with right-hand side containing Un, the source term and the advection term (remember that the
advective derivative is treated explicitly). This leads to a tridiagonal linear system with a matrix
that results only from the time derivative and the diffusive terms. This matrix, which is diagonally
dominant, has an inverse with nonnegative entries. Thus, the solution (Un+1

j )1≤j≤nY can be expressed

linearly with nonnegative coefficients in terms of the coefficients (an+1/2
j )1≤j≤nY which appear on the

right-hand side and which depend on the still unknown interface position bn+1. According to (23)
and since Un

j is nondecreasing with respect to j (it should remain nondecreasing because we assume

∂ZS ≤ 0), Un+1
j is thus, for all j = 1 . . . nY, a nondecreasing continuous and piecewise linear function

of bn+1, with two different formulae corresponding to whether bn+1 is greater or smaller than bn.
In particular, the remaining boundary condition (24b), which is equivalent to Un+1

1 = 0 owing to (24a),
determines a unique solution bn+1, see Figure 8. The value of bn+1 can be computed explicitly by
solving the linear system twice with two different right-hand sides and using linear interpolation.
The first solve uses the right-hand side evaluated with the temporary value bn for bn+1, yielding
a temporary value for Un+1

1 . If the obtained value is negative (left panel of Figure 8), the second solve is
performed using the value h for bn+1, otherwise the value 0 is used (right panel of Figure 8). Once bn+1

is known, we determine the entire profile Un+1
j for all j = 1 . . . nY by linear interpolation.

4.2. Discretization by an Optimality Condition

The second numerical method for solving conditions (3), (4) and (5) with positive viscosity ν > 0
uses a formulation as an optimal problem set on the whole interval (0, h), valid under the assumption
∂ZS(t, Z) ≤ 0, 

min(∂tU + S− ∂Z(ν∂ZU), U) = 0 for all Z ∈ (0, h),

∂ZU = 0 at Z = h,

U = 0 at Z = 0,

(26)

where we consider a no-slip boundary condition at the bottom. Note that this condition becomes
relevant whenever the static/flowing interface reaches the bottom, a situation encountered in our
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simulations as shown in Figure 10c. In (26), the static/flowing interface position b(t) no longer appears
explicitly, but has to be deduced from the velocity profile as

b(t) = inf {Z ∈ [0, h] such that U(t, Z) > 0}. (27)

Un+1
1

bn h0

•

•

•

bn+1
•

Un+1
1

bn h
0

•

•

•
•

bn+1

Figure 8. Velocity Un+1
1 versus bn+1. The chosen value for bn+1 is determined by the intersection of

the curve with the horizontal axis.

We split the space domain (0, h) into nZ cells of length ∆Z with nZ∆Z = h, and denote the center
of the cells by Zj = (j− 1/2)∆Z, for all j = 1 . . . nZ. The discrete times tn, for all n ≥ 0, are related
by tn+1 = tn + ∆tn, where ∆tn is the time step (chosen according to the CFL condition (30) below)
and t0 = 0. We discretize the problem (26) using a finite difference scheme by writing for the discrete
unknowns Un

j ' U(tn, Zj)

min

(
Un+1

j −Un
j

∆tn + S(tn, Zj)−
νn

j+1/2(U
n
j+1 −Un

j )− νn
j−1/2(U

n
j −Un

j−1)

∆Z2 , Un+1
j

)
= 0, (28)

for all j = 1 . . . nZ. The boundary conditions, which are discretized as Un
nZ+1 = Un

nZ
at the free surface

(Z = h) and as Un
0 = −Un

1 at the bottom (Z = 0), are used to provide the ghost values involved in the
discretization of the diffusive term. The problem (28) is solved in two steps as

Un+1/2
j −Un

j

∆tn + S(tn, Zj)−
νn

j+1/2(U
n
j+1 −Un

j )− νn
j−1/2(U

n
j −Un

j−1)

∆Z2 = 0,

Un+1
j = max(Un+1/2

j , 0).
(29)

Owing to the explicit discretization of the diffusive term, we use the CFL condition

2 sup
j

νn
j+1/2

∆tn

∆Z2 ≤ 1. (30)

We could also consider an implicit discretization to avoid any CFL condition, but each time
step would be more computationally demanding. Finally, the thickness of the static layer can be
evaluated as

bn =
(

min
{

j ∈ {1 . . . nZ} such that Un
j > 0

}
− 1
)
× ∆Z. (31)

However, to prevent bn from being influenced by small values of U and for better accuracy,
we prefer to use

bn = max
(

Zkn −
√

2Un
kn /C0, 0

)
, kn = min

{
j ∈ {1, . . . , nZ} such that Un

j ≥ C0∆Z2/2
}

, (32)
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where C0 is an appropriate constant of the order of S/ν, in relation to Equations (4a), (4b) and (7).
In our computations, we use 200 space cells. With the value h = 0.02 m, this leads to ∆Z = 10−4 m.

Since S/ν ' 1.35 ms−2/(5× 10−5 m2s−1) = 2.7× 104 m−1s−1, this gives a velocity threshold of
(S/ν)∆Z2/2 ' 1.4× 10−4 ms−1. This value is much smaller than the accuracy of experimental velocity
measurements which is around 1 cm/s.

4.3. Scales in the Transient Regime

We assume that the source term S is constant, and that the viscosity ν is also constant. Then,
the solution to the viscous model (3)–(5) depends on the constant S, the total thickness h, the viscosity
ν, the initial thickness of the static layer b0, and the initial velocity profile U0(Z). We introduce
dimensionless quantities, denoted by carets (hats),

t = τt̂, Z = lẐ, h = lĥ, b = lb̂, U = uÛ, (33)

where τ is a time scale, l a space scale, and u = lα1 with α1 being the order of magnitude of the initial
shear rate. In order to write Equation (3) in dimensionless form, we take

l = ν
α1

S
, τ =

l2

ν
= ν

(α1)
2

S2 . (34)

The dimensionless equation is then

∂t̂Û + 1− ∂2
ẐẐÛ = 0 for all Ẑ ∈ (b̂, ĥ),

with boundary conditions Û = ∂ẐÛ = 0 at Ẑ = b̂ and ∂ẐÛ = 0 at Ẑ = ĥ. If we take a linear initial
velocity profile, this dimensionless solution Û depends only on ĥ = h/l and b̂0 = b0/l. Actually, since
the problem is invariant by translation in Z, the solution depends only on (h− b0)/l.

Numerical investigations for a constant source S using the scheme described in Section 4.1 show
the behavior illustrated in Figure 9. The static/flowing interface position b(t) first decreases until
a time tc and reaches a minimal value bmin (starting phase). Then b(t) increases and (if h is sufficiently
large) reaches an asymptotic regime with upward velocity ḃ∞ (stopping phase), before fully stopping
when it reaches h.

b

h

t tc

b
0

b
min

starting
phase

stopping
phase

Figure 9. Schematic evolution of the thickness of the static/flowing interface as a function of time.

According to the above scaling analysis, if the velocity profile is initially linear with shear α1,
and if

h− b0

l
=

(h− b0)S
να1

� 1, (35)
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then the dimensionless problem has no parameter left and the velocity Û is therefore a fixed profile
(in terms of Ẑ− b̂0), as well as b̂− b̂0. We conclude with (33) that the quantities tc, b0 − bmin, ḃ∞ are
proportional to τ, l, l/τ, respectively. We obtain the following proportionality factors from the
numerical simulation

tc = 0.15ν
(α1)

2

S2 , b0 − bmin = 0.43ν
α1

S
, ḃ∞ = 0.95

S
α1
· (36)

Note the dependency on the ratio α1/S, which is due to the homogeneity of the problem (3)
and (4) with respect to (U, S) (a new solution can be obtained by multiplying (U, S) by a positive
constant, with b unmodified).

4.4. Results and Comparison with Experiments for Constant Viscosity

We consider a constant and uniform source term of the form (14). The case of a linear initial
velocity profile is simulated using different values of the viscosity ν (taken constant) and slope angles θ.
The results obtained with the two methods of Sections 4.1 and 4.2 are always identical, thus we
shall not specify which one is used. As discussed in Section 4.3, the static/flowing interface always
penetrates the initially static layer, in contrast to what has been observed for the inviscid model, within
a length b0 − bmin proportional to ν, according to (36). In other words, the flow excavates the static bed.
However, for ν < 10−5 m2s−1, the penetrating length is too small to be observed. For ν = 10−5 m2s−1

(Figure 10a), b0 − bmin = 8× 10−4 m for θ = 24◦ (with tc = 5× 10−2 s) and b0 − bmin = 2× 10−4 m
for θ = 19◦ (with tc = 4× 10−3 s). Thus, the static/flowing interface penetrates only slightly within
the initially static layer. As the viscosity increases (Figure 10b), the static/flowing interface penetrates
deeper into the initially static layer and even reaches the bottom for ν = 10−4 m2s−1 at θ = 24◦

(Figure 10c). The results that best reproduce the experimental observation for the penetration of b(t)
within the initially static layer are obtained with ν ' 5× 10−5 m2s−1. In good agreement with the
experiments, the simulations with viscosity predict that the depth and duration tc of penetration of the
static/flowing interface within the initially static layer increase with the slope angle. Furthermore, the
values of b(t) and tc are in reasonable agreement with those observed experimentally (Figure 10b and
Figure 17 of [12]).

Qualitatively similar results are obtained using different initial velocity profiles (Figure 12).
However, the shape of b(t) is affected by the choice of the initial velocity profile. For example, for an
exponential initial velocity profile with θ = 24◦ and ν = 5× 10−5 m2s−1, the static/flowing interface
position b(t) stagnates at an almost constant position for the first 0.5s, contrary to the case of a linear
initial velocity profile (Figures 10b and 12b).

The convex shape of b(t) during the migration of the static/flowing interface up to the free surface
obtained with the viscous model is very different from that observed and from that obtained with the
inviscid model, which predicted a linear shape related to the linear initial velocity profile. With the
viscous model, the time evolution of b(t) and the velocity profile U(t, Z) are not so clearly related to
the shape of the initial velocity profile, as shown for example in Figure 12 for θ = 24◦. The velocity
profiles for the viscous model are also very different from those for the inviscid model. Whatever the
shape of the initial velocity profile, the velocity profiles later exhibit an exponential-like tail near the
static/flowing interface, similar to that observed experimentally. They also exhibit a convex shape
near the free surface which can be observed, although not as marked, in some but not all experimental
velocity profiles (e.g., Figure 3c). While the maximum velocity decreases too fast at t = 0.5 s and
θ = 24◦ compared to the experiments and to the inviscid model, the velocity is much closer to the
experiments at t = 1 s than with the inviscid model (Figure 11b). For θ = 19◦ and θ = 22◦, the decrease
in velocity at time t = 0.7 s is overestimated in the viscous model.

Finally, we briefly look at the stopping time tstop of the whole granular layer. The stopping
time for the inviscid model and for the experiments is given in Table 1, for different slope angles.
The stopping time is smaller for viscous than for inviscid flow, whatever the shape of the initial
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velocity profile. Given that the stopping time for the inviscid model is expressed as tstop
ν=0 = U0(h)/S,

we can evaluate numerically the difference (tstop
ν=0 − tstop

ν ), where tstop
ν denotes the stopping time for the

viscous model. Our numerical simulations show that this difference depends to a moderate extent on
the viscosity (Figure 13 where the slope of the curves suggests a behavior of this difference close to
ν1/4 for the present parameters). In any case, the presence of viscosity diminishes the stopping time.
Consequently, according to Table 1, the stopping time is significantly smaller in the viscous model than
in the experiments. This can also be observed in Figures 10 and 12 (right).
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Figure 10. Static/flowing interface position b as a function of time t for different slope angles using
a linear velocity profile and different viscosities (a) ν = 10−5 m2s−1; (b) ν = 5 × 10−5 m2s−1;
and (c) ν = 10−4 m2s−1. The experimental results from Figure 2 are shown for comparison.Appl. Sci. 2016, xx, x 18 of 27
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and (b,d) θ = 24◦. The experimental results from Figure 3 are shown for comparison.
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Figure 11. Velocity profiles U(Z) at different times, with a linear velocity profile, for two different
viscosities (a,b) ν = 5× 10−5 m2s−1 and (c,d) ν = 10−4 m2s−1, and for the slope angles (a,c) θ = 19◦;
and (b,d) θ = 24◦. The experimental results from Figure 3 are shown for comparison.
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Figure 12. (left) Velocity profiles U(Z) for an inclined plane of slope θ = 24◦ and (right)
evolution of the thickness of the static/flowing interface position b for different slope angles, with a
viscosity ν = 5× 10−5 m2s−1, using an exponential (a,b) and a Bagnold (c,d) initial velocity profile.
The experimental results from Figures 2 and 3 are shown for comparison.

Table 1. Stopping time tstop for the inviscid model tstop
ν=0 = U0(h)/S (for linear initial velocity profile)

and in the experiments (from Figure 2), for different slope angles.

tstop (s) θ = 19◦ θ = 22◦ θ = 24◦

inviscid model 0.79 1.4 2.8
experiments 0.94 1.3 3.3
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4.5. Variable Viscosity

The viscoplastic description of granular materials involves fundamentally a Drucker-Prager yield
stress proportional to the pressure, the coefficient being the static friction parameter µs = tan δ. A full
rheological law including this yield stress (i.e., defined for all values of the strain rate and not only
close to zero) has been proposed in [28], the so called µ(I) rheology. As described in [32], this rheology
can be interpreted as a decomposition (i.e., (2)) of the deviatoric stress tensor in a rate-independent
pure plastic part proportional to µs and a viscous part with pressure- and rate-dependent dynamic
viscosity η given by

η = (µ(I)− µs)
pdyn

2‖D‖ , (37)

where pdyn is the dynamic pressure, D is the strain rate tensor, ‖D‖2 = 1
2 ∑ij D2

ij, and I is the inertial
number defined by

I =
2‖D‖d√
pdyn/ρs

, (38)

with d the grain diameter as before and ρs the grain density. The kinematic pressure p is related to
pdyn by p = pdyn/ρ, with ρ = φρs the density of the granular material, φ being the volume fraction.
If we consider a slope aligned velocity field depending only on the normal coordinate Z (simple shear
flow), the arguments of Section 2.3 show that the solution to the viscoplastic model (1) and (2) is
described by the system (3)–(5) with the constant and uniform source term S given by (14) and ν = η/ρ.
Such a flow has hydrostatic pressure p = g cos θ(h− Z) and shear rate ‖D‖ = ∂ZU/2. Thus with (37),
the kinematic viscosity becomes

ν = (µ(I)− µs)
g cos θ(h− Z)

∂ZU
, (39)

with
I =

∂ZUd√
φg cos θ(h− Z)

. (40)

Then the term appearing in (3) is

ν∂ZU = (µ(I)− µs)g cos θ(h− Z), (41)

and the part of this term proportional to µs indeed balances in (3) the corresponding part in S from (14).
The nonlinearity is given according to [28] as

µ(I) = µs + (µ2 − µs)
I

I + I0
, (42)



Appl. Sci. 2017, 7, 386 20 of 27

with µ2 > µs the friction at large strain rate and I0 is a constant that depends on the material used and
other device specificities, see ([27], Appendix A). Here we take the value I0 = 0.279 proposed by [27].
Note that the boundary condition (4c) is automatically satisfied and can therefore be skipped.

For the discretization, we use the method of Section 4.2 with the discrete unknowns Un
j '

U(tn, Zj), Zj = (j− 1/2)∆Z for j = 1 . . . nZ, nZ∆Z = h. The Equations (3) and (41) with (42) and (40)
are discretized with finite differences under the conservative form

Un+1/2
j −Un

j

∆tn + S(tn, Zj)−
Φn

j+1/2 −Φn
j−1/2

∆Z
= 0, (43)

for all j = 1 . . . nZ, with

Φn
j+1/2 = (µ(Ij+1/2)− µs)g cos θ(h− Zj+1/2), Ij+1/2 =

d (Un
j+1 −Un

j )/∆Z√
φg cos θ(h− Zj+1/2)

(44)

for j = 0 . . . nZ, with Zj+1/2 = Zj + ∆Z/2 = j∆Z, and once Un+1/2
j has been computed, we set

Un+1
j = max(Un+1/2

j , 0). (45)

Since Φn
nZ+1/2 = 0, there is no need to define Un

nZ+1, in accordance with the loss of the free
surface boundary condition (4c). On the left boundary (bottom), we use as before the no-slip condition,
Un

0 = −Un
1 . We use the CFL condition 2νmax∆tn ≤ ∆Z2, with νmax defined as the maximum value of ν

computed with (39). The interface position bn is computed according to (32).
As previously, we take µs = tan(26◦), h = 0.02 m, b0 = 0.005 m, and d = 7× 10−4 m. As in

[12], we take φ = 0.62. We choose µ2 = tan(28◦), which leads to ν(Z = b0) ' 5× 10−5 m2s−1,
corresponding to the order of magnitude of ν taken in Section 4.4. We consider the case of a linear
initial velocity profile, with slope angles θ = 19◦, 22◦, 24◦. The numerical results for the static/flowing
interface position b(t) and velocity profiles U(Z) are plotted in Figures 14 and 15. In comparison with
numerical results of Figures 10b and 11a,b obtained with the constant viscosity model, the shapes are
similar, in particular for the initial erosion of the static bed. The behavior of the interface position
b(t) reaching the free surface close to the stopping time is here closer to the prediction of the inviscid
model (see Figure 5a). However, this behavior does not recover (since ν vanishes at the free surface)
the expected behavior, which is roughly linear, of the experimental results of Figure 2. The comparison
with the experimental results is better with the µ(I) rheology than with a constant viscosity. For clarity,
the static/flowing interfaces and the velocity profiles corresponding to the different cases are plotted
in Figure 16 for θ = 22◦.
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Figure 14. Static/flowing interface position b as a function of time t, for variable viscosity associated
with the µ(I) law, with linear initial velocity profile and slope angles θ = 19◦, θ = 22◦, θ = 24◦.
The experimental results from Figure 2 are shown for comparison.
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Figure 15. Velocity profiles U(Z) at different times, for variable viscosity associated with the µ(I) law,
with linear initial velocity profile and slope angles θ = 19◦ and θ = 24◦. The experimental results from
Figure 3 are shown for comparison.
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Figure 16. Static/flowing interface position b as a function of time t (left) and velocity profiles U(Z)
at time t = 0.5 s (right), with linear initial velocity profile and slope angle θ = 22◦, for respectively
our model without viscosity, with constant viscosity ν = 5× 10−5 m2s−1, variable viscosity associated
with the µ(I) law, and experimental measurements.

It is important to explain the behavior of the solution close to the free surface. As said above,
there is no need to impose any boundary condition at the free surface, because the pressure vanishes
there. Nevertheless, the behavior close to the free surface of the solution to the parabolic problem (3)
is deduced from the property that ∂Z(ν∂ZU) is bounded, which gives ν∂ZU ∼ h− Z. For the model
with constant viscosity, this leads to ∂ZU ∼ h− Z and U has a (rather) parabolic profile close to the
free surface. For the model with µ(I) rheology, Equation (41) implies that I tends to a finite value as
Z → h, and thus with Equation (40), we obtain ∂ZU ∼

√
h− Z, and U has a (rather) Bagnold profile

close to the free surface. We conclude that in any case, the Neumann condition ∂ZU = 0 is recovered
at the free surface, even if not enforced explicitly. For the model with the µ(I) rheology, ∂ZU tends
to zero more slowly than for the model with constant viscosity, leading to a behavior closer to the
prediction of the inviscid model. Nevertheless, the property ∂ZU = 0 at the free surface, which seems
to be a consequence of the incompressible viscoplastic model, makes it impossible to obtain a good
representation of the experimental stopping phase.

Note that the µ(I) rheology was introduced precisely to represent the Bagnold profile (without a
static phase) U(Z) = c(h3/2 − (h − Z)3/2), where c is determined by the relation µ(I) = tan θ,
which gives

c =
2
3

I0

d
tan θ − µs

µ2 − tan θ

√
φg cos θ. (46)
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This Bagnold profile without a static phase is a steady solution to the system (3) and (41) with
(42) and (40), but only when µs < tan θ < µ2. In our framework, we have a static phase, the flow is
not steady, and tan θ < µs. The formula (46) is therefore not applicable and would give a negative c.
Our choice of α3 is nevertheless of the same order of magnitude as formula (46).

5. Discussion and Conclusions

We have considered the 1D (in the direction normal to the flow) non-averaged model with
static/flowing dynamics that was initially proposed in [41]. This model is based on the description
of a granular material by a yield stress viscoplastic rheology. Here we have assumed that the source
term in this model is constant, which corresponds to simple shear solutions to the viscoplastic model.
Thus, all the quantities are assumed to be independent of the down-slope variable and in particular
the flow thickness is constant. We have shown that this free interface model can be solved with reliable
and relatively simple numerical methods. We have compared model solutions for both the inviscid
and viscous models to observations from experiments on granular flow over an inclined static layer
of grains. The analytical solution for the inviscid model and the numerical results for the viscous
model reproduce quantitatively some essential features of the change with time of the velocity, of the
static/flowing interface position, and of the stopping time of the granular mass, even though the flow
thickness in the experiments is not perfectly uniform and the initial velocity profile changes with slope
angle and flow thickness as discussed below.

The analytical solution for the inviscid model shows that the evolution of the static/flowing
interface position is proportional to the source term and inversely proportional to the shear rate
(Equation (9)). For the viscous model (with constant viscosity), the analysis shows that the evolution of
the interface is related to the viscosity, the source term, and the first- and third-order derivative of the
source term and the velocity, respectively (Equation (8)). Owing to the appearance of this third-order
derivative, the dynamics of the static/flowing interface cannot be reduced to a simple differential
equation in terms of depth-averaged quantities. While the shape of the initial velocity profile is
preserved at all times for the inviscid model according to Equation (15), the viscous model predicts
that an exponential-like tail near the static/flowing transition and a convex shape near the free surface
develop. The viscous contribution enables the static/flowing interface to initially penetrate within the
static layer (which is eroded), as observed in the experiments, and contrary to the inviscid model.

The viscoplastic model used here has the great advantage of involving only two parameters,
i.e., the friction coefficient µs and the viscosity ν (or the coefficient µ2 for the µ(I) rheology), whereas the
so-called partial fluidization theory, involving an order parameter to describe the transition between
static and flowing material, also reproduces the erosion of the static bed and the velocity profiles
predicted here with the viscous model [7], but at the cost of additional empirical equations for the
time-change of a state parameter.

One of the important results of the analysis lies in the explicit expressions obtained from the
analytical solution, especially for the time evolution of the static/flowing interface. The dynamics are
controlled by the source term S that is constant when the pressure is assumed to be hydrostatic and when
the slope and thickness are assumed to be constant. In such a case, S(t, Z) = S = g cos θ(tan δ− tan θ),
with µs = tan δ. Comparable results have been obtained from the analytical solution of thin-layer
depth-averaged equations for a granular dam-break (i.e., with non-constant h) [43,44]. This analytical
solution predicts a granular mass front velocity that decreases linearly with time

U f = max
(

2
√

kgh0 cos θ− (g cos θ(tan δ− tan θ) t, 0
)

, (47)

where k ' 0.5 (see [9]). Furthermore, the stopping time of the analytical front for the granular
dam-break is

t f = 2

√
kh0

g cos θ

1
tan δ− tan θ

. (48)
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Equations (47) and (48) for the front velocity and the stopping time of the front for a depth-averaged
model of a granular dam-break are very similar to Equations (15) and (17) respectively, found here for
the velocity of the flow and for the stopping time of the granular layer in the non-averaged case and
without viscosity.

Although the initial penetration of the static/flowing interface into the static layer (erosion) can be
reproduced by taking into account the viscosity, this leads at the same time to an underestimation of
the stopping time. The viscous model better reproduces the exponential-like tail of the velocity profile
near the static/flowing interface than the inviscid model, but overestimates the convexity of the velocity
profile near the free surface. Furthermore, the change in shape of the velocity profile observed in the
experiments during the stopping phase is reproduced by the viscous model, as opposed to the inviscid
model. However, the decrease in maximum velocity near the surface is too fast in the viscous model.
All these results suggest that (i) viscosity plays an important role near the static/flowing interface at
depth and in this region a reasonable estimate for the viscosity is ν ' 5× 10−5 m2s−1 and (ii) viscous
effects in the experiments seem to be much smaller near the free surface. These observations suggest a
non-constant viscosity, as proposed in the so-called µ(I) flow law, e.g., [25–28]. As in [32], we have used
the µ(I) flow law to derive the value of the viscosity, which becomes variable and nonlinear with respect
to the shear rate. This flow law reproduces approximately the value of the viscosity at the static/flowing
interface (i.e., ν ' 5× 10−5 m2s−1) and at the free surface (vanishing viscosity). However, this model
does not allow us to significantly improve the accuracy of the behavior of the static/flowing interface
close to stopping. This is because it imposes a Bagnold behavior close to the free surface, which is in
contradiction with experiments that predict a linear behavior. A more detailed numerical simulation of
the granular collapse over sloping beds with the complete viscoplastic model and the µ(I) rheology gives
a dynamic viscosity of around 0.2Pa· s near the front, increasing up to about 0.4Pa·s behind the front
(see Figure 11 of [33] and Figure 10 of [32]), leading to a kinematic viscosity of ν = 1.3× 10−4 m2s−1 and
ν = 2.6× 10−4 m2s−1, respectively, for a density of ρ = 1550kg/m3. Note also that our treatment of side
wall effects deserves further improvements, since we simply increased the friction coefficient as done
in [27,32,42]. Taking into account wall effects changes the static/flowing position, as shown in particular
in [33] for the granular collapse considered here. More precisely, the static/flowing interface is found to
be less deep within the flow when wall effects are accounted for (see Figures 3 and 4 of [33]). This effect
could possibly increase the value of the viscosity needed in the model to reproduce the penetration of the
static/flowing interface observed in the experiments. This would give values of the viscosity closer to
that given by the µ(I) rheology near the front (Figure 11 of [33]).

It would be of interest to take into account the X-variations of the source S from ([41], Equation (2.12)),
thereby accounting for topography, propagation and non-hydrostatic effects. This would make it
possible to study erosion in flows over complex topography in the laboratory (e.g., [45]) or at the
natural scale (e.g., [46]). For the very simple case of flows over a constant slope and if the pressure
is assumed to be hydrostatic (p = g cos θ(h− Z)), taking into account the X-variations is the same as
(according to [41]) considering once again (3)–(6) with S including an additional term,

S = g cos θ (tan δ− tan θ + ∂Xh) , (49)

and as considering a thickness h = h(t, X) that evolves according to (2.2) in [41]. Then U = U(t, X, Z)
and b = b(t, X). However S = S(t, X) in (49) is still independent of Z. Then Equations (8) and (9) read
as follows with S(t, X) defined by (49):

• If ν > 0 and S(t, X) 6= 0, then

ḃ(t, X) =
−∂2

ZZ(ν∂ZU)(t, X, b(t))
S(t, X)

ν. (50)

• If ν = 0 and ∂ZU(t, X, b(t)) 6= 0, then
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ḃ(t, X) =
S(t, X)

∂ZU(t, X, b(t))
. (51)

The model with 0 < b < h is valid as long as S(t, X) ≥ 0, so as to satisfy (6). Indeed, violating this
condition leads to instantaneous flow of the whole layer i.e., b = 0, and full erosion of the bed. In this
case, (3) still has to be solved (with b = 0 and S < 0), but with boundary conditions (4a) and (4c) only.
If at some later time S becomes positive again, b can rise above the value b = 0. Thus when S(t, X) can
change sign, there is in general a succession of progressive depositions and sudden full erosions of the
bed. As discussed previously, the experimental granular flow is not perfectly uniform, as illustrated for
example for the granular collapse at θ = 22◦ in Figure 17. In this case, tan δ− tan θ = 0.0837, so that near
the front, where the h-gradient is strongest (∂Xh(t = 0.66 s, X = 90 cm) ' 0.125 as shown in Figure 17),
S is negative and thus even the inviscid model predicts that erosion occurs. Later, when the front flows
beyond the position X = 90 cm, ∂Xh decreases with values around ' 5× 10−3. Therefore S becomes
positive, and with the inviscid model, the static/flowing interface rises (i.e., deposition occurs). For the
viscous model, for the case S ≥ 0 studied in this paper, occurrence of erosion (ḃ < 0) or deposition (ḃ > 0)
is related according to (50) to the change of sign of ∂2

ZZ(ν∂ZU)(t, X, b(t)), i.e., positive and negative,
respectively. Therefore, when the X variations are considered and under the hydrostatic assumption,
the occurrence of erosion or deposition depends on the signs of both S and ∂2

ZZ(ν∂ZU)(t, X, b(t)).
The influence of a Z-dependency of S on the static/flowing interface dynamics and on the

erosion process in the free interface model (3)–(6) is studied in [41]. It would be interesting to extend
the approach proposed here to 2D and possibly 3D, so as to capture the static/flowing interface in
thin-layer models, as proposed in [40]. The orders of magnitude assumed in [40] are indeed satisfied
in the experiments discussed here, because the typical length is L = 1 m, the typical time is τ = 0.33 s,
(so that L/τ2 = g), h = 0.02 m, and ν = 5× 10−5 m2s−1, leading to ε ≡ h/L = 0.02, tan δ− tan θ = O(ε),
and the normalized viscosity ντ/L2 ' 10−5 is of the order of ε2 or ε3. The primary models of [40] with
dependency on X and without hydrostatic assumption (giving S depending also on Z) lead however
to severe nonlinearities and ill-posedness, so that the numerical treatment of these extensions with all
flow-aligned variations represents a major challenge.

An important issue is also to summarize the dynamics of the normal velocity profile using a
finite number of parameters (for example the interface position b, the thickness h, and the shear rate),
in order to keep computational costs low enough to simulate natural situations. This could lead to
a depth-averaged model, which has until now seemed inaccessible because of the dependency on the
third normal derivative in the differential Equation (8).
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Figure 17. Thickness profile h as a function of down-slope position X in the experiments performed
by [16,17], at times t = 0.66 s, 0.78 s, 1.02 s. The value X = 0 corresponds to the position of the gate.
The slope angle is θ = 22◦. Note that the vertical scale differs from the horizontal one, since the
thickness of the flow represents only 7% of its horizontal extension.
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