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Short Note

Precision and Convergence of a Steady
Two-Dimensional Ice Sheet Flow Model1

Anne Mangeney2

Ice-sheet flow is described by the Navier–Stokes equations. We present here an analytical solution for
a very simple configuration of two-dimensional ice sheet flow. It is obtained for an imposed flat surface
elevation and for a linear flow law. This analytical solution is used here to estimate the performance and
precision of a two-dimensional ice sheet flow model. In particular, the comparison of this 2D ice sheet
flow model with the analytical solution has allowed to test all the terms involved in the mechanical
equations. This analytical solution may be very useful to test similar types of models.

KEY WORDS: hydrodynamics, viscosity, two-dimensional structures, finite-difference methods,
analytic.

INTRODUCTION

The flow of ice, lava, or the folding of lithospheric sheets are described by the
incompressible Navier–Stokes equations. Approximations are generally made to
obtain analytical or simplified solutions such as the long wave approximation (i.e.,
shallow ice, shallow water approximation) with which the results of a model solv-
ing the complete set of mechanical equations can be compared (see, e.g., Hutter,
1983; Mangeney and Califano, 1998). Actually, the shallow ice approximation
provides solution for varying free surface and bedrock topography, but does not
give an exact evaluation of the field. We present here an analytical solution for
a very simple configuration of steady-state two-dimensional ice sheet flow, with
particular boundary conditions. It is obtained for an imposed flat surface eleva-
tion and for a linear flow law. The equations are solved by introducing a velocity
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potential and by looking for polynomial solutions for this potential. The derivation,
although not straightforward, do not require complicated mathematics.

This analytical solution, which is not of any special physical interest, is de-
veloped to provide a test for the numerical ice sheet flow models and, here, we
shall compare it with the results obtained with the model developed by Mangeney,
Califano, and Castelnau (1996) and Mangeney, Califano, and Hutter (1997). In
this model, the equations of the steady ice flow with free surface under isothermal
conditions are solved—in particular, the complete set of mechanical equations have
been solved numerically. The analytical solution shown here has been very useful
to test all terms involved in the mechanical equations and to test the Precision and
the convergence of the model.

First, we present the system of equations, then we develop the analytical
solution, and finally, we compare the results of the numerical ice sheet flow model
of Mangeney, Califano, and Hutter (1997) with this analytical solution.

EQUATIONS

The two-dimensional flow of a viscous, incompressible material is described
by mass and momentum conservation equations and a flow law. The material is
supposed here to be isothermal so that the heat equation is not taken into account.
All equations and variables are non-dimensionalized using typical depth and ve-
locity (Mangeney, Califano, and Castelnau, 1996). Mass and momentum balance
equations can be written as

∇ · u = 0 (1)

∇ · S′ = ∇ p′
(2)

whereu = (ux, uz) is the velocity vector,S′ the deviatoric stress tensor, andp′ the
dynamic pressure calculated from the fluid pressurep(p′ = p− z). Herex andz
denotes the horizontal and vertical axis, respectively (Fig. 1). These balance laws
are supplemented by the constitutive relation for a viscous fluid:

S′ = M · D (3)

Figure 1. Coordinate system.
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whereM andD denote the fourth- and second-rank viscosity and strain rate tensors,
respectively. For an isotropic material, with Newtonian behavior and vertically
constant viscosity, the viscosity tensorM reduces to a constant viscosity times the
fourth rank unit tensor, and the flow law (3) reads

S′ = ηD (4)

We consider here the simple case of a steady-state plane flow of an isotropic
material with constant viscosity in a 2D slab geometry with a free surfacez= E(x)
over the basez= B(x) (Fig. 1). As boundary conditions a prescribed velocity is
imposed at the base (u(x, B) = uG(x)) while the steady state kinematic condition
at the free surface is given by

ux
∂E

∂x
− uz = a(x), atz= E(x) (5)

wherea is a source term. For example, for ice sheet flow,a corresponds to the
accumulation rate at the surface. The stress free top surface condition reads

σ · ns − patmns = 0, atz= E(x) (6)

wherePatm is the atmospheric pressure andns the exterior unit normal vector at
the surface. Hereσ is the stress tensor defined asσ = S′ − pI , whereI is the
identity tensor. The flow is assumed to be symmetrical with respect to the axis
x = 0[u(0, z) = 0], typical of the situation of the flow around a dome. Therefore,
identical boundary conditions for the horizontal velocity are imposed on the left-
and right-hand side of the domain.

ANALYTICAL SOLUTION

We impose here two particular conditions: the bedrock and the free surface
are assumed to be flat so thatE(x) = 1 andB(x) = 0 (Fig. 1). Let us introduce
the velocity potential:

ux = ∂zψ

uz = ∂xψ
(7)

where∂i f represents theith derivative of the fieldf , so that the momentum
Equation (2) can be written as

−η∂z(1ψ) = ∂x p (8a)
η∂x(1ψ) = ∂z p (8b)
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By differentiating (8a) with respect toz and (8b) with respect tox and then sub-
tracting these two equations, we obtain the biharmonic Poisson equation for

12ψ = 0 (9)

Let us now look for a polynomial solution of degree 4.
We shall impose here some particular boundary conditions in order to compare

with the results of the numerical model described below (however, several other
boundary conditions can be imposed for other types of viscous, incompressible
flow). Becauseψ is of order 4, velocities are of order 3—for example, the horizontal
velocity at the base (z= B = 0) is

ux = −∂zψ = g1+ g2x + g3x2+ g4x3 (10)

wheregi are the coefficients. Boundary conditions are, at the base (z= B = 0),

uz = ∂xψ = 0 (11)

and at the surface (z= E), the stress-free surface condition (6) for a flat surface,

p = patm− 2η∂xux

τxz = η(∂zux + ∂xuz) = 0
(12)

whereτxz is the shear stress. This gives two conditions atz= E(x):

∂2
xψ − ∂2

zψ = 0
−2η∂2

xzψ = patm− p
(13)

and the polynomials of lowest degree forψ andp, which allow a solution of these
equations:

ψ = g0− g1z− g2xz+ g3(−4Ez− x2z+ z3)+ g4(−12Exz2− x3z+ 3xz3)

p = patm− 2η(g2+ 2g3x + 3g4x2)+ 6ηg4(z2− 4Ez− 2E2)+ E
(14)

whereg0 is an arbitrary constant. We then obtain the velocitiesux anduz:

ux = −∂zψ = g1+ g2x + g3(8Ez+ x2− 3z2)+ g4(24Exz+ x3− 9xz2)

uz = ∂xψ = −g2z− 2g3xz− 3g4(4Ez2+ x2z− z3)
(15)

In the case of a flow symmetric with respect tox = 0, and having horizontal
velocity equal to zero at this point (for example, the case of an ice sheet divide),
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coefficientsgi have to satisfy

g1 = g3 = 0 (16)

By choosing arbitrarilyg2 = 0, the analytical solution for the pressure and velocity
fields reduces then to

ux = −∂zψ = g4(24Exz+ x3− 9xz2) (17a)

uz = ∂xψ = −3g4(4Ez2+ x2z− z3) (17b)

p = patm− 6ηg4(x2− z2+ 4Ez+ 2E2)+ E (17c)

Different choice ofg2 would lead to another analytical solution.

PRECISION AND PERFORMANCE OF THE NUMERICAL MODEL

We have used the analytical solution presented here to test the numerical ice
sheet flow model developed by Mangeney, Califano, and Hutter (1997). The system
of Equations (1), (2), and (4) with boundary conditions (5) and (6) and the no-slip
boundary condition [uz(x, 0)= 0] is solved numerically by reintroducing the time
derivative of the velocity in the momentum equation (Mangeney, Califano, and
Hutter, 1997) and by iterating in timet until convergence. The fictitious temporal
problem,

∂tu = Tu−∇ p
∇ · u = 0

(18)

whereT is a second-order differential operator, is solved by using a finite difference
method, semi-implicit in time. One point should be stressed here. The form (17a)
imposes a given vertical profile of the horizontal velocity at the boundariesx =
±L/2 of the numerical domain. Therefore numerical runs were performed by
imposing this particular boundary condition at the left- and right-hand side of the
numerical domain. In a similar manner the accumulation ratea that is imposed is
obtained from Equation (5) and corresponds to the analytical solution foruz(x, E),

a = 3g4E(x2+ 3E2) (19)

Starting with a zero velocity field or with an arbitrary velocity field, the time
relaxation method converges more or less rapidly toward the stationnary state,
depending on the value of the time step used in the numerical method. The deviation
from the analytical solution depends on the time step. One of the interesting things
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of this comparison has been to understand the efficiency of the time iteration
method to obtain the final stationary equilibrium. The basic problems are (a) the
number of time steps to achieve convergence, (b) how far the state obtained at
convergence is from the actual solution, here the analytical solution, and finally
(c) does the numerical precision correspond to a second-order scheme?

We have tested the convergence toward the analytical solution for various
time steps1t and for various spatial steps1x and1z. The tests have been made
using a parameter proportional to the time step and depending on the diagonal
part of the operatorT , satisfying 0< θ < 1. The expression ofθ is given in
Figure 3 of Mangeney, Califano, and Hutter (1997) and describes the degree of
time implicitiness. Forθ = 0, the time advance is explicit while forθ close to 1
the diagonal part of the second order differential operatorT is fully implicit.

For θ varying from 0.1 to 0.9 and for 11× 11 points, a precision of less
than 10−2 for the relative error on the velocity field is obtained (Fig. 2). Forθ

ranging in this interval andθ < 0.5, increasing the time step helps to decrease
the time necessary to convergence and significantly improves the precision of the
solution with respect to the analytical solution (Fig. 2). Forθ > 0.5, increasing
the time deteriorates the solution. For 0.9> θ > 0.15 and for 11× 11 points, the
numerical solution converges to the analytical solution after 400 iterations (1 hr
CPU time) with a maximum difference lower than 10−4 between the velocities
obtained at two successive iterations (Figs. 2 and 3). When the numerical model

Figure 2. Convergence toward the analytical solution of the numerical solution obtained
for different time stepsθ for (11× 11) points. A, Maximum difference between the velocity
of the numerical solution and that of the analytical solution [1u = max(ui − ui anal), i =
x, z] divided by the mean velocity (um); B, mean divergence of the velocities (divu)
divided by the mean velocity gradient (dum).
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Figure 3. Maximum difference between the velocities obtained at two successive iterations
[δu = max(un+1

i − un
i ), i = x, z] vs. the number of iterations for different time stepsθ for

(11× 11) points.

is used with evolving free surface (Mangeney, Califano, and Hutter, 1997), an
analytical solution is not available. Convergence is then achieved by imposing
the maximum difference between velocities obtained at two successive iterations
(δu) lower than a certain value. Comparison with the analytical solution allows
one to assess the precision of the numerical solution for a given value ofδu
(Figs. 2 and 3). For 21× 21 points (Fig. 4), the time necessary to convergence is
significantly increased (6000 iterations). The precision of the calculation increases
until a threshold forθ is reached, which depends on the number of points. This is
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Figure 4. Convergence of the numerical solution towards the analytical solution obtained
for different time stepsθ for (21× 21) points. A, Maximum difference between the
velocity of the numerical solution and that of the analytical solution [1u = max(ui −
ui anal), i = x, z] divided by the mean velocity (um); B, mean divergence of the velocities
divided by the mean velocity gradient (dum) vs. the number of iterationn.

due to the behavior of the eigen values of the operatorT . It seems that the threshold
for θ decrease with the number of points. This comparison allows us to check how
this method of artificial relaxation converges to the actual stationary solution. Note
that some of the curves indicating the rate of convergence (Figs. 2–4) appear to
periodically oscillate for certain values ofθ . It is typical of these numerical methods
(Sotiropoulos and Abdallah, 1991).
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Figure 2 and 4 show that the difference with respect to the analytical solution
and the error on the velocities divergence are approximately divided by 4 when
the number of points is doubled. The precision of the numerical code appears to
be of order 2. The error on the analytical solution and on the velocity divergence is
of the order of the discretization error: for 11× 11 points the discretization error,
proportional to the square of the space step, is of order 10−2, for 21× 21 points it
is of order 2.5× 10−3.

CONCLUSION

We have presented here an analytical solution for the linearly viscous Stokes
equations allowing to test two-dimensional ice sheet flow models. We have used
it to estimate the performance and precision of the model described in Mangeney,
Califano, and Hutter (1997) which appears to be of order 2 in space. The compar-
ison of this 2D ice sheet flow model with this analytical solution has allowed to
test all the terms involved in the mechanical equations. This solution may be very
useful to test similar types of models.
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