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Erosion processes and the associated static/flowing transition in granular flows are still poorly 
understood despite their crucial role in natural hazards such as landslides and debris flows. 
Continuum models do not yet adequately reproduce the observed increase of runout distance of 
granular flows on erodible beds or the development of waves at the bed/flow interface. Discrete 
Element Methods, which simulate each grain’s motion and their complex interactions, provide 
a unique tool to investigate these processes numerically. Among them, Convex Methods (CM), 
resulting from the convexification of Contact Dynamics methods, benefit from a robust theoretical 
framework, ensuring the convergence of the numerical solution at every time iteration. They are 
also intrinsically more stable than classical Molecular Dynamics methods. However, although 
already implemented in engineering fields, CMs have not yet been tested in the framework 
of flows on erodible beds. We present here a Convex Optimization Contact Dynamics (COCD) 
method and prove that it generates a numerical solution verifying Coulomb’s law at each 
contact and iteration. After its calibration and validation with experiments and another widely 
used Contact Dynamics method, we show that our simulations accurately reproduce qualitative 
and even many quantitative characteristics of experimental granular flows on erodible beds, 
including the increase of runout distance with the thickness of the erodible bed, the change of the 
static/flowing interface and the presence of erosion waves behind the flow front. Beyond erosion 
processes, our article endorses CMs as potential accurate tools for exploring complex granular 
mechanisms.

1. Introduction

Granular materials are involved in numerous geophysical flows such as landslides, debris flows, debris and snow avalanches, 
pyroclastic flows and rockfalls on Earth and other planetary bodies [1–7]. These events represent major natural hazards threatening 
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populations and infrastructures, especially in mountainous, coastal, volcanic and seismic areas. The risks associated with landslides 
and potential generated tsunamis increase with increasing human population and activity and with increasing severity and fre-
quency of rainfall events related to climate change [8,6,9]. These flows occur on steep to gentle slopes and involve complex physical 
processes such as the presence of a fluid phase, heterogeneous materials, fragmentation and segregation effects, and erosion/depo-
sition processes [10,11,1,12–14]. The lack of understanding of these processes questions physics-based hazard assessment for these 
geophysical flows that present a high mobility that is still an open issue despite increasing research on this topic [2,15].

A huge amount of work has been performed these last thirty years on granular flows, spanning laboratory experiments, numerical 
modeling and field observation. As pointed out above, a full understanding of the physical processes involved in these flows is still 
however lacking, even for simple laboratory-scale granular flows. At the particle scale, complex interactions between grains involving 
nonlinear friction forces and inelastic collisions are involved. There are also geometrical constraints on a granular material for which 
the density can typically vary from those of crystal-like static configurations to those of gas-like flows [16].

Multiple modeling strategies have been proposed to simulate granular materials. A first approach is based on continuum macro-
scopic models solving the full Navier-Stokes like equations [17–21] or the simplified thin-layer (i.e., shallow-water) equations 
[22–28]. The second class of approaches, namely Discrete Elements Methods (DEM), relies on a microscopic description of the 
medium. In DEM, the granular material is considered as an assembly of rigid grains. In DEM, the models are based on variables de-
fined at the scale of individual particles. These variables are typically the positions/velocities of the grains and contact forces. When 
considering these methods, the difficult task is to compute the interactions between the particles. This computation can be done 
using different approaches, identified as “soft” and “hard” methods. In the past thirty years, the number of studies involving DEM, 
especially the “soft” formulation, has considerably increased in all domains of application, in particular for flows at the laboratory 
scale [29–32].

The first discrete element method to model the contacts between grains was the so-called Molecular Dynamics (MD) method. 
It dates back to 1979 with the work of Cundall and Strack [33]. For real grains, the contact forces are modeled with Hertz’s law 
of contact through functions depending on the elastic particle’s deformation at the contact. In MD, the contact forces are functions 
parameterized by the numerical overlap between the grains during the contact (see Ref. [34] for a detailed description). MD is a 
“soft” discrete method in the sense that grains are considered as slightly deformable, so that contact forces are differentiable. MD is 
quite efficient in many situations and various refined contact force models have been developed. It makes it possible to reproduce a 
wide range of contact phenomena (see, e.g., Ref. [35] for a list of about 40 possible contact models).

However, from a numerical point of view, the time discretization in MD is based on an explicit scheme, raising stability issues 
because of the stiffness of the interaction forces. More precisely, to maintain numerical stability, the time step used must be very 
small. In many situations, this makes it necessary to artificially decrease the rigidity of grains [36]. As a consequence, it is difficult 
to reproduce static configurations, even when adding artificial dissipation terms. Note also that the acoustic phenomena that appear 
in actual MD computations do not correspond in general to realistic wave propagation phenomena because of this artificial decrease 
of grain rigidity [36].

The first discrete method that can be qualified as “hard” was the so-called Contact Dynamics (CD) method, developed by Moreau 
and Jean in the 1990s. Contrary to MD, the contact forces are not modeled explicitly with functions, but instead they are implicit and 
are required to satisfy contact laws, which typically express inelastic collisions together with friction. We refer to the seminal works 
[37–43] for a detailed description of this approach. Contrary to MD, CD leads to contact forces that are not bounded in time since 
they are not functions of time but rather impulses satisfying contact laws. The computational cost at each time steps is usually more 
than in MD. However implicit schemes can be used, which makes it possible to use large time steps while still ensuring stability.

In CD, for systems with contact laws that express non-overlapping and frictional phenomena (Coulomb’s law), the equations of mo-
tion can be written as a combination of Newton’s second law with dynamic and kinematic constraints. A straight time-discretization 
of the problem leads to a non-convex Linear Complementarity Problem (LCP) (see, e.g., Refs. [44,45]), which is expensive to solve. 
The most widely spread numerical strategies to deal with the friction cone constraint are projection/splitting methods, Gauss-Seidel 
like relaxations, or generalized Newton methods (see Ref. [46] for a review of these methods). Unfortunately, no convergence results 
for the corresponding iterative methods are available. Among these methods, the Non-Smooth Contact Dynamics (NSCD) method 
[42,47] has encountered significant success, especially for comparisons with experiments (see Refs. [48,49]).

In Ref. [50], the authors proposed another approach to compute an approximate solution to the LCP. This strategy consists in 
solving a fixed-point problem, iterating on parameterized convex optimization problems that are proved to converge toward the 
LCP’s solution at each time step. At each step of the fixed-point algorithm, it is required to solve a conic minimization problem.

The last approach we consider here is based on a convexification of the non-overlapping constraint, in line with Refs. [51,52]. 
We refer to these approaches as Convexified Methods (CM). From this convexification, the time sub-problem obtained can be turned 
into a conic constrained optimization problem. Therefore, it makes it possible to use existing and convergent solvers to compute 
the solution at each time step. From a numerical point of view, several approaches solve the corresponding Cone Complementarity 
Problem (CCP) [51–55], while our strategy is to take advantage of the minimization problem. This minimization problem can be 
based on the global force vector as the unknown; see Refs. [56–61]. A short review of the different numerical methods introduced 
above is presented in Sec. 2.2 and solver efficiencies are compared in Ref. [60]. From a theoretical point of view, all these studies 
systematically refer to Refs. [51,52]. In the first one some theoretical developments are proposed in the case of a facet discretization 
of the Coulomb friction cone. In the second one, in the framework of the full circular Coulomb cone, the authors reinterpret the 
scheme in terms of a minimization problem based on the forces.

In this article, we consider the dual formulation of the optimization problem, based on using the global velocity vector as the 
2

unknown [62] together with the full circular Coulomb cone. In the following, we will refer to the method presented in this article 
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as Convex Optimization Contact Dynamics (COCD). It is a convexified velocity-based CM formulation. Let us describe its main 
properties:

• The conditions verified by the optimal solution of the minimization problem are rigorously proved in the framework of convex 
analysis. We show that they take the form of a discretization of the continuous problem, with the Coulomb’s law verified at 
every contact and at every time step. The error in the local Coulomb’s law scales like the precision of the optimization solver.

• This method is known to artificially push apart particles at the first order in time. Our validation tests show that this drawback 
has no effect on the ability of the scheme to properly reproduce the expected macroscopic behavior in the context of gravity-
driven granular flows.

• Because of its optimization formulation, the numerical solution is ensured to converge at every time integration.
• Since the scheme is implicit, large time step values can be used.

In spite of the artificial gap mentioned above, which is common to all convexified methods (CM), we show the excellent be-
havior of such schemes by confronting COCD to multiple validation processes. Indeed, COCD is first validated through quantitative 
comparisons with simulations (with NSCD [48,49], in which the non-convex scheme is used) and with experimental results [63,64]
in gravity-driven granular flows. In a second step, we use COCD to investigate how the presence of a basal erodible layer affects 
granular flows on top of it. To the authors’ knowledge, it is the first article involving a CM in the framework of granular flows on 
erodible beds. The particle-scale processes involved in these erosion phenomena are still open questions for both laboratory- and
field-scale granular flows, even though they are known to play a crucial role in landslides or avalanches [65,66,11,67–69,14,70,71].

Several laboratory experiments involving granular flows on erodible beds have been performed. The experimental setups im-
plement, for example, releases of grains on a static erodible layer on horizontal or sloping beds [23,63,64,72] or constant inflows, 
leading to erosion-deposition waves [28,73,74]. In particular, laboratory-scale experiments of granular collapses showed that the 
presence of even a very thin layer of erodible particles can significantly increase the duration and the maximum distance (runout) 
reached by granular flows on slopes larger than about half of the characteristic friction angles of the granular material involved 
[63,64]. More precisely, there is no increase in the runout distance for horizontal planes, but there can be an increase of 40% for 
inclined planes. These articles also showed that the runout distance increases with increasing thickness of the erodible bed and with 
the slope angle. Even though the increase of runout distance has been qualitatively reproduced with continuum granular flow mod-
els with the 𝜇(𝐼)-rheology [75–77], quantitative agreement is still quite poor. This raises the question as to whether particle-scale 
processes, not accounted for in classical continuum models, may be a promising element to better reproduce laboratory observations. 
As it is challenging to make such measurements even in laboratory-scale experiments, DEM simulations provide a unique tool to 
investigate these effects.

First 3D DEM simulations of granular flows on erodible beds lying on a horizontal plane showed that for granular columns with 
a relatively high initial aspect ratio (𝑎 =𝐻∕𝐷 > 3, where 𝐻 and 𝐷 are the column height and diameter, respectively), the runout 
distance is still observed to increase, as in experiments [78]. However, a deep insight into the comparison between DEM simulations 
and laboratory experiments is still lacking.

In this article, we show that COCD accurately reproduces complex behaviors observed in laboratory-scale experiments of granular 
flows on erodible beds. We complete the results of Ref. [78] with different inclination angles of the bed and different thicknesses 
of the erodible layer lying on top of it. Furthermore, COCD is quantitatively compared to granular collapse experiments performed 
by Mangeney et al. (2010) [63] and Farin et al. (2014) [64]. The increase in runout distance is found to be well reproduced by the 
model. In addition, the static/flowing transition within the granular media and its evolution inside the erodible layer are in very 
good agreement with observations. Finally, COCD surprisingly reproduces the “wave” behavior observed at the interface between the 
initially flowing and initially static grains [64]. All these comparisons show that such CD models contain the key physical ingredients 
to reproduce and thus gain insight into erosion processes in granular flows.

In Sec. 2, the continuous problem and its time discretization scheme COCD are described. The theoretical results are presented. 
In Sec. 3, we present a simple implementation of COCD using the MOSEK solver [79] and computational aspects such as the 
termination criteria and the solver tolerance according to time step values that help COCD to reproduce experiments. We also 
show that the method well reproduces the results obtained with the NSCD method. In Sec. 4, our method is compared to column 
collapse experiments leading to the calibration of COCD parameters. Finally, the application of COCD to granular flows on erodible 
beds is presented in Sec. 5.

2. Continuous problem and time discretization scheme

Let us consider a mechanical system in ℝ3, composed of 𝑁 rotational rigid spheres with given fixed radii 𝑟𝑖 > 0 and masses 𝑚𝑖 > 0, 
𝑖 = 1, … , 𝑁 . The center of sphere 𝑖 is denoted by 𝒄𝑖 ∈ℝ3, and its instantaneous velocity by 𝒗𝑖 ∈ℝ3. Since we consider spheres only, 
we shall not follow the orientation of bodies, and simply consider here the instantaneous rotation vector 𝝎𝑖 ∈ℝ3. We denote by

𝒄 = (𝒄1,… ,𝒄𝑁 ) ∈ℝ3𝑁 and 𝒖 = (𝒗1,𝝎1,… ,𝒗𝑁,𝝎𝑁 ) ∈ℝ6𝑁

the generalized position and velocity field vectors.
The signed distance between spheres 𝑖 and 𝑗 is defined by:( )
3

D𝑖𝑗 (𝒄) =
|||𝒄𝑖 − 𝒄𝑗

|||− 𝑟𝑖 + 𝑟𝑗 ,
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Fig. 1. Notations.

where | ⋅ | is the euclidean norm so that the non-overlapping condition writes D𝑖𝑗 ≥ 0.
For any two grains 𝑖 and 𝑗, with centers 𝒄𝑖 and 𝒄𝑗 , we denote by 𝑪 𝑖 and 𝑪𝑗 the points which realize the distance (with 𝑪 𝑖 = 𝑪𝑗

if the spheres are in contact; see Fig. 1). We define the associated position vectors 𝒓𝑖 =𝑪 𝑖 − 𝒄𝑖, 𝒓𝑗 =𝑪𝑗 − 𝒄𝑗 .
We consider the normal direction to the surfaces of the particles at points 𝑪 𝑖 and 𝑪𝑗 , which is shared by the two particles. We 

introduce the unit vector 𝒏𝑖𝑗 , defined as the corresponding normal vector pointing to particle 𝑖. Since we consider spherical particles, 
we have:

𝒏𝑖𝑗 =
𝒄𝑖 − 𝒄𝑗|𝒄𝑖 − 𝒄𝑗 | .

We denote by 𝑃𝑖𝑗𝒗 = 𝒗− (𝒗 ⋅𝒏𝑖𝑗 )𝒏𝑖𝑗 the projection of 𝒗 on Π𝑖𝑗 , the plane that is orthogonal to 𝒏𝑖𝑗 and thus parallel to the tangent 
planes in 𝑪 𝑖 and 𝑪𝑗 .

We also define 𝐴𝑖𝑗 as the linear operator which maps the generalized velocity field 𝒖 ∈ℝ6𝑁 to the relative velocity between the 
points 𝑪 𝑖 and 𝑪𝑗 at which the distance between spheres 𝑖 and 𝑗 is attained, i.e.

𝐴𝑖𝑗𝒖 = 𝒗𝑖 +𝝎𝑖 ∧ 𝒓𝑖 − (𝒗𝑗 +𝝎𝑗 ∧ 𝒓𝑗 ) ∈ℝ3.

Straightforward computations show that for any generalized velocity 𝒖 ∈ℝ6𝑁 and any vector 𝒇 ∈ℝ3, we have 𝐴𝑖𝑗𝒖 ⋅𝒇 = 𝒖 ⋅𝐴𝑇
𝑖𝑗
𝒇

with

𝐴𝑇𝑖𝑗𝒇 = (𝟎,… ,𝟎, 𝒇 , 𝒓𝑖 ∧ 𝒇
⏟⏞⏟⏞⏟
position 𝑖

,𝟎,… ,𝟎, −𝒇 ,−𝒓𝑗 ∧ 𝒇
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

position 𝑗

,𝟎,… ,𝟎) ∈ℝ6𝑁,

so that 𝐴𝑇
𝑖𝑗

maps a vector 𝒇 ∈ℝ3 to the generalized force/moment vector corresponding to the force 𝒇 exerted on particle 𝑖 at point 
𝑪 𝑖 and the opposite force −𝒇 exerted on particle 𝑗 at point 𝑪𝑗 .

The vector 𝑃𝑖𝑗𝐴𝑖𝑗𝒖 represents the tangential relative velocity. As a consequence, when two spheres are in contact with no relative 
normal motion, i.e., 𝒏𝑖𝑗 ⋅𝐴𝑖𝑗𝒖 = 0, then 𝑃𝑖𝑗𝐴𝑖𝑗𝒖 = 0 expresses a rolling motion with no slip, while 𝑃𝑖𝑗𝐴𝑖𝑗𝒖 ≠ 0 corresponds to a sliding 
motion.

At any time, we shall denote by 𝐼𝑐 the set of all possible pairs of contacts: 𝐼𝑐 = {(𝑖, 𝑗) 1 ≤ 𝑖 < 𝑗 ≤𝑁}. Note the pair of grains 𝑖 and 
𝑗 is represented only once in 𝐼𝑐 through the couple (𝑖, 𝑗) if 𝑖 < 𝑗 and (𝑗, 𝑖) if 𝑗 < 𝑖.

We consider that no external torque is exerted on the grains. If 𝒇 𝑒𝑥𝑡𝑖 ∈ ℝ3 is the external force exerted on particle 𝑖 we define 
the generalized force vector as f𝑒𝑥𝑡 = (𝒇 𝑒𝑥𝑡1 , 0, … , 𝒇 𝑒𝑥𝑡

𝑁
, 0) ∈ℝ6𝑁 . We then define the 6𝑁 × 6𝑁 generalized mass matrix (masses and 

moments of inertia) as

𝑀 = diag
(
𝑚1,𝑚1,𝑚1, 𝐽1, 𝐽1, 𝐽1,𝑚2,… , 𝐽𝑁 ,𝐽𝑁 ,𝐽𝑁

)
.

The equations of motion write:

M 𝑑𝒖

𝑑𝑡
= f𝑒𝑥𝑡 +

∑
𝛼∈𝐼𝑐

𝐴𝑇𝛼
(
𝑓𝛼𝑛 𝒏𝛼 + 𝒇 𝛼𝑡

)
, (1)

𝑓𝛼𝑛 ≥ 0 , 𝐷𝛼 ≥ 0 , 𝑓𝛼𝑛 𝐷𝛼 = 0 𝛼 ∈ 𝐼𝑐 ,

If 𝐷𝛼(𝒄) = 0 then (𝐴𝛼𝒖+) ⋅ 𝒏𝛼 = 0 𝛼 ∈ 𝐼𝑐 , (2)

If 𝑃𝛼𝐴𝛼𝒖
+ ≠ 0 (sliding motion) , 𝒇𝛼𝑡 = −𝜇𝑓𝛼𝑛

𝑃𝛼𝐴𝛼𝒖
+||𝑃𝛼𝐴𝛼𝒖+ || 𝛼 ∈ 𝐼𝑐, (3)

+ 𝛼 𝛼
4

If 𝑃𝛼𝐴𝛼𝒖 = 0 (no slip) , ||𝒇 𝑡 || ≤ 𝜇𝑓𝑛 𝛼 ∈ 𝐼𝑐 . (4)
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Note that the translational and rotational velocities are likely to be non-smooth, since they undergo instantaneous jumps during 
collision. In particular, the post-collision velocity 𝒖+ can be different from the pre-collision velocity 𝒖−. As a consequence, the 
evolution above is to be understood in a weak, distributional sense.

Let us add a few comments on the previous equations. For a pair of grains 𝛼 = (𝑖, 𝑗) ∈ 𝐼𝑐 , in contact, the corresponding vector 
𝑓
𝑖𝑗
𝑛 𝒏𝑖𝑗 + 𝒇

𝑖𝑗
𝑡 ∈ℝ3 is transmitted to both particles 𝑖 and 𝑗 through 𝐴𝑇

𝑖𝑗
. Indeed, let us define

𝑓 𝑗𝑖𝑛 = 𝑓 𝑖𝑗𝑛 , 𝒇
𝑗𝑖
𝑡 = −𝒇 𝑖𝑗𝑡 , ∀𝛼 = (𝑖, 𝑗) ∈ 𝐼𝑐 .

Then, using the expression for 𝐴𝑇
𝑖𝑗

, Equation (1) can be rewritten:

𝑚𝑖 �̇�𝑖 = 𝒇 𝑒𝑥𝑡𝑖 +
∑
𝑗,𝑗≠𝑖

(𝑓 𝑖𝑗𝑛 𝒏𝑖𝑗 + 𝒇
𝑖𝑗
𝑡 ) ∀𝑖 = 1…𝑁,

𝐽𝑖 �̇�𝑖 =
∑
𝑗,𝑗≠𝑖

(𝒓𝑖 ∧ 𝒇
𝑖𝑗
𝑡 ) ∀𝑖 = 1…𝑁.

This corresponds to Newton’s second law, for which the contact between two particles 𝑖 and 𝑗 induces the force 𝑓 𝑖𝑗𝑛 𝒏𝑖𝑗 + 𝒇
𝑖𝑗
𝑡 on 

particle 𝑖. From the definition of 𝑓 𝑗𝑖𝑛 and 𝒇 𝑗𝑖𝑡 from 𝑓𝑖𝑗𝑛 and 𝒇 𝑖𝑗𝑡 the action of this contact is reciprocal on both particles. The normal 
force exerted on sphere 𝑖 due to this contact is 𝑓𝑖𝑗𝑛 𝒏𝑖𝑗 and 𝒇 𝑖𝑗𝑡 ∈ Π𝑖𝑗 is the frictional (tangential) force, which belongs to the plane 
orthogonal to 𝒏𝑖𝑗 .

From Equation (2) we have 𝑓 𝑖𝑗𝑛 = 𝑓𝛼𝑛 ≥ 0. This, together with the orientation of 𝒏𝑖𝑗 from particle 𝑗 to particle 𝑖 ensures that 
this force is repulsive, as expected. Equation (2) also ensures that the distances between the particles remains positive and that the 
normal force is null whenever the distance is strictly positive (i.e., the particles are not in contact).

Finally, Equations (3) and (4) reflect the classical Coulomb law for friction, linking the normal and tangential contact forces.

2.1. Time-stepping scheme

In the spirit of Refs. [51,52], we follow a strategy based on a semi-implicit discretization for problem (1)-(4), together with a 
convexification of the non-overlapping constraint. It is a first order scheme with a time step denoted Δ𝑡 : 𝑡𝑘+1 = 𝑡𝑘 +Δ𝑡 . Considering 
a configuration 𝒄𝑘 at time 𝑘Δ𝑡 , we define the set 𝐼𝑐 and the operators 𝑃𝛼 , 𝐴𝛼 as previously. They all depend on the current 
configuration 𝒄𝑘, but we shall drop this explicit dependence to alleviate notation.

Denoting by 𝒖𝑘 ∈ℝ6𝑁 the generalized velocity at step 𝑘, the discrete problem writes: find 𝒖𝑘+1 ∈ℝ6𝑁 , 𝑓𝛼𝑛 ∈ℝ and 𝒇 𝛼𝑡 ∈ℝ3 for 
𝛼 ∈ 𝐼𝑐 such that

M 𝒖𝑘+1 − 𝒖𝑘

Δ𝑡
= f𝑒𝑥𝑡 +

∑
𝛼∈𝐼𝑐

𝐴𝑇𝛼
(
𝑓𝛼𝑛 𝒏

𝑘
𝛼 + 𝒇 𝛼𝑡

)
, (5)

𝑓𝛼𝑛 ≥ 0 , 𝐷𝛼(𝒄𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖𝑘+1 − Δ𝑡 𝜇 |||𝑃𝑘𝛼 𝐴𝛼𝒖𝑘+1 ||| ≥ 0, 𝛼 ∈ 𝐼𝑐 ,

𝑓𝛼𝑛

(
𝐷𝛼(𝒄𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖𝑘+1 −Δ𝑡 𝜇 |||𝑃𝑘𝛼 𝐴𝛼𝒖𝑘+1 |||) = 0 𝛼 ∈ 𝐼𝑐 , (6)

If 𝑃𝑘𝛼 𝐴𝛼𝒖
𝑘+1 ≠ 0 (sliding motion) , 𝒇 𝛼𝑡 = −𝜇𝑓𝛼𝑛

𝑃 𝑘𝛼 𝐴𝛼𝒖
𝑘+1||𝑃𝑘𝛼 𝐴𝛼𝒖𝑘+1 || 𝛼 ∈ 𝐼𝑐, (7)

If 𝑃𝑘𝛼 𝐴𝛼𝒖
𝑘+1 = 0 (no slip) , ||𝒇 𝛼𝑡 || ≤ 𝜇𝑓𝛼𝑛 𝛼 ∈ 𝐼𝑐 . (8)

Equation (5) is an Euler discretization of Newton’s law (1). Equations (7) and (8) are the implicit discretization of Coulomb 
law (3), (4). Concerning (6), the convexified discrete constraint writes

𝐷𝛼(𝒄𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖𝑘+1 ≥Δ𝑡 𝜇 |||𝑃𝑘𝛼 𝐴𝑖𝑗𝒖𝑘+1 ||| . (9)

If 𝒄𝑘+1 = 𝒄𝑘 +Δ𝑡𝒗𝑘+1, using a Taylor expansion, one has

𝐷𝛼(𝒄𝑘+1) ≥Δ𝑡 𝜇 |||𝑃𝑘𝛼 𝐴𝑖𝑗𝒖𝑘+1 |||+𝑂(Δ𝑡 2),
which can be seen as a first order implicit approximation of (2). Note that, due to the convexity of the distance function, this 
constraint returns feasible configurations. More precisely,

𝐷𝛼(𝒄𝑘+1) ≥𝐷𝛼(𝒄𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖𝑘+1 ≥Δ𝑡 𝜇 |||𝑃𝑘𝛼 𝐴𝑖𝑗𝒖𝑘+1 ||| ≥ 0,

which may be strictly positive, especially when the tangential velocity is high.

2.2. Numerical resolution

A straightforward discretization of the non-overlapping constraint 𝐷𝛼(𝒄𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖𝑘+1 ≥ 0 would have led to a Linear 
5

Complementarity Problem. This strategy has been chosen in Refs. [37–43]. Convexifying the constraint, the discretized problem 
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(5)-(8) now takes the form of a Cone Complementarity Problem (CCP). Some authors have proposed an approach based on this 
formulation, using Projected Jacobi and Gauss-Seidel Jacobi methods [52–55]. These methods have a linear convergence rate, and 
require several iterations on the potential contacts. The computational cost of these methods are known to become prohibitive for a 
large number of particles and contacts.

More efficient strategies can be used, taking advantage of the fact that, as stated in Refs. [51,52], the time-stepping scheme 
(5)-(8) can be identified to the set of Euler conditions associated to a conic constrained optimization problem, based on the global 
force vector as unknown. For example, one can use Accelerated Projected Gradient Descent [59,80] or various Krylov subspace and 
spectral methods [58] to solve the corresponding optimization problem. These algorithms still have a linear convergence rate, but 
they provide significant reductions in the number of iterations. Finally, to further reduce the number of iterations of the solvers, 
one can use numerical methods with quadratic convergence rate. For example, the classical Primal-Dual Interior-Point was used 
in Refs. [56,81,57] to solve the conic optimization problem corresponding to (5)-(8). As expected, due to the quadratic rate of 
convergence, the number of iterations required to achieve a given accuracy is greatly reduced compared to first order methods. 
However, these methods require a Newton step to compute the descent direction and can lose their competitive advantage compared 
to first order methods for large number of particles. See, e.g., Ref. [60] for a comparison of the efficiency of first and second order 
methods to solve Problem (5)-(8). Improving the available algorithms to solve problem (5)-(8) is still an active domain of research. 
One can cite for example the recent works [61,80] where the authors propose a method to accelerate the Newton step in second-order 
methods.

This convexified approach (5)-(8) is very promising, especially under its optimization-based formulation. Indeed, compared to 
soft methods like MD, the implicit treatment of the constraint allows to use large time steps. Moreover, compared to non-convex 
hard methods, each time step relies on the resolution of a single conic constrained optimization problem. Therefore, we can take 
advantage of the many existing solvers for this type of problem and of any improvement that would be made to them. The good 
behavior of the convexified discretization has been shown through theoretical results in Ref. [51] and through comparison with 
experiments, e.g., in Ref. [60].

The previous mentioned methods rely on an optimization problem based on the global force vector as unknown. Following 
Ref. [62], where the contact problem without friction is tackled, we rephrase it as its dual counterpart: an optimization problem 
based on the global velocity vector. We prove that this global formulation leads again to the convexified time discretization (5)-(8)
and propose in Sec. 3 a parameterization of solver MOSEK [79] to solve this velocity-based formulation.

2.3. A velocity-based variational formulation

We consider in the following the velocity-based constrained minimization problem (referred to as Convex Optimization Contact 
Dynamics (COCD))

min
𝒖∈𝐾

𝐽 (𝒖) (10)

𝐽 (𝒖) = 1
2
𝒖 ⋅𝑀𝒖− 𝒖 ⋅𝑀𝑼𝑘+1 , 𝑼𝑘+1 = 𝒖𝑘 +Δ𝑡𝑀−1f𝑒𝑥𝑡 ,

𝐾 =
{
𝒖 , 𝑔𝛼(𝒖) ≤ 0, 𝛼 ∈ 𝐼𝑐

}
, 𝑔𝛼(𝒖) = −𝐷𝛼(𝒄𝑘) − Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖+ 𝜇Δ𝑡

|||𝑃𝑘𝛼 𝐴𝛼𝒖 ||| .
As stated in Refs. [51,52] for the force-based optimization problem, the local contact properties can be recovered from (10) by 

noticing that the discretized scheme (5-8) corresponds the optimality conditions of this global velocity-based optimization problem. 
In the following, we derive rigorously these optimality conditions for the velocity-based problem and prove that if 𝒖𝑘+1 is the solution 
to this convex minimization problem then, it is solution to (5)-(8), for some set of forces (𝑓𝛼𝑛 𝒏𝑖𝑗 +𝒇 𝛼𝑡 )𝛼∈𝐼𝑐 to be determined. To write 
the Euler equations of this constrained problem, note that the constraints 𝑔𝛼 are not differentiable at point 𝒖 where 𝑃𝑘𝛼 𝐴𝛼𝒖 = 0. As a 
consequence, if the solution verifies this condition, one will need to use the sub-differential of 𝑔𝛼 at this point instead of its classical 
derivatives to write Euler equations.

By definition, for ℎ ∶ ℝ3 → ℝ, the sub-differential 𝜕ℎ[𝒖] of a function ℎ at point 𝒖 is the set of directions 𝒗 for which the line, 
issued from ℎ(𝒖) and following direction 𝒗 remains below the graph of ℎ:

𝜕ℎ[𝒖] =
{
𝒗 ∈ℝ3 ∕ ∀�̂� ∈ℝ3 , ℎ(�̂�) ≥ ℎ(𝒖) + 𝒗 ⋅ (�̂�− 𝒖)

}
It is easy to show from this definition that, if ℎ is differentiable at point 𝒖 then the set is a singleton: 𝜕ℎ[𝒖] = {∇ℎ(𝒖)}. In case of 
non-differentiable constraints, the optimization problem (10) fits into the framework detailed in Ref. [82, Th. 2.1.4 p. 305]. Under 
the condition that the constraints are qualified (see below), there exist Lagrange multipliers (𝛾𝛼)𝛼∈𝐼𝑐 such that

∇𝑢𝐽 (𝒖) ∈ −
∑
𝛼∈𝐼𝑐

𝛾𝛼 𝜕𝑔𝛼[𝒖] (11)

𝛾𝛼 ≥ 0 , 𝛾𝛼𝑔𝛼(𝒖) = 0 𝛼 ∈ 𝐼𝑐 (12)

Note that, when the constraints are differentiable, we recognize here the classical Euler equations for the minimization problem.
The aforementioned qualification of the constraint can be checked easily in the present situation. It amounts to show that the 
6

interior of the feasible set is non-empty (Slater condition), which is the case here. Indeed, the velocity vector
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𝒖0 = (𝜖𝒄1,0,… , 𝜖𝒄𝑁,0),

with 𝜖 > 0, lies in the interior of 𝐾 .
It now remains to compute the sets 𝜕𝑔𝛼[𝒖] for any 𝒖. To do so, let us first decompose 𝑔𝛼 in two terms:

𝑔𝛼 = 𝑔𝑛𝛼 + 𝑔
𝑡
𝛼 , 𝑔

𝑛
𝛼(𝒖) = −𝐷𝛼(𝒄𝑘) − Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖 , 𝑔𝑡𝛼(𝒖) = 𝜇Δ𝑡

|||𝑃𝛼𝑘𝐴𝛼𝒖 |||
Since 𝑔𝑛𝛼 is differentiable, it is easy to see that

𝜕𝑔𝑛𝛼[𝒖] =
{
−Δ𝑡∇𝐷(𝒄𝑘)

}
=
{
−Δ𝑡𝐴𝑇𝛼 𝒏

𝑘
𝛼

}
To compute 𝜕𝑔𝑡𝛼[𝒖], we use the following result: if 𝑃 ∶ℝ3 →ℝ3 is the projection on a given plane Π and ℎ is defined as ℎ(𝑢) = |𝑃𝒖|

If 𝑃𝒖 ≠ 0 , 𝜕ℎ[𝒖] =
{
𝑃𝒖|𝑃𝒖 |

}
If 𝑃𝒖 = 0 , 𝜕ℎ[𝒖] =

{
𝒗 ∈ℝ3 ∕ 𝒗 ∈Π and |𝒗 | ≤ 1

}
From this we obtain [82, Th. 4.2.1 p. 263]

If 𝑃𝑘𝛼 𝐴𝛼𝒖 ≠ 0 , 𝜕𝑔𝑡𝛼[𝒖] =

{
𝜇Δ𝑡𝐴𝑇𝛼

𝑃 𝑘𝛼 𝐴𝛼𝒖||𝑃𝑘𝛼 𝐴𝛼𝒖 ||
}

If 𝑃𝑘𝛼 𝐴𝛼𝒖 = 0 , 𝜕𝑔𝑡𝛼[𝒖] =
{
𝜇Δ𝑡𝐴𝑇𝛼 𝒗 ∕ 𝒗 ∈Π𝑘𝛼 and |𝒗 | ≤ 1

}
where we recall that Π𝑘𝛼 is parallel to the tangent plane, perpendicular to 𝒏𝑘𝛼 . We finally obtain the sub-differential of 𝑔𝛼 :

If 𝑃𝑘𝛼 𝐴𝛼𝒖 ≠ 0 , 𝜕𝑔𝛼[𝒖] =

{
Δ𝑡𝐴𝑇𝛼

(
−𝒏𝑘𝛼 + 𝜇

𝑃 𝑘𝛼 𝐴𝛼𝒖||𝑃𝑘𝛼 𝐴𝛼𝒖 ||
)}

If 𝑃𝑘𝛼 𝐴𝛼𝒖 = 0 , 𝜕𝑔𝛼[𝒖] =
{
Δ𝑡𝐴𝑇𝛼

(
−𝒏𝑘𝛼 + 𝜇𝒗

)
∕ 𝒗 ∈Π𝑘𝛼 and |𝒗 | ≤ 1

}
So from (11), (12), we obtain that, if 𝒖𝑘+1 is solution to (10) there exists Lagrange multipliers (𝛾𝛼)𝛼∈𝐼𝑐 such that

𝑀𝒖𝑘+1 −𝑀𝑼𝑘+1 = −Δ𝑡
∑
𝛼∈𝐼𝑐

𝐴𝑇𝛼
(
−𝛾𝛼𝒏𝑘𝛼 + 𝜇𝛾𝛼𝒗

)
𝛾𝛼 ≥ 0 , 𝛾𝛼𝑔𝛼(𝒖) = 0 𝛼 ∈ 𝐼𝑐

If 𝑃𝑘𝛼 𝐴𝛼𝒖
𝑘+1 ≠ 0 (sliding motion) , 𝒗 =

𝑃𝑘𝛼 𝐴𝛼𝒖
𝑘+1||𝑃𝑘𝛼 𝐴𝛼𝒖𝑘+1 || 𝛼 ∈ 𝐼𝑐

If 𝑃𝑘𝛼 𝐴𝛼𝒖
𝑘+1 = 0 (no slip) , 𝒗 ∈Π𝑘𝛼 and |𝒗 | ≤ 1 𝛼 ∈ 𝐼𝑐

Using the definition of 𝑈𝑘+1 and setting 𝑓𝑛𝛼 = 𝛾𝛼 and 𝒇 𝑡𝛼 = −𝜇𝛾𝛼𝒗, we finally obtain that 𝒖𝑘+1 is solution to the discrete prob-
lem (5)-(8), as expected.

3. Computational aspects

In the current section, we present a conic version of the minimization problem (10) that can be adapted in solver MOSEK [79]. 
First, we describe the conic formulation in MOSEK, introduce the Primal-Dual Interior-Point algorithm, define the solver termination 
criteria and reduce the number of variables and constraints. We discuss the numerical parameters values: the time step and the solver 
tolerance in a second time. Finally, we validate the COCD with another “hard” method, the Non-Smooth Contact Dynamics (NSCD) 
method. The complete set of parameters for each simulation are given in Appendix in Table A.2.

3.1. Implementation in convex solver MOSEK

According to MOSEK’s documentation, solving a conic version of the Quadratic Program (10) is preferable for computational 
efficiency. This Quadratic Program is then reformulated into a Conic Optimization Program as follows. First, the quadratic term in 
the objective functional 𝐽 in (10) is replaced by 𝑡, together with a new conic constraint 𝒖 ⋅𝑀𝒖 ≤ 2𝑡. Then, the constraints 𝑔𝛼(𝒖) ≤ 0
in (10) is also rewritten as a simple conic constraints ||𝑥′𝛼 || ≤ 𝑦′𝛼 . To do so, we introduce the new variables 𝑥′𝛼 and 𝑦′𝛼 , together with 
the new linear equality constraints 𝑥′𝛼 = 𝜇Δ𝑡 𝑃

𝑘
𝛼 𝐴𝛼𝒖 and 𝑦′𝛼 =𝐷𝛼(𝒄

𝑘) +Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅𝒖. This leads to the new equivalent minimization 
problem

min
𝑡,𝒖,𝑥′ ,𝑦′

𝑡+ 𝒖 ⋅𝑀𝑼𝑘+1 , (13)
7

under the constraints
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𝑥′𝛼 = 𝜇Δ𝑡 𝑃
𝑘
𝛼 𝐴𝛼𝒖 , 𝑦

′
𝛼 =𝐷𝛼(𝒄

𝑘) + Δ𝑡∇𝐷𝛼(𝒄𝑘) ⋅ 𝒖 , 𝛼 ∈ 𝐼𝑐 ,||𝑥′𝛼 || ≤ 𝑦′𝛼 , 𝛼 ∈ 𝐼𝑐 and 𝒖 ⋅𝑀𝒖 ≤ 2𝑡 , .

Finally, setting 𝑥 = (𝑡, 𝒖, 𝑥′, 𝑦′), problem (13) can be written under the form of a Conic Optimization Program:

min
𝑥
𝑐 ⋅ 𝑥, subject to 𝐴𝑥 = 𝑏, and 𝑥 ∈, (14)

where  is a convex cone which is the cross product of all the conic constraints in (13). The corresponding dual problem of (14) is

max
𝑦
𝑏 ⋅ 𝑦, subject to 𝐴t𝑦+ 𝑠 = 𝑐, and 𝑠 ∈⋆, (15)

where ⋆ is the dual cone of .

3.2. Definition of MOSEK’s termination criteria

MOSEK computes a solution with a Primal-Dual Interior Point Algorithm. It consists in solving the following homogeneous 
problem:

𝐴�̃�− 𝑏𝜏 = 0,
𝐴t �̃�+ �̃�− 𝑐𝜏 = 0,

−𝑐t �̃�+ 𝑏t �̃�− �̃� = 0,

�̃� ∈ ,

�̃� ∈ ⋆,

𝜏, �̃� ≥ 0,
(16)

where 𝜏 and �̃� are two additional scalar variables and (𝑥, 𝑦, 𝑠) = (�̃�∕𝜏, �̃�∕𝜏, �̃�∕𝜏). Problem (16) is a necessary optimality condition 
for the minimization problem (14). The algorithm generates a sequence of trial solution 

(
𝑥𝑘, 𝑦𝑘, 𝑠𝑘, 𝜏𝑘, 𝜅𝑘

)
of (16). If 𝜀𝑝, 𝜀𝑑 , 𝜀𝑔 are 

non-negative user specified tolerances, the termination criteria is

max
(
𝜌𝑘𝑝, 𝜌

𝑘
𝑑
, 𝜌𝑘𝑔

)
≤ 1

where

𝜌𝑘𝑝 = argmin
𝜌

{
𝜌 ∈ℝ ∕ ‖‖‖𝐴𝑥𝑘𝜏𝑘 − 𝑏‖‖‖∞ ≤ 𝜌𝜀𝑝

(
1 + ‖𝑏‖∞)}

,

𝜌𝑘
𝑑
= argmin

𝜌

{
𝜌 ∈ℝ ∕

‖‖‖‖𝐴t 𝑦𝑘
𝜏𝑘

+ 𝑠𝑘

𝜏𝑘
− 𝑐

‖‖‖‖∞ ≤ 𝜌𝜀𝑑
(
1 + ‖ 𝑐 ‖∞)}

,

𝜌𝑘𝑔 = argmin𝜌
{
𝜌 ∈ℝ ∕

((
(𝑥𝑘)

)t
𝑠𝑘

(𝜏𝑘)2 ,
|||| (𝑐)t 𝑥𝑘𝜏𝑘

− (𝑏)t 𝑦𝑘
𝜏𝑘

||||
)
≤ 𝜌𝜀𝑔

(
1, min

(|(𝑐)t 𝑥𝑘|,|(𝑏)t 𝑦𝑘|)
𝜏𝑘

)}
.

The values we chose for 𝜀𝑝, 𝜀𝑑 , 𝜀𝑔 are precised in Sec. 3.4.2.

3.3. Number of variables and constraints

In problem (13), all the constraints between grains are considered, and the problem size dramatically increases with the number 
of particles. However, grains far away from each other may not enter in contact during the current time integration. It is then 
unnecessary to consider all these potential contacts for every integration step. A simple but efficient way to reduce the number of 
contacts is to restrict the constraints to pairs of particles for which the distance is less than a prescribed threshold value �̄�.

Let us define the set 𝐼𝑐(�̄�) as the subset of 𝐼𝑐 of all pairs of particles closer than the prescribed threshold �̄�:

𝐼𝑐(�̄�) =
{
𝛼 ∈ 𝐼𝑐 ∕ 𝐷𝛼(𝒄𝑘) ≤ �̄�

}
.

We then chose to consider, at each time step, the pairs of particles belonging to 𝐼𝑐 (�̄�) rather than 𝐼𝑐 .

3.4. Numerical parameters

3.4.1. Time step
To optimize the trade-off between accuracy and computational cost, we investigate here the behavior of the error related to the 

choice of the time step for 2D column collapses; see Table A.2, row 1 in the appendix for the corresponding numerical parameters. 
We thus compare the snapshot profiles obtained with different Δ𝑡 and measure the error with profiles obtained for the smallest value 
of Δ𝑡 . Fig. 2(a) represents snapshot profiles at times 𝑡 = 0.02 s, 0.06 s and 0.30 s for Δ𝑡 = 10−3 s, 10−4 s and 5.010−5 s. The relative 
error between the profiles and those calculated with the reference value of Δ𝑡 = 5.010−5 s is shown in Fig. 2(b). The errors are 
computed as eΔ𝑡 =

‖‖‖𝑦Δ𝑡 − 𝑦𝑟𝑒𝑓 ‖‖‖∕ ‖‖‖𝑦𝑟𝑒𝑓 ‖‖‖, where the reference profile is denoted 𝑦𝑟𝑒𝑓 and the other profiles 𝑦Δ𝑡 .
Fig. 2(a) shows an excellent quantitative agreement between profiles, especially for Δ𝑡 = 10−4 s and 5.010−5 s. Even though the 

value Δ𝑡 = 10−3 s is quite large compared to the reference value, the profiles are still very close, with only slight differences. It 
comforts us that using relatively large time steps with our method does not significantly impact the flow behavior and deposit. Note 
8

that, a few time steps are larger than 10−3 s and this is already very high compared to “soft” methods like MD where largest value 



Journal of Computational Physics 498 (2024) 112665H.A. Martin, A. Mangeney, A. Lefebvre-Lepot et al.

Fig. 2. Influence of the time step variations. These 2D simulations have been carried out with the parameters given in Table A.2, row 1. The plane is horizontal 
(𝛼 = 0◦), and disks are glued on it. The snapshot profiles are taken at times 𝑡 = 0.02 s, 0.06 s and 0.30 s for Δ𝑡 = 10−3 s, 10−4 s and 5.010−5 s. The time step values have 
been varied from Δ𝑡 = 10−2 s to Δ𝑡 = 5.010−5 s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

Statistics on computational time. The first column gives the simulation name. Then 𝑁 is the number 
of disks (2D) or spheres (3D), 𝑁𝑐 is the number of potential contacts, Δ𝑡 is the time step, 𝜖 is MOSEK’s 
tolerance parameter, Nb(iter.) is the number of iterations required by MOSEK to complete the computation, 
and time (in seconds) indicates the time needed by MOSEK to complete the problem. 𝑁𝑐 , Nb(iter.) and time 
are computed on ten iterations, from 0.11 s to 0.12 s for variation of 𝑁 and from 1 s to 1.1 s for variation of
𝜇. The simulation parameters are given in Table A.2, rows 2 and 4. Any empty cell is equal to the cell value 
of the row above. The simulations were performed with two Intel Xeon E5-2650 2.00 GHz (2 × 8 cores) 
processors on the S-CAPAD platform, IPGP, France.

name dimension 𝑁 𝑁𝑐 Δ𝑡 (s) 𝜖 Nb (iter.) time (s)

1 variation of 𝑁 2D 8 308 37 331 10−3 10−8 47 8.85

2 50 772 238 659 61 51.9

3 variation of 𝜇 3D 122932 829 505 10−2 10−8 21 475.8
4 10−5 11 269.9

are Δ𝑡 ≃ 10−6 s; see Ref. [34]. As expected, Table 1 shows that 3D simulations are more time-consuming than 2D. In the following, 
we set Δ𝑡 to 10−3 s for 2D simulations and 10−2 s for 3D. These values are classical in other “hard” methods; see Refs. [83,84].

3.4.2. Tolerance parameter
The default tolerance parameters in MOSEK are set to 𝜀𝑝 = 𝜀𝑑 = 𝜀𝑔 = 𝜀 = 10−8. Table 1 shows statistics about computational 

time for 2D and 3D column collapses. These statistics have been generated considering two simulation cases, named variation of 𝑁
(2D) and variation of 𝜇 (3D); see the values of the parameters in Table A.2, rows 2 and 4. At this stage, we chose these simulations 
because they are representative of the computational need we have in our study of granular flows on erodible beds in Sec. 5. Indeed, 
our simulations in Sec. 5 consider grains’ mean diameters close to those in experiments (1 mm in our simulations against 0.7 mm 
in the experiments; see Table A.3). Consequently, the number of grains required in our 2D simulations is 𝑁 = 44 996, and about 
122 000 in our 3D simulations (Table A.3), and these numbers are close to those of simulations variation of𝑁 (50 000), and variation 
of 𝜇 (112 459).

The results presented in Table 1, rows 1 and 2 show that there is no need to tune the default MOSEK’s tolerance parameter for 
2D simulations since for 𝜀 = 10−8, one single iteration time is about 51.9 s, which is still reasonable to us. However, Table 1 shows 
that 3D simulations (rows 3 and 4) requires more than 475 s for a single iteration, which is too large according to us. From the time 
step values that have been chosen for 3D simulations (Δ𝑡 = 10−2 s), it is unnecessary and time-consuming to keep the best MOSEK’s 
default tolerance parameter. To efficiently compute the 3D solutions with COCD, we investigated the influence of the tolerance 
parameter 𝜀. Considering Δ𝑡 = 10−2 s, the choice of 𝜀 is made to conserve the stability of a static assembly and is tested for spheres 
at rest into a box (the box is the initial state of simulation variation of 𝜇). As shown in Fig. 3, if 𝜀 is larger than 10−5, some instabilities 
can appear, resulting in non-negligible kinetic energy Ek compared to total energy Etot . Moreover, the mean computational time for 
a single iteration is about 270 s (see Table 1), which is 43% faster than for 𝜀 = 10−8. Consequently, according to these arguments, 
we chose to get a tolerance parameter about 𝜀 = 10−5 for all our 3D simulations because it both maintains a precise computation of 
assemblies at rest (Fig. 3), while it is sufficiently fast for our study (Table 1).

3.5. Validation: comparison with NSCD

We compared our results with another well-known method (NSCD), extensively studied and compared with laboratory exper-
9

iments. This method, fully described in Ref. [47], is based on a straightforward time-stepping scheme of the continuous prob-



Journal of Computational Physics 498 (2024) 112665H.A. Martin, A. Mangeney, A. Lefebvre-Lepot et al.

Fig. 3. Kinetic energy rate as a function of the tolerance parameter 𝜺. This 3D test that has been used to study the influence of 𝜀 on the stability of a static 
configuration where a large assembly of rotational spheres (𝑁 = 110 233) stays at rest in a rectangular box. This static state is conserved for 𝜀 ≤ 10−5 . The simulation 
parameters can be found in Table A.2, row 4.

Fig. 4. Comparison of profiles between NSCD and COCD. The reference simulation is a column collapse. In the NSCD simulation [48,49,47,17], there are 6 036 
disks and in COCD, 𝑁 = 7 740; see Table A.2, row 3. The plane is horizontal (𝛼 = 0◦). Note that the times given in the legend are normalized by √𝐻0∕𝑔.

lem (1)-(4). The constraint is treated using a first-order approximation, and no convexification is added. The (non-convex) resulting 
discrete problem is solved using a Gauss-Seidel-like method, iterating on the contacts.

To compare our scheme with this NSCD algorithm, we run a 2D column collapse with the same parameters as in the simulation 
published in Ref. [48]; both methods parameters are given in Table A.2, row 3. Note that our model is inelastic while the results in 
Ref. [48] are obtained for an elastic coefficient 𝑒𝑛 = 0.5. The mass profiles simulated with the two methods are very close as observed 
in Fig. 4. It shows that considering a purely inelastic model provides sufficient approximation of the flow dynamics, especially in 
the context of column collapses. Note that the authors of Ref. [48], in the later publication [49], also did not observe significant 
changes in the final deposits when varying the elasticity coefficient for small values. Consequently, the inelastic assumption will still 
be considered for applications in the next section, devoted to granular flows on erodible beds.

The good agreement between the simulations with the two methods shows that convexifying the constraint in our numerical 
algorithm has a very small impact on the macroscopic results for the applications considered in this article.

4. Comparison and calibration with experiments of column collapses on rigid beds

After having set the numerical parameters such as the time step or termination criteria as indicated in Sec. 3, let us calibrate the 
friction coefficient used in the model by quantitatively comparing the results with laboratory-scale experiments of granular column 
collapses over inclined rigid beds performed in Refs. [63] and [64] and referred to as M2010 and F2014, respectively. Note that in 
the COCD model, only one rheological parameter is involved, which is the grain/grain friction coefficient 𝜇 that is assumed to be the 
same as the grain/walls friction coefficient.

4.1. Calibration of the friction coefficient in 3D

The laboratory-scale experiments used here to calibrate the model consist in the release of a granular column of thickness 
𝐻0 = 14 cm, length 𝑅0 = 20 cm (i.e., aspect ratio 𝐻0∕𝑅0 = 0.7) on horizontal or inclined channels of different slopes and of width 
𝑊 = 10 cm in M2010 and 𝑊 = 20 cm in F2014. In these experiments, the initial mass is released from rest by opening a gate 
10

while in our simulations we assume that the mass is released instantaneously. The set-up parameters can be found in Table A.2, 
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Fig. 5. Comparison of profiles at three different times involving four numbers of grains. For a column collapse on a rigid rough plane, all the simulation 
parameters are fixed, except for the number of particles 𝑁 = 1109, 8 308, 20 488, and 50 772; see Table A.2, row 2. The plane is horizontal (𝛼 = 0◦).

rows 7 (M2010) and 8 (F2014) for experiments and row 4 for our simulations. Quantitative comparison of DEM simulations and 3D 
experiments is difficult since the number of grains is generally too high in the experiments to be accounted for in simulations at a 
reasonable computational cost.

However, the effects of changing the number of grains have already been studied in Ref. [12] for 3D column collapse simulations 
realized by Molecular Dynamics (MD). In particular, their Fig. 10 shows that the mass profiles are similar when considering 𝑁 ≥ 8000
for 𝛼 = 0◦ for an aspect ratio 𝑎 = 0.7 and a volume of 5600 cm3. In these 3D simulations (with the same box dimensions as in Fig. 10
of Ref. [12]), we use 112 459 grains, which is largely sufficient for the results to be independent of this number. The considered 
diameter (𝑑 = 4 mm) is about six times larger than the grains used in both experiments (𝑑 ≃ 0.7 mm). The initial column is built 
by a uniform rain in the box and with no friction coefficient (𝜇 = 0). When the mass is released, the friction coefficient is set to its 
non-zero value.

Figs. 6(a,b) compare the simulated and experimental mass profiles at times 𝑡 = 0.18 s and 𝑡 = 1.06 s (for which the mass is at 
rest) for flows on a horizontal rigid bed within a channel of width 𝑊 = 20 cm. A series of simulations were performed by varying 
the friction coefficient 𝜇 from 0 to 0.8. Fig. 6(a) shows significant differences between the mass profiles simulated with different 
friction coefficients and the experimental mass profiles. Whatever the friction coefficient, the simulated mass spreads faster than the 
experimental mass, partly because the initial removal of the gate is not accounted for in the simulations (see Ref. [18] for detailed 
analysis of the gate effects). The simulated mass obviously spreads faster as the friction coefficient decreases, with the flow going 
much further for frictionless simulations. At 𝑡 = 1.06 s, the mass is at rest (except for 𝜇 = 0 where the mass is still flowing) and 
the deposits are in good quantitative agreement with experiments for simulations with 0.2 ≤ 𝜇 ≤ 0.8. The differences between the 
experiments of M2010 and F2014, mainly due to the different channel widths, are smaller than the differences between the simulated 
and experimental results whatever the value of 𝜇. However, there is a relatively good agreement between the mass deposit simulated 
with 𝜇 = 0.3 and the two experiments.

Fig. 6(c) represents the time evolution of the relative volume variation 𝑎𝑣 = (𝑉 (𝑡) − 𝑉0)∕𝑉0, where 𝑉 (𝑡) is the volume occupied 
by the flow at time 𝑡 and 𝑉0 is the initial volume. Fig. 6(c) shows that the dilatation increases with increasing 𝜇. This is in good 
agreement with the CD simulations of Ref. [85] who showed that the dilatation angle increases almost linearly with the grain/grain 
friction coefficient. However, this increase is far greater than in the experimental measurements [19] (compare the black and colored 
curves in Fig. 6(c)). Indeed, in experiments, the relative volume variation stays in the range 𝑎𝑣 ∈ [−2, 2]%, while it goes up to 10% 
for the simulation with 𝜇 = 0.2. Two reasons may explain these differences: The first reason is that the initial mass in the column is 
built with a null coefficient of friction, as it is usually done in DEM [48,49], allowing the spheres to organize themselves in a higher 
compacted configuration than for simulations with 𝜇 ≠ 0. When the gate is removed, the friction coefficient is set to its positive value, 
explaining a higher initial dilatation corresponding to bead arrangements obtained in the presence of friction. For 𝜇 = 0, Fig. 6(c) 
shows that the volume is more compacted (𝑎𝑣 ≃ −5%). The second reason for initial dilatation can also be the fact that COCD is 
a Convexified Method (see Introduction) since the normal constraint (9) that is implemented is a convexification of the constraint 
(6). Consequently, when 𝜇 ≠ 0, a gap between particles in contact may arise, as a numerical artifact of the relaxation process [57]. 
However, this numerical artifact seems negligible when comparing with a non-convexified method such as NSCD (see Sec. 3.5).

For our simulations, the best-fit interparticle friction coefficient is 𝜇 = 0.3, calibrated by comparing our simulations with exper-
iments M2010 and F2014 at 𝑡 = 1, 06 s, that is, when the granular mass has stopped. Indeed, it is better to calibrate the friction 
coefficient on the final deposit that has been shown to be poorly affected by the gate opening [18]. This value is relatively close to 
the friction coefficients measured for a perfect glass/glass contact (𝜇 = 0.4 [86]) and to those calibrated with Molecular Dynamics 
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methods (𝜇 = 0.16 [87]).
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Fig. 6. Comparison between simulations with different values for the friction coefficient. Fig. a (respectively, b) represents mass profiles on a horizontal plane 
(𝛼 = 0◦) at times 𝑡 = 0.18 s (respectively, 1.06 s). Fig. c represents the relative volume variation 𝑎𝑣 = (𝑉 (𝑡) − 𝑉0)∕𝑉0 . These 3D simulations have been performed with 
the parameters given in Table A.2, row 4 and the characteristics of experiments are given in rows M2010 and F2014 of the same table. The experimental results 
M2010 ([63]) and F2014 ([64]) are obtained respectively with 𝑊 = 10 cm and 𝑊 = 20 cm, while 𝑊 = 20 cm in our simulations. The rough plane is horizontal and 
covered with a layer of glued particles.

Fig. 7. Comparison of simulated 2D and 3D profiles for two slopes. Fig. a represents the mass profiles at time 0, 0.4, and 1 s for a horizontal plane (𝛼 = 0◦) while 
Fig. b is for an inclined plane of 𝛼 = 22◦ . The 2D simulations are represented by dashed curves while 3D simulation are continuous curves. Simulation parameters can 
be found in Table A.2, rows 5 and 6.

4.2. Calibration of the friction coefficient in 2D

We compare here 2D and 3D simulations computed with the same grain parameters; see Table A.2, rows 5 and 6. For a granular 
column with the same thickness 𝐻0 and length 𝑅0, we considered 𝑁 = 2 154 disks in 2D and 𝑁 = 112 459 spheres in 3D for a 
channel width 𝑊 = 20 cm (see Fig. 8). Indeed, in 3D the granular mass flows within a channel bounded by two lateral walls, as 
in the laboratory experiments. Figs. 7(a) and 7(b) represent the mass profiles calculated with 2D and 3D simulations for granular 
collapse on a horizontal and on a 22◦ sloping plane, respectively, at different times. The 3D simulation dissipates more kinetic energy 
than the 2D simulation, especially for high slope angles as already observed in Ref. [88]. For example, at 𝑡 = 1.00 s, the front position 
is about 12% longer for 2D than for 3D with 𝛼 = 0◦ and about 32% longer with 𝛼 = 22◦.

The additional degree of freedom for particle motion in 3D may partly explain these differences. In 3D systems, the forward 
particle motion can be associated with lateral motion, which is not the case in 2D. Frictional dissipation also occurs during lateral 
particle motion, thus reducing the final distance reached by the grains. Furthermore, particles are in contact with other particles 
at their lateral sides. Because of wall effects, the velocity of the flowing particles at the center is slightly higher than the velocity 
of these adjacent particles, thus inducing friction. To correct artificially for missing frictional effects in simulations, the simplest 
way is to empirically increase the friction coefficient to reproduce laboratory experiments. This fitting procedure has been used, for 
instance, in 2D continuum simulations in Ref. [19], where they used a higher friction coefficient in the 𝜇(𝐼)-rheology to mimic wall 
effects, or in 2D COCD simulations in Ref. [88], where they increased interparticle friction to reproduce laboratory-scale experiments 
(see their Sec. V.D). Following the same strategy, we artificially increase the interparticle friction coefficient up to 𝜇 = 0.9 in our 
2D simulations to reproduce the experimental runout distance of granular collapse on a horizontal plane, as Ref. [88], leading to a 
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higher fitted friction coefficient than in 3D, where 𝜇 = 0.3.
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Fig. 8. Snapshot of 3D simulation. This picture is a snapshot at 𝑡 = 0.15 s of the 3D simulation given in Table A.2, row 6 on a horizontal plane (𝛼 = 0◦). The granular 
assembly is composed of spheres (with 10% of polydispersity) and the flow is confined by two invisible lateral walls and another wall located at the left of the 
domain. Concerning the bottom, the rough bed is composed of glued spheres with the same grain properties and polydispersity. In this picture, the colors represent 
the normalized velocity of translation.

Note that in 2D, the effects of the number of grains in such set-ups has been briefly investigated (see Fig. 5) and seems to weakly 
affect the profiles when 𝑁 ≥ 20 000. For the initial 2D box dimension 𝑅0 ×𝐻0 = 20 × 14 cm2 that is considered for our study about 
erodible beds (Sec. 5), this corresponds to the number of grains of mean diameter 𝑑 = 1 mm, which is close to the particle size in 
the experiments. However, in Fig. 7 we only consider 2 154 grains in our 2D simulations because we want to have the same grain 
size than in our 3D simulations. The effect of considering a smaller grain size (or equivalently, a larger number of grains in the same 
initial volume) is to have a longer runout distance until the difference almost vanishes (compare blue, orange, and green curves 
in Fig. 5). Consequently, the front position in 2D simulations is underestimated in Fig. 7, while it is already much longer than 3D 
simulations.

5. Granular column collapses on erodible beds

We now highlight the potential of COCD to gain physical insight into the complex dynamics of granular flows on inclined shallow 
erodible beds with thicknesses of a few to about ten particles. Laboratory experiments have shown that the runout distance of 
granular flows increases with increasing thickness of the erodible layer up to a critical thickness [63,64]. The interactions between 
the flowing mass and the erodible bed is expected to depend on grain scale processes through the complex rearrangement of the 
contact network and momentum exchanges. To reproduce these experiments with discrete simulations, at least qualitatively, the 
number of grains in the simulation and in the experiments should be roughly similar. This is why the grain size in the simulations 
should be as close as possible to the real grain size.

However, with a mean particle diameter of 𝑑 ≃ 0.7 mm, the experiments from Ref. [64] (see Table A.3, row 10) involve ap-
proximately 20 million grains for an initial column volume 𝑉 = 5600 cm3 and a standard volume fraction Φ = 0.64. Considering 
the same volume in 3D simulations would thus lead to prohibitive computational times. Therefore, we first perform 2D simulations 
(Sec. 5.1). We simulate a column with an aspect ratio 𝑎 = 0.7 (𝑅0 ×𝐻0 = 20 × 14 cm2) with grains of mean diameter 𝑑 = 1 mm, 
similar to that of the experiments. Then, with the same mean grain diameter, we compute 3D simulations but reduce the mass volume 
13

(𝑅0 ×𝐻0 ×𝑊 = 10 × 7 × 0.8 cm3) while keeping the same aspect ratio (Sec. 5.2). As a result, for 2D (Table A.3, rows 1 to 5) and 
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Fig. 9. Evolution of the front position of 2D simulations and experiments. Three inclinations 𝛼 = 16, 19, and 22◦ and three widths of the erodible layer ℎ𝑖 = 0, 3, 
and 5 mm are represented. The grain properties are the same in the column and in the erodible layer. In Table A.3, the simulations correspond to rows 1 to 5 and the 
experiments to row 10. The experiments were carried out by Farin et al. (2014) [64]. Note that the vertical scales differ in Figs. a, b, and c. The squares correspond 
to the times at which the runout distance is reached in experiments while the circles correspond to the times at which the simulations outdistance the experiments. 
Note that the final times of simulations are not represented in the figures and that the simulations continue to flow for more than 6 s (see Fig. 11).

3D (Table A.3, rows 7 to 9) simulations, the mean grain size is 𝑑 = 1 mm, while in the 2D simulation highlighting erosion waves 
(Table A.3, row 6), the grain size is slightly larger (𝑑 = 1.8 mm).

5.1. 2D simulations: evolution of the mass, velocity profiles and wave motion

5.1.1. Evolution of the granular mass
Fig. 9 represents the evolution of the normalized front position 𝑟𝑓∕𝑅0 of the granular mass. The simulations reproduce quite well 

the experiments from Ref. [64] up to about 𝑡 = 0.6 s (compare continuous and dashed curves for each color in Figs. 9(a)-(c)). Except 
for 𝛼 = 16◦ (Fig. 9(a)), where the simulations go slightly faster than the experiments, the other simulations at 19◦ and 22◦ (Fig. 9(b) 
and 9(c)) are systematically slower until the time at which the experimental mass front stops (represented by squares in Fig. 9). 
Subsequently, for 𝛼 > 16◦, the simulated front overcomes the experimental front already at rest (this time is represented by circles 
in Fig. 9).

Similarly to experiments, our simulations show that the thicker the erodible layer, the greater the distance traveled by the flow 
(compare the blue ℎ𝑖 = 0 mm, orange ℎ𝑖 = 3 mm, and green ℎ𝑖 = 5 mm curves in Fig. 9). This behavior is amplified when the 
slope increases, as observed experimentally. For example, the maximal difference between ℎ𝑖 = 3 and 5 mm is about 10% of 𝑅0 at 
𝛼 = 16◦ (Fig. 9(a)), 30% at 19◦ (Fig. 9(b)), and 110% at 22◦ (Fig. 9(c)). Note that these differences are approximately the same as in 
the experiments with a larger difference in the traveled distance between ℎ𝑖 = 0 mm and ℎ𝑖 = 3 mm than between ℎ𝑖 = 3 mm and 
ℎ𝑖 = 5 mm.

The main difference between simulations and experiments is that while the experimental granular masses stop (square dots in 
Fig. 9), the simulated masses continue to spread and therefore ultimately outdistance the experiments (circle dots). This is illustrated 
in Fig. 10 for granular collapse at 𝛼 = 22◦ on an erodible bed of thickness ℎ𝑖 = 5 mm. At 𝑡 = 0.18 s (Fig. 10(a)), the simulation goes 
slightly faster than the experiments, probably related to the initial removal of the gate that is not accounted for in the simulation 
(see the influence of the gate in Ref. [18]). The experimental and simulated fronts become close at 𝑡 ≃ 0.48 s (Fig. 10(b)). Until this 
time, the mass profiles are similar. Then, the simulation remains slightly behind but reaches the experiment at 𝑡 = 2.7 s (Figs. 9(c) 
and 10(c)) while the experiment has stopped at 𝑡 = 2.5 s (Fig. 9(c)). Finally, the simulation continues to flow while the experiment 
stays at rest (insert 4 in Fig. 10(d)). At 𝑡 = 4 s, the simulated mass has left the left wall (insert 3 in Fig. 10(d)).

As discussed previously, this non-stopping behavior for flows beyond an inclination angle higher than 16◦ is attributed to 2D 
simulations. Similar findings were reported by Ref. [88]. Indeed, in 2D simulations, the avalanche angle is approximately 16◦, 
whereas it is around 22◦ in experiments involving grains with similar characteristics. This discrepancy arises from both the geometric 
configuration, which significantly differs from 2D to 3D, and the absence of energy dissipation due to friction on the lateral walls (a 
factor not present in 2D). When we simulate 3D flows with COCD, the avalanche angle aligns with that observed in experiments. For 
a more detailed discussion, please refer to Sec. V of Ref. [88].

The time evolution of the front velocity 𝑣𝑓 , represented in Fig. 11 for simulations, has been shown to be very sensitive to 
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the granular flow behavior [63]. The simulation well reproduces the three main phases observed experimentally in Ref. [64]: an 
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Fig. 10. Profile comparison between 2D simulations and experiments. The aspect ratio is 𝑎 = 0.7 and the slope is 𝛼 = 22◦ with an erodible bed of ℎ𝑖 = 5mm.

Fig. 11. Evolution of the front velocity of 2D simulations. The results are shown for four inclination angles 𝛼 = 0◦ (a,b), 𝛼 = 16◦ (c,d), 𝛼 = 19◦ (e,f) and 𝛼 = 22◦
(g,h), and five bed thicknesses ℎ𝑖 = 0, 3, 5, 7, and 10 mm. The second column highlights the slow propagation phase. All simulation parameters can be found in 
Table A.3, rows 1 to 5.

acceleration phase from the initial time to the time when the front reaches its maximum velocity, a deceleration phase from the time 
when the front velocity is maximal to the beginning of the phase when the front stops decelerating, and a slow propagation phase
where the flow continues its motion with a velocity fluctuating within a given range that remains roughly constant. The separation 
between these phases is represented by vertical dashed and dotted-dashed lines, respectively. Furthermore, Fig. 7 of Ref. [64] shows 
that the slow propagation phase is absent at 𝛼 = 0◦, starts to be observed at 𝛼 = 16◦, and is well developed at 𝛼 = 19◦, in agreement 
with Figs. 11(a), 11(c), 11(e), and 11(g).

In particular, for ℎ𝑖 = 10 mm (purple curve in Fig. 11), the slow propagation phase is clearly observed with front velocities 
oscillating around 20 cm s−1, which represents 10-15% of the maximum velocity of about 1.6 m s−1 in very good agreement with the 
15

experiments in Fig. 11 of Ref. [63]. Finally, Figs. 11(a), 11(c), 11(e), and 11(g) show that the thickness of the erodible layer does not 
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Fig. 12. (a) Velocity profiles at three different positions. Three profiles of the granular mass are represented at times 𝑡 = 0.3 s, 𝑡 = 1 s, and 𝑡 = 2 s corresponding 
to the flow when the measured free surface elevation is maximal at the positions 𝑥1, 𝑥2 , and 𝑥3 , respectively. (b-d) Velocity profiles along the flow depth at different 
times (𝑡 = 0.15 s to 𝑡 = 6 s) at the three locations along the slope. The horizontal dashed black curve represents the initial erodible layer of thickness ℎ𝑖 = 5 mm. The 
simulation is performed for a slope 𝛼 = 22◦ and an initial erodible thickness ℎ𝑖 = 5 mm (Table A.3, row 3).

affect the acceleration phase, slightly the deceleration phase but significantly the slow propagation phase (Figs. 11(b), 11(d), 11(f), 
and 11(h)), in very good agreement with Ref. [63]. Note that the fluctuations of the front velocity also increase with the erodible 
layer thickness (compare orange and purple curves again).

5.1.2. Velocity profiles
Velocity profiles during granular flows have been measured and simulated, in particular for flows on erodible beds [89,75,76]. 

Such profiles are shown in Fig. 12 for our simulations and can be qualitatively compared to Figs. 15 and 17 of Ref. [75]. The 
simulation is performed for a slope 𝛼 = 22◦ and an initial erodible thickness ℎ𝑖 = 5 mm (Table A.3, row 3). Fig. 12(a) represents 
three sets of velocity profiles at positions 𝑥1 = 29.5 cm, 𝑥2 = 69.5 cm, and 𝑥3 = 119.5 cm, starting at times 𝑡 = 0.15 s, 0.5, and 1 s, 
respectively, until 6 s. Moreover, a mass profile is represented at times 𝑡 = 0.30 s (red), 𝑡 = 1.0 s (magenta), and 𝑡 = 2.0 s (sky blue), at 
which the mass thickness ℎ(𝑥𝑖) is maximum at 𝑥1, 𝑥2, and 𝑥3, respectively. The erodible layer is represented by a horizontal dashed 
black line, at ℎ𝑖 = 5 mm.

The highest velocities are obtained at position 𝑥1. A global decrease of the velocity is observed when moving forward along the 
horizontal axis (for instance the maximal velocity at probe 𝑥1 is 150 cm s−1 (Fig. 12(b)) while it is about 70 cm s−1 at 𝑥3 (Fig. 12(d))). 
At 𝑥1 and for relatively small times 𝑡 ≤ 20 s, the velocity profiles have an exponential shape from 𝑧 = 0 where the mass is at rest 
to approximately 𝑧 ≃ 1 cm (see, e.g., the dotted gray arrow in Fig. 12(b)). At later times, the velocity profiles look more like linear 
functions (at 𝑡 = 0.15, 0.17, 0.2 s in Fig. 12(b)). We clearly observe that the erodible layer has been put into motion (see, e.g., the 
violet and brown profiles at 𝑥2 (Fig. 12(c)). The arrest phase can also be observed in Figs. 12(b)-(d) where particles near the bed 
stop before particles near the free surface.

Even though our simulations are in good qualitative agreement with experiments, quantitative comparisons are more difficult 
as shown in Fig. 13 representing the downslope velocity profiles 𝑢𝑥 at 𝑥 = 110 cm. The dotted curves represent experimental data 
measured in Ref. [64] and extracted first in Ref. [76] while the continuous curves represent our simulations. The time starts (𝑡 = 0 s) 
when the front reaches the position 𝑥. Good agreement is observed at this initial time, corresponding to the front arrival. For larger 
times, significant differences between simulations and experiments can be observed. On the other hand, the maximum velocity and 
the free surface elevation are roughly well reproduced by the simulations for 𝑡 ≤ 0.8 s. The main difference is in the static/flowing 
transition that rises towards the free surface in the experiments while staying roughly at the surface of the erodible layer in the 
simulations. This is partly explained by the absence of wall effects in 2D simulations. Indeed the additional dissipation related to 
lateral friction with the walls induces a thicker basal static layer as shown in continuum simulations (see, e.g., Fig. 4 of Ref. [19]).

Erosion processes and associated energy transfer between the flowing grains and the initially static grains of the erodible bed are 
highlighted in Fig. 14 which represents the kinetic to potential energy ratio of the erodible bed 𝑒𝑘 (normalized by its maximum value ‖𝑒𝑘‖∞ in Fig. 14), defined by

𝑒𝑘 =
𝐸𝑘(bed)
𝐸𝑝(bed)

,

where 𝐸𝑘(bed) and 𝐸𝑝(bed) are respectively the kinetic and potential energies of the bed. Erosion clearly increases with the slope 
angle 𝛼 (compare the maximal values reached in Figs. 14(a)-(c)) and with the bed thickness. Note that at 22◦, the kinetic energy 
of the erodible bed at ℎ𝑖 = 7 mm (red curve) is larger than at ℎ𝑖 = 10 mm (purple curve) during the first 1.5 s (Fig. 14(c)). This 
16

phenomena has also been observed in the experiments (see blue curve with diamonds in Fig. 9(b) of Ref. [64] where the runout 
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Fig. 13. Comparison between velocity profiles obtained by our simulations and profiles obtained by experiments. In this figure, the time 𝑡 = 0 s corresponds 
precisely to the time when the front reaches the position 𝑥 = 110 cm. The velocity profiles are measured starting at this time. The simulation is performed for a slope 
𝛼 = 22◦ and an initial erodible thickness ℎ𝑖 = 5 mm (Table A.3, row 3).

Fig. 14. Normalized kinetic energy of the erodible bed. Simulations are performed on three slopes (a) 𝛼 = 16◦ , (b) 𝛼 = 19◦ , and (c) 𝛼 = 22◦ for erodible beds 
ℎ𝑖 = 3, 5, 7, and 10 mm. The simulation parameters can be found in Table A.3, rows 2 to 5.

distance saturates and even decreases when ℎ𝑖 exceeds 12 particles). This could be explained by the energy lost in moving the grains 
deep in the bed without significant down-slope motion of these deep particles. At 𝑡 > 1.5 s, the purple curve (ℎ𝑖 = 10 mm) is higher 
than the red one (ℎ𝑖 = 7 mm), as observed for smaller angles in Figs. 14(a,b). This is again in very good agreement with experiments 
(see green and blue curves in Figs. 9(a)-(b) of Ref. [64]).

5.1.3. Wave motion
In Ref. [64], erosion waves were observed near the flow head, highlighting the exchange processes between the flow and the 

erodible bed. Such instabilities can occur when two fluids with different velocities and densities move one above the other. If 
the flowing layer and the erodible layer can be assimilated to two different fluids with different densities and distinct down-slope 
velocities, a slight perturbation at the interface can be amplified by the local velocity difference and the local decrease in flow 
pressure. If the velocity of the superjacent fluid is sufficient, the amplified perturbation can transform into a breaking wave [10,64].

The authors of Ref. [64] suggested that the wave-like motion they observed can be assimilated to Kelvin-Helmholtz instabilities. 
However, due to the experimental nature of their study, it was challenging for them to measure certain quantities such as density 
differences within the flow and then to confirm their intuition. They used order-of-magnitude calculations to verify that the instability 
conditions are well satisfied. Since we also observe such waves in our numerical simulations (Fig. 15), we use our outputs to access 
these measurements, and we show that the conditions for the formation of Kelvin-Helmholtz instabilities are indeed well fulfilled, 
confirming their intuition.

The criterion developed by Rowley et al. (2011) [10] provides a threshold for the minimum velocity difference 𝑢1 − 𝑢2 between 
the upper (1) and lower (2) layers that is necessary for the growth of Kelvin-Helmholtz instabilities. For a given wavelength 𝜆, this 
criterion is expressed by equation

𝑢1 − 𝑢2 ≥

√
𝑔𝜆

2𝜋

(
Φ2
Φ1

−
Φ1
Φ2

)
,

where 𝑔 is the gravity field and Φ is the granular volume fraction. In the experiments conducted in Ref. [64], the calculated velocity 
17

difference is 𝑢1 − 𝑢2 ≃ 0.4 m s−1 for the specific case of granular flows at 𝛼 = 22◦, 𝑉 = 12 600 cm3, 𝑎 = 0.7, 𝜆 ≃ 7 cm (see Fig. 20 in 
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Fig. 15. Snapshots at different times. The red grains are initially from the column and the blue grains from the bed. The simulation parameters can be found in 
Table A.3, row 6. The slope is 𝛼 = 22◦ .

Ref. [64]), and Φ1 ≃ 6400 grains per cm3 that is Φ1 ≃ 0.8 Φ2. The values of Φ1, Φ2, and 𝜆 have been roughly estimated in these 
experiments.

In our numerical experiment, the ratio between Φ1 and Φ2 is also about 0.8 (Fig. 16(a)) and the wavelength 𝜆 is about 8 cm
(Fig. 16(c)), close to the estimations in Ref. [64]. These values lead to a minimum velocity difference 𝑢1 − 𝑢2 ≃ 0.24 m s−1. The 
criterion to observe Kelvin-Helmholtz instabilities is thus fulfilled in our simulations since the velocity difference between the two 
layers is much higher (compare the values of 𝑢𝑥 in Fig. 16(b)). Indeed, the flowing layer (above the black dashed curve) has a typical 
down-slope velocity higher than 0.40 m s−1 while the velocity of the erodible layer stays under 0.15 m s−1.

Note that the analogy with Kelvin-Helmholtz instabilities is validated only at the flow head because such well-developed instabil-
ities require a velocity difference to be maintained between the two fluids, explaining why the instabilities vanish when the flowing 
mass slows down. In the experiments as well as in the simulations, the velocity difference is sufficiently high only at the flow head 
and during a relatively short time (in simulations, they can be observed between 0.9 and 2.2 s). In experiments, the waves are indeed 
observed mostly in the flow head and when the front velocity exceeds 0.4 m s−1.

Furthermore, Fig. 16(c) shows that grain geometrical arrangements within the erodible layer create obstacles acting into the 
erosion process. In Fig. 16, the velocity vectors of grains belonging to the erodible layer are represented by the black arrows. The 
zone below the red curve represents the portion of the erodible bed where the grains are quasi-static at 𝑡 = 1.33 s. Two stacks of 
particles are shown between 𝑥 = 48 and 53 cm and 𝑥 = 60 and 65 cm (between the red vertical dotted lines). The flowing particles 
from the erodible bed appear to encounter these two stacks, contributing to the wave-like oscillations. This wave-like motion has a 
signature during the flow on the free surface, as observed in the experiments of Ref. [63] (see their Figs. 19 and 20). However, in 
the deposit, there is no clear signature of these waves in our simulations since they disappear as the flow decelerates, aligning with 
18

observations in the experiments of Refs. [63,10,90,64].
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Fig. 16. Wave motion characteristics near the front at 𝑡 = 1.33 s. The slope is 𝛼 = 22◦ (see Table A.3, row 6). (a) Difference between Φ1, the solid volume fraction 
of the flowing layer, and Φ2 , the solid volume fraction of the erodible bed. (b) Difference of downslope velocities between the flowing layer and the erodible layer, 
arbitrarily separated by a dashed black curve. (c) Granular profile and velocity vectors (black arrows) of each particle of the erodible layer. The wave motion can be 
identified visually with a wavelength of approximately 8 cm. The grains below the red curve are quasi-static.

5.2. 3D simulations: static/flowing transition and compaction effects

5.2.1. Effect of initial solid volume fraction
Initial compaction and associated dilatancy effects may change the behavior of dry granular flows [91–93] even though this 

effect is more dramatic in the presence of a fluid [94]. For instance, for identical volumes, an initially compacted mass released on a 
compacted bed spreads less than a compacted mass on a loose bed [64]. It is expected that the initial compaction of the erodible layer 
will change the depth at which the flow will put the beads of the erodible bed into motion. We therefore investigate the simulated 
evolution of the static/flowing transition that we qualitatively compare with the experimental observations given in Ref. [64]. This 
transition that we denote ℎ𝑠𝑓 corresponds to the thickness of the static layer within the initial erodible bed.

Three simulations were performed, with identical parameters (see Table A.3), except for the initial solid volume fraction. The 
compaction was modified when preparing the initial granular column and erodible bed by changing the value of the friction coeffi-
cient between grains. The initial mass is built up through a uniform rain. This process leads to a pressure field on the ground with 
qualitatively hydrostatic profiles [95]. In our simulations, the initial compaction is then a function of the friction coefficient 𝜇 used 
to prepare the initial set-up.

We refer to these three simulations as follows: loose/loose when both the column and the bed are built with a friction coefficient 
𝜇 = 0.3, compact/compact when both the column and the bed are built without friction (𝜇 = 0), and compact/loose when the granular 
column is built with 𝜇 = 0 and the granular bed with 𝜇 = 0.3. An example of an initial set-up can be found in Fig. 17(a) for the 
compact/loose simulation. In these simulations, the aspect ratio is 𝑎 = 𝐻∕𝐿 = 0.7, with a granular bed elevation of ℎ𝑖 = 5 mm 
corresponding approximately to five sphere diameters and a channel width 𝑊 = 0.8 cm, corresponding approximately to ten sphere 
diameters. All parameters can be found in Table A.3, rows 7 to 9, at corresponding names. Note that in these simulations, there is a 
layer of glued beads on the rigid plane under the erodible bed.

In the experiments of Ref. [64], relatively similar grain sizes, plane slopes, initial bed elevations, and aspect ratios are used. 
However, the volumes are quite different since the dimensions of the flowing mass at the initial time is a box of dimensions 𝐻0 ×
𝑅0 ×𝑊 = 14 × 20 × 20 cm3, involving approximately 9 million spheres. Since our computational capacities cannot handle such 
number of spheres, we reduced the box dimensions by two and dramatically decrease the channel width 𝑊 , leading to a simulated 
mass dimension of 𝐻0 ×𝑅0 ×𝑊 = 10.0 ×7.0 × 0.8 cm3. Shortening the channel width and lowering the initial volume of the column 
is known to reduce mass entrainment leading to a smaller runout distance [64]. However, in such a narrow channel, the flow will 
be significantly influenced by the lateral walls. Thus, to minimize wall effects, which will be much higher in our simulations than in 
experiments since our channel is much narrower, we set 𝜇 = 0 for all grain/wall interactions. For a detailed analysis of the effects of 
19

side walls in laboratory experiments and numerical simulations, refer to Refs. [19,63,64,77].
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Fig. 17. Snapshots of the compact/loose simulation. The parameters of this 3D simulation can be found in Table A.3, row 7. The initial column dimensions are 
𝑅0 ×𝐻0 ×𝑊 = 10 × 7.0 × 0.8 cm3 . The erodible thickness is about 0.5 cm, corresponding to five mean grain parameters 𝑑 = 1.0 mm. The purple spheres belong to 
the initial erodible bed. This simulation involves 𝑁 = 122 434 grains and the slope is 𝛼 = 22◦ . The mass is at rest in Fig. f at 𝑡 = 6.0 s. The three main phases are 
represented here: the acceleration (a) and (b), deceleration (c), and slow propagation phase (d), (e), and (f).

Fig. 18. Profile comparison for different compactions. The slope is 𝛼 = 22◦ and the bed thickness is ℎ𝑖 = 5 mm (five grains of mean diameter; see Table A.3, rows 7 
to 9). There are no notable differences in front position. However, it can be seen that the maximal height at 𝑥 = 0 cm is smaller in the loose case. This is probably 
caused by a compaction of the column during its collapse.

Fig. 18 shows that the initial compaction in our simulations does not change the runout distance. Indeed, the compaction of the 
initial column mainly changes the upstream mass profiles as was observed in the DEM and continuum simulations of Refs. [91,93]. 
The upstream thickness of the initially compact column is larger than for the initially loose column.

5.2.2. Static/flowing interface and velocity profiles
Fig. 19, which must be studied in parallel to Fig. 17 in Ref. [64], highlights the evolution of three main quantities: the front 

velocity 𝑣𝑓 as a function of the space position 𝑥 (Fig. 19(a)), the time evolution of the static/flowing transition elevation ℎ𝑠𝑓 , 
(Figs. 19(b)-(f)), and the horizontal mean velocity 𝑢𝑥 as a function of the normal elevation to the plane 𝑧 (Figs. 19(g)-(k)). The 
static/flowing transition ℎ𝑠𝑓 is defined by a criterion on the value of the downslope velocity 𝑢𝑥 as follows: ℎ𝑠𝑓 ∶= min𝑧(𝑥), such that 
0 ≤ 𝑧(𝑥) ≤ ℎ𝑖 and 𝑢𝑥(𝑧) ≤ 𝑐, where ℎ𝑖 represents the initial granular bed elevation (here about five mean sphere diameters ℎ𝑖 = 5𝑑), 
and 𝑐 = 1 cm s−1, as in Ref. [64].

In Fig. 19(a), the three main phases defined in Sec. 5 can be distinguished in the evolution of 𝑣𝑓 . On the contrary, the acceleration 
phase (see, e.g., the snapshots a and b in Fig. 17 for compact/loose) is quite independent of compaction of the granular mass and 
bed, from approximately 𝑥 = 𝑅0 = 10 cm to 𝑥 ≃ 16 cm. The maximal front velocity is about 75 cm∕ s at 𝑥 = 16 cm. The deceleration 
phase (Fig. 17(c)), observed from 𝑥 = 16 cm to 26.5 cm, significantly depends on the compactness of the initial set-up (Fig. 19(a)). 
The smallest deceleration (i.e. highest velocities) is observed in the compact/compact simulation (orange curve) which is the only 
case where the erodible layer is compact. This could be related to the smaller dissipation of moving grains in the deep part of the 
erodible bed compared to the loose bed. For flows on a loose bed, the loose column front (loose/loose simulation) decelerates less 
than the compact column (compact/loose simulation) for front positions up to about 20 cm and then decelerates more (the blue curve 
20

drops below the green curve). The slow propagation phase (Figs. 17(d), 17(e) and 17(f)) characterized by a quasi-steady small front 
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Fig. 19. Velocity profiles and time evolution of the static/flowing transition. The slope is 𝛼 = 22◦ and the bed thickness is ℎ𝑖 = 5 mm (five grains of mean 
diameter). There are five points where measurement have been performed. Two in the acceleration phase 𝑥1, 𝑥2 , two in the deceleration phase 𝑥3 , 𝑥4 , and one more 
in the slow propagation phase 𝑥5 . Simulation parameters can be found in Table A.3, rows 7 to 9, named compact/loose, loose/loose and compact/compact. In the third 
row, we represent the downslope velocity in the granular media at a given position 𝑥. These velocities have been measured at time 𝑡0 at which the transition ℎ𝑠𝑓 has 
reached its minimal value (meaning that the static/flowing transition is the deepest in the erodible layer).

velocity starts at 𝑥 = 26.5 cm with 𝑣𝑓 ≃ 15 cm s−1 (Fig. 19(a)). In this phase, the velocity of the compact column and bed is still 
higher than the front velocity of the compact column on a loose bed, itself higher than in the loose column and bed case.

The time evolution of the transition ℎ𝑠𝑓 is represented in Figs. 19(b)-(f). We measured it at two points in the acceleration 
phases: 𝑥 = 12.5 and 15 cm, two others in the deceleration phase 𝑥 = 20 and 25 cm and another one in the slow propagation phase 
𝑥 = 27.5 cm. Note that the point where the maximal velocity of the front has been measured is 𝑥 = 15 cm. In our simulations, three 
typical behaviors can be observed depending on the considered phase.

In the acceleration phase, the penetration of the static/flowing interface ℎ𝑠𝑓 within the erodible bed is sharp, reaching the deeper 
position very quickly (e.g., at 𝑡 = 0.1 s in Fig. 19(c)). The interface elevation then increases (i.e., rises) until the value of the initial 
bed thickness ℎ𝑖 = 5𝑑. Furthermore, it can be observed that for faster velocities, the interface seems to penetrate deeper (note the 
value of 𝑣𝑓 in Fig. 19(a) and of ℎ𝑠𝑓 in Figs. 19(b)-(f)). We also observe that the granular bed stabilizes more rapidly when it is 
initially compact. In the deceleration phase, the change of the interface elevation ℎ𝑠𝑓 is smoother than in the acceleration phase 
and its minimal value is smaller (compare Figs. 19(d,e) with Figs. 19(b,c)). The biggest difference between the curves is observed 
at 𝑥 = 20 cm with a smaller penetration of the static/flowing interface ℎ𝑠𝑓 in the compact/compact case, followed by the loose/loose
and compact/loose cases. The static/flowing interface ℎ𝑠𝑓 penetrates deeper at position 𝑥 = 20 cm (the middle of the deceleration 
phase) than those at 𝑥 = 25 cm, (the end of this phase). At this latter position, the penetration is almost the same whatever the initial 
compaction while the duration of the motion of grains in the erodible bed is smaller for flows on a compact bed (orange curve). 
During the slow propagation phase, differences similar to those observed at 𝑥 = 20 cm between the curves start to become visible 
again (Fig. 19(f)).

In the third row of Fig. 19, we represent the downslope velocity in the granular media at a given position 𝑥. These velocities have 
been measured at time 𝑡0 where the transition ℎ𝑠𝑓 has reached its minimal value (meaning that the static/flowing transition is the 
deepest in the erodible layer). For example, the velocity profile shown in Fig. 19(h) has been measured at 𝑡 = 0.11 s, when ℎ𝑠𝑓 is the 
smallest in Fig. 19(c).

During the acceleration phase Figs. 19(g,h), we observe profiles as in Fig. 12(b) at 𝑡 = 0.15 s decomposed into an exponential 
shape around the erodible bed surface 𝑧 ≃ 5 mm connecting above to a roughly constant velocity up to the free surface. Surprisingly, 
Figs. 19(g,h) show that the downslope velocity is maximal in the middle of the granular layer at the initial instants, as observed, 
e.g., in Fig. 17(b) for the compact/loose case. This maximum velocity is about 75 cm s−1 and is obtained when the front velocity 
is maximal (also about 75 cm s−1), as shown in Fig. 19(a) at 𝑥 = 16 cm. Note that this value is about two times smaller than the 
maximal velocity of the fastest spheres that move at about 1.5m∕ s. These high-speed spheres are located slightly above the free 
surface and have a collision behavior. In the deceleration phase, roughly linear velocity profiles are observed in Figs. 19(i,j), except 
for loose/loose at 𝑥 = 25 cm (blue curve), which is still similar to profiles from the acceleration phase. At 𝑥 = 20 cm, the downslope 
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velocity is still relatively high, similar to the front velocity (Fig. 19(i)). These velocities get globally smaller at 𝑥 = 25 cm. During the 
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slow propagation phase, the only significant velocity is obtained for the compact/loose case with a maximum of 12 cm s−1 within a 
very thin layer of flowing particles.

5.2.3. Insight into erosion process
During the mass acceleration, the flow interaction with the erodible bed is quick and highly energetic since the flow velocity is 

high. This leads to profound rearrangements in the granular bed (Figs. 19(b,c)) with deep particles put into motion. However, the 
short-duration of this interaction leads to relatively small mass entrainment in the down-slope direction compared to what happens 
during the deceleration phase. For example, the erosion process lasts 0.1 and 0.2 s in Figs. 19(a,b), respectively, compared to 0.45 
and 0.35 s in Figs. 19(d,e), respectively.

During the deceleration phase, the interface seems to stay approximately in the middle of the bed (Figs. 19(d,e)). The most 
important part of the mass that is displaced belongs to the first upper half of the granular bed. Beyond 𝑥 = 26 cm, the mass flows 
on the erodible bed without significant entrainment (the maximal depth of the static/flowing interface is about one diameter only 
(Fig. 19(f)). During these three phases, the initial solid volume fraction plays a role in the dynamics, especially in the evolution of 
the static/flowing interface ℎ𝑠𝑓 , which penetrates deeper within the loose erodible bed. Despite the difference in the dynamics for 
flows on a loose or compact bed, the runout distance is almost unaffected.

When comparing our observations with those given in Ref. [64], a lot of similarities can be found. The same three phases are 
observed along with the main characteristics of the static/flowing interface evolution and velocity profiles, at least qualitatively 
but also partly quantitatively. However, as expected from the different geometry of the domain, the precise values of velocity and 
interface thicknesses differ. For example, the static/flowing interface ℎ𝑠𝑓 in the experiments is systematically deeper than in the 
simulations. Unfortunately, our computational capacities prevent us from reproducing exactly the experiments (number of grains 
and dimensions of the set-up). As mass entrainment decreases with smaller volumes of the granular mass and narrower channel 
width 𝑊 [63,64], the differences between our simulations and the experiments lie in the good direction since our simulations 
involve a lower volume and a narrower channel.

6. Conclusion

In this article, we have presented the COCD method that simulates the motion of each grain and the complex interactions between 
them. It belongs to the Discrete Elements Methods, in particular to the convexified contact dynamics methods (CM) [51–61]. Indeed, 
in COCD, the computation of the numerical solution involves solving a convex optimization problem at each time step, based on the 
global velocity as the unknown. After explaining the method, describing its implementation in the MOSEK solver (with its Primal-
Dual Interior Point Method) and its calibration, we validated COCD by confronting it with experiments and the non-convex contact 
dynamics method NSCD [48,49,47]. We finally tested COCD in the context of granular flows on erodible beds.

Our article demonstrates the interest of the convexified contact dynamics methods for three main reasons:

• From a theoretical point of view, a high level of confidence can be given to the numerical result. In this respect, we have 
presented theoretical results for a convexified scheme based on the full circular Coulomb cone and a velocity-based optimization 
formulation. It certifies that Coulomb’s law is well verified locally at each contact and at each iteration in time.

• From a computational performance point of view, the efficiency of COCD is derived from existing convex solvers, benefiting 
from the performance gains obtained in this research field (see, e.g., the algorithms presented in Refs. [56–61]).

• Convexified methods have already proven efficient in various engineering fields (see, e.g., Refs. [96,97]). This article advocates 
for their relevance in the field of geophysical sciences. Indeed, our tests of COCD in the context of granular flows on erodible 
beds show that COCD reproduces qualitative and many quantitative features of laboratory experiments such as erosion processes 
associated with the complex interaction between a flowing and a static layer. However, particular attention should be paid when 
comparing 2D simulations conducted with COCD to 3D flow experiments. Indeed, when the inclination of the plane is greater 
than 16◦, 2D COCD simulations tend to strongly overestimate the runout distance of the flow and will never stop since the 
effective avalanche angle of 2D discrete element simulations is smaller than that of 3D simulations with the same inter-particle 
friction.

In conclusion, we showed that the convexified method COCD is suitable for reproducing physical phenomena involving granular 
flows at the laboratory scale. Such validation steps are essential because the models can then be trusted to access quantities that could 
be very difficult to measure in laboratory experiments, like, for example, velocity fields, static fluid transitions, and flow interaction 
with the erodible bed within the domain.

CRediT authorship contribution statement

Hugo A. Martin: Conceptualization, Methodology, Software, Writing – original draft, Writing – review & editing. Anne Man-

geney: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Writing – original draft, Writ-
ing – review & editing. Aline Lefebvre-Lepot: Conceptualization, Methodology, Supervision, Writing – original draft. Bertrand 
Maury: Conceptualization, Methodology, Supervision, Writing – original draft. Yvon Maday: Conceptualization, Funding acquisi-
22

tion, Methodology, Project administration, Supervision, Writing – original draft.



Journal of Computational Physics 498 (2024) 112665H.A. Martin, A. Mangeney, A. Lefebvre-Lepot et al.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This article has been funded by the ERC Contract No. ERC-CG-2013-PE10-617472 SLIDEQUAKES. The simulations were performed 
with two Intel Xeon E5-2650 2.00 GHz (2 × 8 cores) processors on the S-CAPAD platform, IPGP, France. We thank MOSEK ApS [79]
for the free academic license that made this article possible. We warmly thank Lydie Staron for providing us with her simulation 
data, and Jean-Pierre Vilotte for the discussions that led to the completion of this work.

Appendix A. Simulation parameters

Tables A.2 and A.3 presented in this Appendix contain all the parameters necessary for the reproducibility of our numerical 
simulations.

Table A.2

Simulation parameters for computational aspects and comparison with NSCD and experiments. The units of quantities in the table are: 
𝐻0, 𝑅0, 𝑊 ( cm), 𝛼 ( ◦), Δ𝑡 (s), 𝑑 ( mm), 𝑡𝑓 (s). The other parameters are unitless. In all our simulations, the gravity constant is 𝑔 = 9.81 m s−2 , the 
grain density is 𝜌 = 2 500 kg m−3 and there is a polydispersity of 10% for grains size. The friction coefficient with the walls is 𝜇. The last two rows 
provide information about the experiments. Any empty cell is equal to the cell value of the row above.

initial column aspect number of slope friction time step mean diame- final
dimensions ratio particles coefficient ter of grains time
𝑅0 ×𝐻0 ×𝑊 𝑎 𝑁 𝛼 𝜇 Δ𝑡 𝑑 𝑡𝑓
(cm× cm× cm) (grain) (◦) (s) (mm) (s)

1 variation of Δ𝑡 15 × 15 1.0 952 0 0.3 0.01→ 5.010−5 7.0 0.5

2 variation of 𝑁 500→ 50000 0.001 7.6→ 0.78 3.0

3 comparison with NSCD 10.8 × 71.928 6.66 7740 0.5 5.0 2.0

4 variation of 𝜇 20 × 14 × 20 0.7 112459 0.0→ 0.8 0.01 4.0 2.04

5 2D 20 × 14 0.7 2154 0, 22 0.3 0.01 4.0 2.04

6 3D 20 × 14 × 20 112459

7 M2010 20 × 14 × 10 0.7 ≃ 9 106 0 / / 0.7 /

8 F2014 20 × 14 × 20

Table A.3

Simulation parameters for simulations with erodible beds. The units of quantities in the table are: 𝐻0 , 𝑅0, 𝑊 ( cm), 𝛼 ( ◦), Δ𝑡 (s), 𝑑 ( mm), 
𝑡𝑓 (s). The other parameters are unitless. In all our simulations, the gravity constant is 𝑔 = 9.81 m s−2 , the grain density is 𝜌 = 2 500 kg m−3 and there 
is a polydispersity of 10% for grains size. The friction coefficient with the walls is 𝜇, except for simulations in 3D where the walls are frictionless 
(compact/loose, loose/loose, and compact/compact). Any empty cell is equal to the cell value of the row above.

dimen- initial column bed slope number of friction time mean diame- final
sion dimensions width particles coefficient step ter of grains time

𝑅0 ×𝐻0 ×𝑊 ℎ𝑖 𝛼 𝑁 𝜇 Δ𝑡 𝑑 𝑡𝑓
(cm× cm× cm) (mm) (◦) (grain) (s) (mm) (s)

1 erodible beds 2D 20 × 14 0 0,16,19,22 19621 0.9 0.001 1.0 6.5

2 3 28884

3 5 34059

4 7 37254

5 10 44996

6 erosion waves 2D 20 × 14 20 22 33374 0.9 0.001 1.8 6.5

7 compact loose 3D 10 × 7 × 0.8 0.7 22 122434 0.3 0.01 1.0 6.0

8 loose loose 122012

9 compact compact 122932

10 F2014erod 3D 20 × 14 × 20 3,5,7 16,19,22 / / / 0.7 /
23
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