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Additional method details 
UAV-derived digital elevation model 
We conducted four flights over the slide area with a DJI Mavic Pro Uncrewed Aerial Vehicle (UAV). The 
first two flights obtained video footage on 15 July 2022 (flight 1: 11:15am-11:29am MDT; flight 2: 
11:39am – 11:52am MDT) and the second two flights obtained still photos (flight 3: 12:12pm-12:26pm 
MDT; flight 4: 12:29pm-12:39pm MDT). Using the 692 georeferenced still photos (available at Rengers et 
al. (2023)), we used Agisoft Metashape (v. 1.8.3) (Agisoft 2023) to generate a point cloud of the post-
event topography (Fig. S1). We lacked ground control points, so after generating the digital elevation 
model (DEM) using just the UAV global positioning system (GPS) location information, we aligned to the 
USGS National Map’s 3D Elevation Program (3DEP) pre-event 1-m lidar DEM, which was collected in 
2020 (U.S. Geological Survey 2022), using the CloudCompare (EDF R&D 2023) software. We did this 
using 14 manually picked point pairs on landmarks in the unchanged areas distributed closely around 
the perimeter of the landslide to maximize the alignment in the landslide area and to avoid aligning to 
warped areas on the edges of the UAV-based point cloud. The automated iterative closest point (ICP) 
algorithm did not work well in this case, likely because of warping on the edges. To estimate the 
uncertainty of the aligned post-event elevations, we computed vertical differences using the Multiscale 
Model to Model Cloud Comparison (M3C2) tool (Lague et al. 2013) in CloudCompare  and found that in 
stable areas, the mean difference was 0.69 m and the standard deviation was 2.5 m. The differences are 
spatially correlated, so for error propagation purposes for the volume calculations, we quantified the 
spatial correlation of the elevation differences in the stable areas by constructing an empirical 
semivariogram by randomly sampling 120,000 pairs of points from the M3C2 vertical difference point 
cloud, binning the absolute value of the difference of the elevation change between each pair of points 
into an average for each of 30 log-spaced bins, and then using non-linear least-squares to fit a 
semivariogram model. This semivariogram process was done in Python, curve fitting was done using 
SciPy’s (Virtanen et al., 2020) curve_fit function. We found that an exponential shape fit best, and 
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retrieved a range of 165 m (beyond which the difference points are no longer correlated) and a sill of 6.7 
m. We merged the aligned post-event point cloud into the pre-event lidar, minimizing seams by clipping 
along minimums in the difference and created a 1-m DEM that merges the area covered by the UAV 
point cloud with the pre-event 1-m lidar DEM, as this is needed for the runout modeling presented in 
the study. The post-event point cloud and DEM is available at Rengers et al. (2023). 

 

Fig. S1 (a) Image of the post-event point cloud shaded by elevation in a relative coordinate system and  
(b) Vertical difference of the stable areas that did not change between the pre-event (2020) airborne 
lidar DEM and UAV flights. Relative coordinate system used. Histograms on right edge of colorbars show 
the distribution of elevation and elevation differences. 

Volume estimate 
As described in the main text, we had to extrapolate the sliding plane below the deposits to estimate 
the volume because the material did not completely evacuate the source area. We did this by fitting 
logarithmic spiral profiles between the part of the source area void of deposits from the post-event 
DEM, and the surface of the pre-event slope below the source area along cross-sectional profiles spaced 
every 20 m (Fig. S2a). This was done by taking the slope angle of the 40-m long part of the cross section 
closest to the gap on either side and solving for the logarithmic spiral segment that best fit the entry and 
exit angles and locations on either side of the gap in the profile using non-linear least squares. A 
logarithmic spiral is a suitable shape to assume when other information about the geometry is not 
available because it is hypothesized to be the curve along which a failure will happen in homogeneous 
material (Terzaghi et al. 1996). In the case of the Chaos Canyon landslide, this slip surface was likely the 
surface between overlying debris and underlying bedrock. For most of the landslide, this surface is fairly 
planar, as might be expected in the fractured Proterozoic rocks that are present at the site.  The surface 
curves at the headscarp and toe, where rock is exposed, and the material travels over the valley floor. 
The resulting profiles (e.g., Fig. S2b) look smooth and are consistent with typical landslide cross sections 
that might be drawn by hand by an expert (e.g., Jaboyedoff et al. 2020).  
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Fig. S2 (a) Location of profile lines (black) used to interpolate the failure surface, the landslide is outlined 
in blue. (b) the pre- and post-event profiles (green and blue) along profile line 11 and the resulting 
interpolated sliding surface (red). 

We then interpolated a piecewise linear three-dimensional (3D) function between these profiles and the 
surrounding topography, using the exposed part of the source area from the post-event DEM and the 
exposed part of the runout area from the pre-event DEM and smoothing the area in between that was 
interpolated from the log spiral profiles with Gaussian smoothing (with a standard deviation of 10 m) to 
smooth out sharp edges from the interpolation, yielding a DEM of the sliding surface. Differencing the 
pre- and post-event DEMs from this sliding surface yields the vertical thickness distribution of the source 
area and deposits (Fig. 7c, e main text). We multiplied the thickness distributions by the area of each cell 
(1 m2) and summed over the slide area to estimate the total volume for both the source area and the 
deposits. We propagated the uncertainty using standard methods by assuming a constant standard 
deviation of 2.5 m and using the semivariogram model described above (range 165 m, sill 6.7 m) to 
construct the covariance matrix required to estimate the standard deviation of the volume, given that 
the errors are spatially correlated. 
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Displacement monitoring of Two Towers 
We estimate a time series of displacement over about two decades using the “Two Towers” rocks (Fig. 
1, main text), using orthorectified aerial imagery from USGS EarthExplorer (Digital Orthophoto 
Quadrangles (DOQ), National Agriculture Imagery Program (NAIP)), and satellite imagery from Planet 
Labs (PlanetScope), and Maxar (Worldview) that was orthorectified by the vendors. We selected 13 
images collected between 1990 and 2022 (Table S1) that were well-orthorectifed based on a 
comparison with stable features outside of the landslide slope. We used the Two Towers features 
instead of other persistent features on the slope because they are large, distinct, and easy to delineate 
even in lower-resolution imagery. For each image, we digitized a polygon around the Two Towers and 
used QGIS (QGIS.org, 2022) to compute the centroid of each polygon. We then measured displacement 
distance between each pair of time-adjacent points, assuming the first image from August 1990 as the 
zero reference point, and then using a linear line segment connecting the two centroids. Average 
velocity is determined by dividing that distance by the time between those two images. Distance 
uncertainties are measured from the centroid of our best estimate of the polygon to the farthest 
centroid of alternate plausible polygons, based on image resolution. The full results are shown in Fig. 4 
of the main text and some images and centroids are shown in Fig. 3. Fig. S3 below shows images and 
polygon outlines for some additional dates. 

Table S1 List of images used for Two Towers displacement analysis 

Date of Image 
(MM-DD-YYYY) 

Image ID Source Resolution  

08-27-1990 DI00000000838999 USGS EarthExplorer (DOQ) 1 m 

10-12-1999 DI00000100224602 USGS EarthExplorer (DOQ) 1 m 

08-08-2009 M_4010543_SE_13_1_20090808 USGS EarthExplorer (NAIP) 1 m 

05-26-2012 10300100186B6700 Maxar (Worldview-2) 0.5 m 

09-05-2016 20700106D5541100 Maxar (Worldview-3) 0.36 m 

07-28-2017 20170728_170556_0f10 Planet Labs (PlanetScope) 3 m 

07-29-2018 20180729_171959_1025 Planet Labs (PlanetScope) 3 m 

08-14-2019 20190814_172235_0e0f Planet Labs (PlanetScope) 3 m 

07-29-2020 20200729_173419_1040 Planet Labs (PlanetScope) 3 m 

07-11-2021 20210711_171229_02_2276 Planet Labs (PlanetScope) 3 m 

10-25-2021 20211025_172915_1038 Planet Labs (PlanetScope) 3.125 m 

06-13-2022 20220613_172735_30_248e Planet Labs (PlanetScope) 3 m 

06-21-2022 20220621_172626_55_2475 Planet Labs (PlanetScope) 3 m 
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Fig. S3 Satellite imagery illustrating the movement of the “Two Towers” rocks since 1990. Dashed 
polygons approximately outline the “Two Towers” region. Solid black polygon represents the outline of 
the 28 June 2022 event. Each panel contains the polygon from the 1990 image and current image’s 
polygon. (a) Imagery from USGS EarthExplorer. (b-f) Imagery from Planet Labs.  

Seismic investigation 
As described in the main text, we initially located the earthquake-like signal that occurred at 4:32:05 pm 
MDT (22:32:05 UTC) to be within a few kilometers of the landslide. Due to its occurrence about a minute 
before the main landslide, we hypothesized that it was related to the landslide initiation process and 
investigated further. Initially, we conducted a search for repeating earthquakes (earthquakes with 
similar waveforms because they share similar locations and mechanisms). Although rare, there are a few 
instances where small earthquakes occur that are associated with ice fracturing or stick-slip motion as 
sliding accelerates prior to a landslide (e.g., Caplan-Auerbach and Huggel 2007; Yamada et al. 2016; Poli 
2017; Toney et al. 2021). Such signals related to stick-slip sliding behavior often repeat. Repeated small 
amplitude vibrations may also affect slope stability in some situations (e.g., Durand et al. 2018; 
Léopoldès et al. 2020). Therefore, we used a subspace detector (Harris, 2006) that is integrated with 
National Earthquake Information Center data streams (e.g., Benz et al. 2015) to look for previous events 
with similar waveforms. We used 25 seconds of data from all three components of the signal of the 28 
June 2022 earthquake-like event from station ISCO (Fig. 2, main text) as the template waveform and 
searched the time period from four months prior to the landslide, to about one month after. We found 
38 instances of signals with similar waveforms (cross-correlation coefficient (CC) >0.2), 20 with CC>0.5 
(Fig. S4, Table S2). Puzzlingly, most of these repeats occurred around 4:30 pm local time on weekdays, 
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and several occurred after the landslide when we would not expect to see more repeats of a signal 
related to landsliding. This repeating schedule indicated that the signal was probably related to human 
activity, most likely blasting. Even though the source was not from the landslide, the spatiotemporal 
coincidence indicated this human activity may have affected the landslide behavior, so we continued to 
investigate the source. 

 

Fig. S4 Results of the repeating earthquake search from 1 March to 21 July 2022, using the 28 June 2022 
earthquake-like signal recorded on all three components of the ISCO station (Fig. 2, main text) as a 
template. (a) Shows the correlation coefficient (CC) between each detection and the template. The dot 
with a CC of 1 is the template event. (b) Shows the superimposed waveforms of the 20 most well-
correlated events (CC >0.5) on three components, BHZ (purple, top), BH1 (pink, middle) and BH2 (green, 
middle). 

The most puzzling thing about this earthquake-like source was that its location fell in the middle of a 
vast wilderness area where there are no quarries and blasting is not allowed. Rocky Mountain National 
Park (RMNP) confirmed that there was no blasting occurring during that time window in the park (e.g., 
for road or trail construction). A large transmountain water tunnel, the Adams tunnel, passes almost 
directly below the landslide at several hundred meters depth so we checked with the Bureau of 
Reclamation whether there was construction or other activity in that tunnel at these event times that 
could be a potential source, but there was not. Still emptyhanded, we then tried to improve the 
location. Because the magnitudes were so small (ML 1.3-1.6, Table S2), the P- and S-wave arrival times 
were a little uncertain and only visible on a handful of seismic stations for any of the individual events. 
This small number of stations resulted in underestimated formal location uncertainties, so to get a 
better sense for the real location scatter, we located several other occurrences of the repeat, and we 
also aligned and stacked the repeating earthquake signals to pick more accurate phase arrival times and 
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recalculated the location. These analyses indicated that the location was poorly constrained in the east-
west direction (likely because the stations that detected the blast were mostly to the north and south of 
the source), and that the location was likely somewhere within an area spanning from the landslide, to 
~40 km to the east. We called several quarries in that area and contacted state blasting regulators and 
finally confirmed that the time of the seismic events we detected were consistent with blast times at the 
construction site of the Chimney Hollow Reservoir (Fig. 2, main text). 

Table S2 List of events detected with cross-correlation coefficient >0.5 

Date Time (UTC) Local magnitude Correlation coefficient 
3/4/22 23:29:42 1.55 0.60 
3/9/22 21:57:46 1.42 0.53 

3/15/22 22:31:20 1.4 0.62 
3/22/22 22:29:36 1.52 0.62 
3/31/22 22:30:04 1.6 0.56 
4/7/22 22:29:52 1.39 0.52 

4/11/22 22:49:33 1.61 0.59 
4/20/22 22:29:58 1.41 0.51 
4/21/22 22:30:51 1.64 0.66 
4/26/22 22:30:15 1.54 0.54 
5/3/22 22:29:28 1.48 0.73 
5/9/22 22:30:27 1.47 0.65 

5/11/22 22:49:21 1.48 0.69 
5/19/22 22:30:04 1.51 0.66 
6/2/22 22:31:12 1.54 0.60 

6/10/22 22:31:41 1.51 0.59 
6/27/22 22:30:20 1.48 0.52 
6/28/22 22:32:04 1.5 1.00* 
7/7/22 22:34:45 1.54 0.75 

7/11/22 22:30:40 1.46 0.55 
7/21/22 20:41:03 1.46 0.68 

*indicates the template event 

Video-based landslide velocity estimate 
We estimated the average landslide velocity from a video taken by a park visitor, Ryan Albert, from near 
Lake Haiyaha (Fig. 1, main text) that was posted online by several news agencies (e.g., 9news.com 2022). 
The video was taken in profile view and started when the slide was already underway and concluded as 
it became enveloped in dust. The “Two Towers” features mentioned in the main text, which are two 
prominent rocks that were embedded in the landslide slope, were easily visible in the footage so we 
used these as a reference point for distances. We estimated the width of the Two Towers as viewed 
from Lake Haiyaha by drawing a line of sight from Lake Haiyaha to the Two Towers polygon based on 
Planet Labs imagery acquired on 21 June 2022. We then drew several possible widths of the polygon, 
which are near perpendicular to the Lake Haiyaha line of sight, estimating an average width of 44 m. 
Between 5 and 13 seconds into the video, the Towers move approximately one width of themselves (44 
m) downslope. Divided by a time difference of 8 seconds, results in an along-slope velocity estimate of 
5.4 +/- 1.0 m/s. Velocity uncertainty is based on the low and high width estimates (35-51 m) of the Two 
Towers from the Lake Haiyaha line of sight. 
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Numerical landslide modeling 
We modeled the 28 June 2022 landslide and possible future runout scenarios using SHALTOP, a shallow-
water depth-averaged numerical continuum model for granular flows over 3D topography (Bouchut et 
al. 2003; Bouchut and Westdickenberg 2004; Mangeney et al. 2007; Lucas et al. 2014; Peruzzetto et al. 
2021). Due to uncertainties regarding internal landslide materials, we used the simplest rheological law 
available in SHALTOP, the Coulomb friction law, which assumes a single constant effective friction 
coefficient µ=tand, where d  is the friction angle. We focus on this law because it has only one 
parameter that can vary, and it is useful to compare that best fitting effective friction angle to estimates 
from the deposits.  

To model the 28 June landslide, we downsampled all input layers to 5-m resolution to reduce both 
computational load and model instabilities that can arise from excess roughness, then subtracted the 
source thickness from the DEM and smoothed the resulting sliding surface using a gaussian blur to 
further reduce model instabilities. SHALTOP works in a slope normal coordinate system, so we 
multiplied the vertical source thickness by the cosine of the slope angle at each grid cell to estimate 
slope normal thicknesses. We then ran simulations by looping over a range of friction angles and particle 
sizes (when applicable) to find the parameters and rheological model that minimized the root mean 
squared error (RMSE) of the modeled deposit thickness distribution relative to the measured one, and 
that also maximized the trimline ratio (tr) (Galas et al. 2007), which is the ratio of the overlapping 
modeled and measured deposit footprints to the union of both footprints. To consider both fit metrics 
equally in choosing the best performing models, we minimized a combined fit metric normalized to the 
range of fit values from all simulations using: 

𝑅𝑀𝑆𝐸 −min(𝑅𝑀𝑆𝐸!""#$%&)
max(𝑅𝑀𝑆𝐸!""#$%&) − min	(𝑅𝑀𝑆𝐸!""#$%&)

+
max(𝑡𝑟!""#$%&) − 𝑡𝑟

max(𝑡𝑟!""#$%&) − min	(𝑡𝑟!""#$%&)
 

in which the value closest to zero indicates the best fit. 

We focused on conservative model scenarios of potential future mobilizations of the deposits of the 28 
June landslide by modeling the mobilization of the entirety of the deposits. Therefore, we used the same 
sliding surface as we did for the 28 June event and used the final deposit thickness distribution to define 
the starting volume. Predicting the runout distance of a slide mass a priori is an ongoing challenge in 
landslide science (e.g., Hungr et al. 2005; Delannay et al. 2017; McDougall 2017; Peruzzetto et al. 2020). 
In this study, we used statistical relationships fit to historical datasets of volume and mobility, quantified 
by vertical drop height/horizontal runout length (H/L) (also known as Heim’s ratio, (Heim 1932; Hungr et 
al. 2005)) to estimate a range of effective friction coefficients (μ). Mobility has long been indexed using 
the H/L ratio, which is measured from the very top of the headscarp to the end of the toe and is equal to 
the tangent of the reach angle (also known as the travel angle, or the fahrböschung) (Hungr et al. 2005). 
The H/L ratio has an observed inverse correlation with volume (i.e., larger landslides are more mobile) 
and has commonly been interpreted as an estimate of μ (Heim 1932; Scheidegger 1973; Corominas 
1996; Lucas et al. 2014). However, it is an imperfect estimate of μ as shown by the different analytical 
formula for the two quantities (Lucas et al. 2014) and because H/L data are scattered due to factors such 
as ill-defined conventions and the influence of obstructions and deflections along the path (e.g., 
Corominas 1996; Legros 2002). H/L is also just approximating the actual desired measurement, which is 
the H/L of the center of mass (H/Lcm), but is used more because H/L is far easier to measure than H/Lcm. 
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H/L cm can be shown analytically to be equal to μ for a rigid block slide (Hsü 1975; Hungr et al. 2005; 
Lucas et al. 2014). 

Lucas et al. (2014) found that μ was approximately equal to H/L for a set of historical landslides when 
their volumes were large (>106 m3), and this was validated using the same numerical landslide model 
used in this study (SHALTOP). Therefore, for modeling of the remobilization of the deposits in Chaos 
Canyon, assumed that the H/L value was a reasonable estimate of μ and handled its uncertainty by 
estimating a range of H/L values (and thus a range of μ) from historical datasets that are most 
representative of our volume and scenario. Statistical comparisons of H/L datasets show that different 
types of landslides tend to have different mobility-volume relationships that reflect differences in the 
underlying physics and materials. For example, wet debris flows tend to have higher mobility (lower H/L 
and μ) than translational landslides or rock falls (Corominas 1996; Legros 2002), and landslides in 
volcanic settings tend to have higher mobility than non-volcanic settings (Hayashi and Self 1992). There 
are not enough debris slides or slides over rock glaciers in the historical databases to derive a 
relationship specific to the Chaos Canyon landslide. Instead, we selected a set of H/L measurements for 
32 non-volcanic subaerial landslides originally compiled by Hayashi and Self (1992), also later used by 
Legros (2002), to determine a mean and 95% range of μ for our runout simulations. We re-regressed the 
original data and confirmed nearly the same equation as Hayashi and Self (1992): 

log(𝐻 𝐿⁄ ) = −0.7874 − 0.1548(log	 𝑉), 

where V is volume in cubic kilometers. Because the data have substantial scatter, to capture that 
uncertainty we estimated the 95% certainty range of the fit to the H/L and volume data by randomly 
resampling 16 of the datapoints 1000 times and refitting the regression line, and then taking the central 
95% range of those line fits at each volume interval within the range of the data (Fig. S6 inset). 

Runout modeling results 
28 June 2022 landslide 
We first modeled the main landslide event using SHALTOP as described above to provide a reality check 
on the scenario simulations. Even though evidence implies sliding along a failure plane was the primary 
mode of failure and thus a granular flow model may not be fully appropriate, we found the best fit 
between the observed and modeled deposit when we assume d=29.5° (Fig. S5, see Online Resource 3 
for animation). Notably, 29.5° is quite close to the effective friction angle estimated from the H/Lcm 

(d=30°) and not much higher than that estimated from H/L (d=28°). However, in all simulations, the 
velocities were too high, the onset too sudden, and the duration of the landslide too short when 
compared to seismic and video-based evidence (Fig. S5e). For example, the seismic signal builds up 
gradually before peaking and this implies a more gradual initiation than the model simulates. Excessive 
initial velocities are a known issue with this and other models that use the shallow-water approximation 
and assume hydrostatic pressure (e.g., Lucas et al. 2014; Garres-Díaz et al. 2021). However, this 
mismatch may also be partially due to the misfit between a granular flow model and an initial coherent 
sliding mechanism. For example, the best fitting friction angle of 29.5° is substantially higher than the 
angles found for this landslide volume empirically for simulations of landslides having a granular type 
behavior (Favreau et al. 2010; Lucas et al. 2014). 
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Fig. S5 Best-fitting SHALTOP model of the main 28 June 2022 landslide (d =29.5°) at three different time 
windows (a-c), compared to the real distribution of the deposits (d). (e) compares the velocity of the 
center of mass (CM) of the model (blue), showing the modeled event duration compared to the vertical 
component seismic signal recorded at ISCO (0.7-3 Hz filter) (gray) and its smoothed envelope (dark gray). 
Time is relative to the start time of the model simulation at t=0. The seismic signal is shifted so the peak 
aligns with peak model velocity. Red lines indicate the slide velocity and uncertainty range estimated 
from the eyewitness video. 

 
The results of all simulations are summarized in Table S3. We note that several simulations, including 
the best fitting one, give an H/L ratio equal to the measured value (0.54), but the distribution of the 
deposits is too spread out in all of the simulations. These observations are very similar to findings by 
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Brunet et al. (2017) and Poulain et al. (2023) for other landslides. We compare the final distribution of 
the deposits for the best fitting model to the real deposits in Fig. S5c, d. An animation of the best fitting 
simulation is included in Online Resource 3. Shallow depth-averaged models are known to overestimate 
the velocity due to the hydrostatic pressure assumption (Garres-Díaz et al. 2021) and to have shorter 
duration because the mass stops more suddenly due to depth-averaging, ignoring the complexity of the 
stopping phase (Mangeney-Castelnau et al. 2005).  
 
Table S3 Summary of parameters for model simulations, ordered by the lowest (best) to highest fit 
metric.  

Friction 
angle 

(𝜹) 

Root 
mean 

squared 
error (m) 

Trimline 
ratio 

H/L Fit 
metric 

29.5° 2.804 0.625 0.54 0.173 
29° 2.693 0.604 0.53 0.182 
30° 2.993 0.644 0.54 0.187 
28° 2.763 0.552 0.51 0.283 
32° 4.135 0.630 0.54 0.480 
26° 3.689 0.410 0.49 0.738 
24° 5.051 0.267 0.46 1.295 
22° 6.046 0.175 0.45 1.682 
20° 6.504 0.096 0.44 1.921 
18° 6.465 0.048 0.43 1.991 

 
Runout modeling of worst-case scenarios 
To examine the hazard that a worst-case scenario remobilization could pose to areas farther down the 
canyon that are frequented by climbers and hikers, we conducted runout modeling using the methods 
described above. To make a conservative assessment, we modeled the remobilization of the entire 
volume of the debris slide deposits (2.1 x 106 m3), although this is an unlikely scenario as discussed in the 
main text. However, we also make the less conservative decision of assuming no entrainment or 
liquefaction along the travel path due to the extreme coarseness of the path material. 

Using the best estimate and 95% uncertainty range derived from the Hayashi and Self (1992) H/L 
database described in the methods above (Fig. S6 inset, green lines) gave us a best estimate H/L value of 
0.42 (d=22.8°), and a 95% range of 0.35-0.52 (d=19.2-27.5°) for a volume of 2.1 million m3. We then use 
the mean and 95% range of the above H/L values directly as the effective friction coefficient, which is 
equal to the tangent of the effective friction angle (d), in three different SHALTOP simulations that 
illustrate a range of possible runout scenarios (Fig. S6). The mean scenario (d=22.8°) travels at most 275 
m past the end of the existing deposits, and much of the material remains in two depressions south and 
east of the toe. These topographic sinks have the practical effect of reducing the mobility such that the 
H/L of the mean simulation is higher (0.47) than the H/L value that was used to estimate the friction 
coefficient from historical data (0.42) (black dashed line, Fig. S6b). The low mobility (d=27.5°) scenario 
barely leaves the source area, which makes sense given that the d is only slightly lower than the best 
fitting value of d=29.5° for the 28 June landslide simulation. The high mobility simulation (d=19.2) travels 
farther and does just barely reach an area informally known as “the Meadow,” where climbers 
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sometimes congregate (Fig. S6c). But this simulation also has a much higher H/L value (0.45) and thus 
shorter runout distance than the H/L value that we used as the friction coefficient (0.35) (black dashed 
line, Fig. S6c) because much of the material is deposited in the same topographic sinks. Animations are 
included in Online Resources 4-6.  

 

Fig. S6 Final thickness of deposits of SHALTOP simulations of the remobilization of the entire deposit 
using preferred mobility estimation approach. The inset figure illustrates the regression model fit of the 
relationship between H/L and landslide volume for non-volcanic subaerial landslides compiled by Hayashi 
and Self (1992) in solid green, the dashed lines indicate the 95% certainty range for the regression fit that 
we estimated using bootstrapping. The gray arrow spans the 95% range of H/L values at the volume of 
the deposits (2.1 million m3), which is the range assumed as the effective friction coefficient for the 
simulations. The higher end of the range (low mobility) is shown in panel a, the lower end of the range 
(high mobility) is shown in panel c, and panel b shows the simulation corresponding to the mean 
scenario. As an alternate mobility estimate, we show with black dashed lines where the simulation would 
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reach if we had lowered the friction angles until the H/L of the simulation reached the H/L values for this 
95% range. Coordinate reference system NAD83(2011)/UTM zone 13N. 

Although our best estimates for the range of likely runout distances of a remobilization of the entirety of 
the slide deposits presented above indicate moderate mobility that is modulated by the undulating 
topography of the rock glacier, there are alternate approaches to selecting a friction angle for the 
runout modeling that produce longer runouts. We present three of these alternate scenarios in this 
section. Corresponding animations are included as Online Resources 7-9. 

For the first simulation, we use the same equation and set of historical data as the main text, non-
volcanic subaerial landslides (Hayashi and Self 1992), which gives an H/L for our landslide volume of 
0.42. However, instead of using that H/L value as the effective friction coefficient (μ), we run simulations 
at a range of friction angles until the runout matches that H/L value. We use the μ(I) rheology instead of 
Coulomb for this scenario because that rheology performed better for the main landslide event and we 
are not tied to a single specific friction angle. This approach results in deposits reaching a larger 
thickness in the Meadow (Fig. S7b) than the high mobility scenario from the main results (Fig. S6c), but 
not traveling much past it, as well as a second leg of the deposits that flows down the south side of the 
valley. This approach is not ideal and likely provides an overestimate because forcing the H/L value 
match negates the influence of the unusual runout path topography on mobility. 

For the second alternate simulation, we consider an empirical relation by Lucas et al. (2014) that directly 
estimates μ, by 𝜇 = 𝑉'(.(**+, where landslide volume, V, in cubic meters, was calibrated on a broad set 
of 171 landslides from Earth and other planets and was validated for a subset of about 40 landslides 
using SHALTOP. We run this model because unlike our other approaches, it provides a direct estimate of 
𝜇 and thus does not require the assumption that 𝐻/𝐿 ≈ 𝜇. It also was validated with the same model 
used in this study. We included this simulation to represent what the average landslide runout might be 
in the absence of information or assumptions about landslide style or setting, using μ=0.32 (δ=18°). The 
resulting simulation (Fig. S7b) is similar to the high mobility scenario presented in the main results (Fig. 
S6c). This method likely overestimates mobility, however, because many more mobile types of 
landslides and settings are included in the dataset. 

Alternatively, as an upper bound, we consider the scenario where the deposits are sufficiently saturated 
that they mobilize into a debris flow. As stated in the main text, we do not think that the deposits and 
runout path characteristics are conducive to this style of movement so this is likely a vast overestimate 
of mobility, but there are enough unknowns that it is within the realm of possibility. We utilize the 

relation by Corominas (1996) based on 71 historical debris flows, log C,
-
D = −0.012 − 0.105	log	(𝑉), 

where volume is in cubic meters, to estimate H/L and then we assume that value (μ=0.21, δ=12°) as the 
coefficient of friction. This simulation is, as expected, the most mobile of all the scenarios (Fig. S7c). 
Deposit thicknesses reach ~30 m in the Meadow, and a second branch of the flow traveling down the 
south side of the valley reaches within ~250 m of Lake Haiyaha. 

All alternatives show runout paths that do inundate the Meadow, and the debris flow simulation 
reaches within about 250 m from Lake Haiyaha. However, based on our experience, these alternative 
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higher mobility simulations, and especially the debris flow simulation, are overestimating mobility and 
are not very realistic due to the large grain sizes and complex runout path characteristics.  

 

Fig. S7 Alternate SHALTOP runout modeling simulations of the remobilization of the entirety of the 
deposits. (a) Matching runout distance by adjusting friction angles until it reaches an H/L value that 
exactly matches the H/L value from Hayashi and Self (1992) non-volcanic subaerial landslide equation. 
Dashed black line indicates the profile line along which H/L was calculated. (b) Using the effective friction 
angle from equation in Lucas et al. (2014) for all landslides in the database (earth and planetary). (c) 
Estimating the effective friction angle using the H/L estimate for debris flows from Corominas (1996). 
Coordinate reference system NAD83(2011)/UTM zone 13N. 
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Additional photos and figures 

 

Fig. S8 PlanetScope satellite imagery of fracture near the top of the snowfield on Hallett Peak. Small 
fractures first noticeably appeared in this region in the summer of 2021 but were not as pronounced or 
continuous as in 2022. (a, b) Fracture is barely visible on 7 July 2021, and appears to widen by 16 June 
2022. The earliest image where the fracture is visible (regarding snow cover) in 2022 is from 12 June. (b, 
c) Fracture widens even more between 16 and 21 June 2022. Fracture pattern also appears to change 
slightly in southern region. (d) The 28 June 2022 event has failed along the fracture as depicted in this 
post-event image. Coordinate reference system NAD83(2011)/UTM zone 13N. 
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Fig. S9 Features associated with the 28 June 2022 debris slide (a) Source area and patches of melting icy 
debris on 5 July 2022, photo taken from location e on Fig. 1, courtesy of Matthew Morriss. (b) View 
downvalley from the landslide deposits, showing Chaos Canyon rock glacier and Lake Haiyaha. Area 
labeled “Meadow” is popular with climbers. Distance from foreground to the western edge of Lake 
Haiyaha is about 1 km. Photo taken on 15 July 2022 from UAV flight over the debris slide from location a 
on Fig. 1.  
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Fig. S10 Photo taken by the UAV on 15 July 2022 looking down the landslide from near the headscarp, 
showing the debris flows flowing into a pool impounded behind a dam of debris and snow ‘boulders,’ 
with some flows going around the right side onto the lower active debris flow fan. 

 

Fig. S11 Photo of the upper part of the landslide taken by hikers about 6 weeks after the landslide (9 
August 2022) showing its condition later in the summer. All the remnants of the snowfield have melted 
and only the southwest corner of the source area is still seeping. Black arrows indicate the fracture at the 
top of the remaining wedge of debris mentioned in the main text. The 28 June landslide scarp is to the 
left of this area. Photo courtesy of Pete Miller. 
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