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Online Resource 2 (OR2_AnimationCaptions.pdf): Captions for SHALTOP simulations 

Online Resource 3 (OR3_Main28June2022_Coulomb_delta29p5.mp4): Best fitting SHALTOP simulation 
using the Coulomb rheological law for the main 28 June 2022 landslide. This simulation uses a single 
friction angle of 𝜹=29.5° and corresponds to Figure S5. Animation shows the evolution of flow thickness 
over time. 

Online Resource 4 (OR4_Remobilization_Hayashi1992_mean_Coulomb_delta23.mp4): SHALTOP 
simulation of a remobilization of the entirety of the Chaos Canyon landslide deposits using the Coulomb 
rheological law with an effective friction coefficient (μ) estimated using the mean H/L value for a volume 
of 2.1 million m3 from the relationship derived by Hayashi and Self (1992) for subaerial non-volcanic 
landslides, μ=0.42 (𝜹=22.8°). This simulation corresponds to Figure S6b in Online Resource 1. 

Online Resource 5 (OR5_Remobilization_Hayashi1992_plus2std_Coulomb_delta28.mp4): Same as 
Online Resource 6 but low mobility scenario estimated using an effective friction coefficient 2 standard 
deviations below the mean using data compiled by Hayashi and Self (1992) for subaerial non-volcanic 
landslides, μ=0.52 (𝜹=27.5°). This simulation corresponds to Figure S6a in Online Resource 1. 

Online Resource 6 (OR6_Remobilization_Hayashi1992_minus2std_Coulomb_delta19.mp4): Same as 
Online Resource 7 but the high mobility scenario in which the effective friction coefficient was estimated 
using 2 standard deviations below the mean μ=0.35 (d=19.2°). This simulation corresponds to Figure S6c 
in Online Resource 1. 

Online Resource 7 (OR7_Remobilization_matchHayashiHL_muI_delta11.mp4): Alternate SHALTOP 
simulation of a remobilization of the deposits where the μ(I) rheology was tuned until the runout 
distance achieved an H/L value equal to that predicted for this landslide volume by Hayashi and Self 
(1992), H/L=0.42. This was achieved for friction angles of 𝜹1=11°, 𝜹2=21° and a mean particle size of 1 m. 
This simulation corresponds to Figure S7a in Online Resource 1. 

Online Resource 8 (OR8_Remobilization_Lucas2014_mean_delta18.mp4): Alternate SHALTOP simulation 
of a remobilization of the deposits where the Coulomb rheology law was utilized with the effective 
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friction angle estimated by Lucas et al. (2014) of 𝜹=18° (μ=0.32). This simulation corresponds to Figure 
S7b in Online Resource 1. 

Online Resource 9 (OR9_Remobilization_Corominas_debrisflow_mean_delta12.mp4): Alternate 
SHALTOP simulation of a remobilization of the deposits where the Coulomb rheology law was utilized 
with the effective friction angle estimated as the H/L ratio by Corominas (1996) for debris flows 
H/L=𝜹=12° (μ=0.21). This simulation corresponds to Figure S7c in Online Resource 1. 

 

 

 

 


