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Abstract We propose a conversion method from alarm-based to rate-based earth-
quake forecast models. A differential probability gain grefalarm is the absolute value of the
local slope of theMolchan trajectory that evaluates the performance of the alarm-based
model with respect to the chosen reference model. We consider that this differential
probability gain is constant over time. Its value at each point of the testing region
depends only on the alarm function value. The rate-based model is the product of
the event rate of the reference model at this point multiplied by the corresponding dif-
ferential probability gain. Thus, we increase or decrease the initial rates of the reference
model according to the additional amount of information contained in the alarm-based
model. Here, we apply this method to the Early Aftershock STatistics (EAST)model, an
alarm-based model in which early aftershocks are used to identify space–time regions
with a higher level of stress and, consequently, a higher seismogenic potential. The
resulting rate-based model shows similar performance to the original alarm-based
model for all ranges of earthquake magnitude in both retrospective and prospective
tests. This conversion method offers the opportunity to perform all the standard evalua-
tion tests of the earthquake testing centers on alarm-based models. In addition, we infer
that it can also be used to consecutively combine independent forecast models and, with
small modifications, seismic hazard maps with short- and medium-term forecasts.

Introduction

In statistical seismology, empirical and physical obser-
vations led to the development of two main types of
numerical prediction experiments:

1. Alarm-based forecast models delimit the space–time
region where an alarm function exceeds a given threshold
value. In this region, an alarm is issued and a target earth-
quake with a magnitude M ≥Mtarget is expected to occur.
Exploring the entire range of threshold value from the
highest to the lowest ones, the fraction of the space–time
region occupied by alarms varies from 0 to 1.

2. Rate-based forecast models estimate for a given space–
time region the rate parameter of the Poisson process that
characterizes the occurrence ofMmin ≤ M < Mmax earth-
quakes. Most importantly for operational forecast, this
rate may be converted into the probability of occurrence
of an earthquake within the same magnitude range.

The conversion from rate- to alarm-based models is
trivial because a sum of event rates on a given target-
earthquake magnitude range can be considered as an alarm
function. By contrast, there is actually no conversion method
from alarm- to rate-based forecast models.

Using earthquake catalogs and observational constraints
on fault slip rates, the number of earthquake predictability stu-
dies has increased significantly over the last five years, thanks
to the activity of theCollaboratory for the Study of Earthquake
Predictability (CSEP; Gerstenberger et al., 2007; Jordan,
2006; Rhoades and Gerstenberger, 2009; Zechar and Jordan,
2010; Zechar, Schorlemmer, et al., 2010). Nowadays, several
CSEP testing centers operate worldwide to evaluate earth-
quake forecast models in different testing regions (Zechar
et al., 2007, Zechar, Gerstenberger, and Rhoades, 2010). In
a vast majority of cases, these evaluations concern rate-based
modelswith a time step of one day, threemonths, or five years,
a testing region decomposed into a square grid of side length
0.1°, and a class interval of earthquake magnitude of 0.1 from
M ≥3:95 earthquakes. In parallel and for a longer term, sev-
eral alarm-based models are being developed and tested by
different groups. Known examples are the global and regional
tests of M8, CN, and RTP (Keilis-Borok and Kossobokov,
1990; Keilis-Borok and Rotwain, 1990; Peresan et al.,
1999; Romashkova and Kossobokov, 2004; Shebalin et al.,
2004; Zechar, 2010). These algorithms are still difficult to
adapt to all the CSEP evaluation methods because their alarm
functions are not scaled to predicted event rates or probabil-
ities. Hence, we present here a new method to convert alarm-
basedmodels into a form compatible with the requirements of
all the CSEP testing centers.
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Our approach develops the concept of the probability
gain G introduced by Gusev (1976) and Aki (1996). For an
alarm-based model with a given threshold value of the alarm
function, the G-value measures the ratio between the propor-
tion of events predicted by this model and τ , the probability
given by the reference model to observe an earthquake in
the corresponding space–time region (Zechar et al., 2007).
More exactly, τ is the ratio of the earthquake frequency of
the region occupied by alarms to the earthquake frequency of
the entire space–time region. For a given target-earthquake
magnitude, these rates are defined by the reference model.
Interestingly, the G-value can also be directly estimated from
the Molchan diagram that plots, for all threshold values of
the alarm function, the miss rate ν with respect to τ (Mol-
chan, 1990, 1991; Molchan and Keilis-Borok, 2008). Then,
we have G � �1 � ν�=τ . An important advantage of the
Molchan diagram is that we can visualize instantaneously
the so-called Molchan trajectory �τ ; ν� and its derivative,
which reflects locally, near a specific alarm-function value,
the incremental forecast ability of the alarm-based model
with respect to the chosen reference model.

There is actually a growing body of theoretical and
observational evidence that suggests a dependency of the
early aftershock decay rate on stress (Narteau et al., 2002,
2003, 2005, 2008, 2009; Shebalin, 2004). Based on the
hypothesis that the time delay before the onset of the power-
law aftershock decay rate decreases as the level of stress
increases, the Early Aftershock STatistics (EAST) model is an
alarm-based forecast model that uses early aftershock statis-
tics to determine the space–time regions where this time
delay is abnormally low (Shebalin et al., 2011). In contrast
with epidemic-type forecast models, the EAST model con-
centrates only on the temporal properties of large magnitude
aftershocks (1:8≥ MA) of small magnitude mainshocks
(2:5≥ MM≥ 4:5) to infer the seismogenic potential of
the testing region. This model is being tested in the CSEP
California testing center, beginning as of 1 July 2009, and
it shows better predictive power than the relative intensity
(RI) reference model at a level of significance of 1%. This
reference model is commonly used because it is simply
obtained by smoothing the location of earthquakes in the
past (Kossobokov and Shebalin, 2003; Helmstetter et al.,
2006; Molchan and Keilis-Borok, 2008; Zechar and
Jordan, 2008).

Method

When compared to a reference model, the probability
gain G of an alarm-based model is an integral measure for
the space–time region that encompasses all the zones
where the alarm-function value exceeds a given threshold.
Nevertheless, the alarm-based model is likely to perform
differently for various ranges of alarm-function values.
Rapid and slow variations of the miss rate ν may be ob-
served. For this reason, it seems natural to introduce a dif-
ferential probability gain grefalarm to measure for each range of

alarm-function value the additional amount of information
contained in the alarm-based model.

In a Molchan diagram, this differential probability gain
is simply defined as the absolute value of the local slope of
the Molchan trajectory. Then, we should have grefalarm �
�∂ν=∂τ for a continuous set of alarm-function values and
an infinite number of target earthquakes. In practice, given
the small number of large magnitude earthquakes in instru-
mental catalogs and the heterogeneous nature of the spatial
distribution of seismicity, the Molchan trajectory is a steplike
function. Consequently, we approximate this trajectory by
segments, each of them corresponding to different ranges
of alarm-function values. Within each segment grefalarm is con-
stant and equal to

grefalarm � �Δν
Δτ

: (1)

We consider that the dependency of grefalarm on the alarm-
function value is constant over time and we calculate it retro-
spectively over a long time period. Thus, spatial and tempo-
ral variations of the grefalarm-value result only from changes
in the alarm-function value. For the incremental region asso-
ciated with a lower range of alarm-function value, grefalarm is the
ratio between the event rate predicted by the alarm-based and
the reference model in this specific space–time region. Then,
the new rate-based model is the product of λref , the event rate
of the reference model, multiplied by the corresponding dif-
ferential probability gain:

λalarm � grefalarmλref : (2)

These two terms vary with the magnitude range of the target
earthquakes and from one spatial bin to the next. Both terms
may also vary over time: for grefalarm, this is because of the local
fluctuations of the alarm-function value; for λref, it is because
we can consider a time-dependent reference model.

An important aspect of this conversion method
(equation 2) is that the initial rates of the reference model
increase or decrease according to the local grefalarm-value.
Thus, the resulting rate-based model injects into the refer-
ence model the additional knowledge carried by the alarm-
based model.

From Alarm- to Rate-Based Forecast Model Using
Early Aftershock Statistics

To isolate space–time regions with a relative high level
of stress, the EAST forecast model uses the Ea-value, the
ratio between the long-term and short-term estimations of
htgi (the geometric mean of elapsed times between main-
shocks and early aftershocks within a fixed time window;
Shebalin et al., 2011). However, mainshock–aftershock
sequences are not uniformly distributed, and this alarm
function cannot be defined everywhere at all time steps.
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In these cases, the alarm-function value is taken equal to λRI,
the normalized event rate given by the RI reference
model (Shebalin et al., 2011). Finally, the single alarm
function of the EAST forecast model is

AEa1
�

(
Ea1 �

Ea

λg

� htgilong
htgishortλg

if htgilong and htgishort are defined;

λRI otherwise;
(3)

where λg is a spatially-smoothed event rate similar to λRI. λRI
is obtained by uniform smoothing within circles of 12-km
radius, while λg is obtained from a 2D Gaussian function
with a standard deviation of 10 km (Shebalin et al.,
2011). This Gaussian filter is chosen to assign a nonzero va-
lue to all space–time regions. The prospective CSEP test of
the EAST forecast model for California started officially on 1
July 2009.

For California from 1984 to 2008, Figure 1 illustrates
howwe calculate the function gRIEa1

, the differential probability
gain of the EASTmodelwith respect to the RI referencemodel.
Figures 1a and 1b show the discretization method of the Mol-

chan trajectory for 3:95≤ Mtarget <4:45 and 5:95≤ Mtarget,
respectively. In each of these figures, we see that, for a given
range of alarm-function values, the gRIEa1

-value is equal to the
local slope of the corresponding section of the Molchan
trajectory. The limits of these sections are arbitrary chosen
to smooth the Molchan trajectory with a minimum number
of segments. Figure 1a–e shows that the gRIEa1

-values increases
with respect to an increasing Mtarget-value. In addition, from
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Figure 1. Estimation of the differential probability gains, gRIEa1
, of the EAST forecast model with respect to the RI reference model for

California from 1984 to 2008. The discretization method of the Molchan trajectories (thin dark lines) for (a) 3:95≤ Mtarget <4:45 and
(b) 5:95≤ Mtarget. The gRIEa1

-value is the local slope of the discrete Molchan trajectory (thick light line). Dark points on Molchan trajectories
show the limit at which the alarm-function value of the EAST model switches from Ea1 to λRI (see equation 3). The gRIEa1

-value with respect to
τRI and the alarm-function value AEa1

for (c,f) 4:45≤ Mtarget <4:95, (d,g) 4:95≤ Mtarget <5:45, and (e,h) 5:45≤ Mtarget <5:95. The color
version of this figure is available only in the electronic edition.
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the comparison between Figure 1c–e and Figure 1f–h, we
can infer the complex relationship between the alarm-function
value and the event rate of the RI reference model in the cor-
responding region.

Exploiting these differential probability gain functions
gRIEa1

, we convert the EAST forecast model into a new rate-
based model called EASTR. In practice, to derive a rate λRI
from the RI reference model, we need an average number of
earthquakes per time bin (three months) and a scaling factor
to redistribute these events in all target-earthquake magni-
tude ranges. Here, for the sake of simplicity, we consider
the number of M ≥3:95 earthquakes observed in the time-
interval during which the RI reference model has been
calculated and a constant slope, b � 0:96, of the earth-
quake-size distribution in California (Knopoff, 2000). Then,
according to equation (2), the map of the new rate parameter
λEa1

of the EASTR model is simply the local product between
λRI and the corresponding gRIEa1

-value.
To present an example of such a conversion from an

alarm- to a rate-based model, we use the current alarm func-
tion of the EAST forecast model in California (i.e., the three-
month period lasting from 1 January to 31 March 2011). For
this time period, Figure 2 shows input and output forecast
maps of the conversion from EAST to EASTR: input forecasts
are the alarm function of the EAST model (Fig. 2a) and the
rates of the RI reference model (Fig. 2b); output forecasts are
the rate parameter λEa1

of the new EASTR model forMtarget ≥
4 (Fig. 2c) and Mtarget ≥6 (Fig. 2d).

Retrospective and Quasi-Prospective Tests

The conversion method can be tested retrospectively
from1984 to 2008 (Fig. 3) but also for the period duringwhich
the EAST forecast model has been evaluated in the CSEP
California testing center (Fig. 4). This quasi–prospective test
covers the six first-three-month forecast periods of the
EAST model from 1 July 2009 to 31 December 2010. For this
test, we use the CSEP California testing region (Fig. 4a–c) and
also a smaller region (Fig. 4d–f) in which the catalogs of early
aftershocks are likely to be more complete (see fig. 2 in
Shebalin et al., 2011). We use only this smaller region in
the retrospective analysis.

In Figures 3 and 4, we perform two types of comparison
using Molchan diagrams:

1. We compare the prediction of both the EAST and EASTR

models to the prediction of the RI reference models. The
alarm function of the EASTR model in each space–time
region is equal to the cumulative expected rate of target
earthquakes on the corresponding magnitude range.

2. We compare the prediction of the EAST model to the
prediction of the EASTR model. Both models change
for different magnitude ranges. For the EASTR model,
we use the cumulative expected rate of target earthquakes
on the corresponding magnitude range of target earth-
quakes. When used as the reference model, these rates

are normalized by the total cumulative rate for the entire
testing region over the full duration of the test. Then,
according to a decreasing alarm-function value of the
EAST model (i.e., an increasing space–time region), we
are able to measure the proportion of events predicted by
the EASTR model in the corresponding region.

For the retrospective test, the prediction of the EASTR

forecast model shows the same performance as the original
alarm-based model relative to the prediction of the RI refer-
ence model (Fig. 3). For the quasi-prospective tests, all the
Molchan trajectories are also similar (Fig. 4). Then, for all
time periods, the EASTR forecast model has better predictive
power than the reference model at a level of significance of
1%. In addition, the direct comparison between the original
alarm-based model and the obtained rate-based model shows
that the EAST and EASTR models have similar predictive
skills (dotted lines in Fig. 4). The only exception is the better
performance of the EAST model in the quasi-prospective test
forMtarget ≥3:95 (Fig. 4d). This difference may be explained
by the occurrence of the M 7.2 El Mayor–Cucapah earth-
quake of 4 April 2010 and the huge proportion of M ≥3:95
aftershocks in the number of target events.

In Table 1, we present the results of standard CSEP like-
lihood tests for evaluating the forecast of the EASTR model
and compare them to the forecast of the RI reference model
(Zechar, Gerstenberger, and Rhoades, 2010). We have not
implemented the N-test because the expected number of
event is quite stable for the EASTR model (≈14 per three
months for M ≥3:95) and constant for the RI reference
model. Similarly, we do not show the results of the M-test
as we consider a constant b-value to estimate the event rate
of the RI reference model. We see from Table 1 that log-
likelihood values in both the L- and S-tests are closer to zero
for the EASTR model than for the RI reference model. This
better performance of the EASTR model is particularly true
for two periods, from September to December 2009 and from
April to June 2010. Interestingly, the first time period in-
cludes a swarm near China Lake, while the second covers the
earthquake sequence triggered by the M 7.2 El Mayor–
Cucapah earthquake.

Discussion and Conclusions

Our conversion method from alarm- to rate-based fore-
cast model can also be used for alarm-based models, for
which the alarm function is a binary variable (alarm, no
alarm). The M8, CN, and RTP algorithms mentioned in the
Introduction are among them. For these binary forecast mod-
els, there is a single point �ν; τ� on the Molchan diagram.
Considering our discretization technique, the Molchan tra-
jectory is decomposed in two lines, one for each range of
alarm-function values. For the space–time region in which
an alarm is issued, we have grefalarm � G � �1 � ν�=τ . Outside
these regions, we have grefalarm � ν=�1 � τ�. Then, for a given
reference model, as the probability gain of the binary model
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Figure 2. Input and output forecast maps of the conversion from EAST to EASTR in California from 1 January 2011 to 31 March 2011.
Inputs are (a) the alarm-function value of the EAST forecast model and (b) the RI reference model. Output are forecast maps of the rate
parameter λEa1

of the EASTR model for (c) Mtarget ≥4 and (d) Mtarget ≥6. Color bars are in units of the logarithm of τ , the normalized event
rate predicted by the RI reference model in space–time regions in which the alarm-function value of the tested model is larger than a
given threshold value. For the EASTR and RI reference models, the alarm function is the sum of the expected rates over all magnitude
bins. The relationship between the τRI-value and the alarm-function value is shown using the color bars. Note that logarithmic scale is
used for better contrast. In (c) and (d), dashed boxes indicate three areas of high λEa1

-values. The color version of this figure is available
only in the electronic edition.
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increases, there is a correspondingly higher contrast of the
rates of the converted model within and outside alarms.

Here, we only perform conversion from alarm- to rate-
based forecast model using as a reference a stationary rate-
based model constructed from a smoothed extrapolation of
past seismicity and a constant b-value. Any other rate-based
models may be used, for example to take into account spatial
and temporal variations of the b-value. Moreover, for large
regions we could also improve the model by considering that
the dependency of the differential probability gain grefalarm on

the alarm-function value varies from one point to another.
By construction, the only restriction actually results from
the hypothesis that grefalarm is constant over time. This is cer-
tainly a strong assumption given the stochastic nature of seis-
micity, especially for large magnitude earthquakes for which
the recurrence time may be larger than the time coverage of
the catalogs. Nevertheless, our predictions and their stability
should improve as we increase the period of time over which
the differential probability gain are estimated. In addition,
because our method can also be used to successively
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Figure 3. Retrospective evaluation of both the EAST and EASTR models in California from 1984 to 2008 for (a) Mtarget ≥3:95,
(b) Mtarget ≥4:95, and (c) Mtarget ≥5:5. Using Molchan diagrams, we compare the prediction of both the EAST (thin solid lines) and
EASTR models (thick lines) to the prediction of the RI reference model. We also compare the prediction of the EAST model to the prediction
of the EASTR model (dotted lines). The dashed diagonal line corresponds to an unskilled forecast. The shaded area indicates the zone in
which the prediction of the tested model outperforms the prediction of the reference model at a level of significance α � 1%. Dark points
on Molchan trajectories show the limit at which the alarm-function value of the EAST model switches from Ea1 to λRI (see equation 3). The
λEa1

-value of the EASTR model is equal to the cumulative expected rate of target earthquakes on the corresponding magnitude range. The
color version of this figure is available only in the electronic edition.
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combine different models (as described later in this paper),
we may introduce a stronger time dependence by taking into
account a time-dependent reference model as input to a next
iteration.

The prediction of the EASTR and EAST models show
similar performance with respect to the RI reference model
both in retrospective and quasi—prospective tests, despite

different spatial distributions of their alarm functions (see
Fig. 2a in comparison with 2c,d). For all target-earthquake
magnitude ranges, the EASTR models have larger clusters
of high alarm-function value that coincide with areas where
the rate of the RI reference model are high. Over long testing
times, this may improve the forecast skill of the EASTR

model with respect to the EAST model.
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Figure 4. Quasi–prospective evaluation of both the EASTand EASTR models in California from 1 July 2009 to 31 December 2010 for (a,
d) Mtarget ≥3:95, (b,e) Mtarget ≥4:95, and (c,f) Mtarget ≥5:5. Parts (a–c) are for the CSEP California testing region. Parts (d–f) are for the
smaller region used in the retrospective test of the EAST forecast model (Shebalin et al., 2011). Using Molchan diagrams, we compare the
prediction of both the EAST (thin solid lines) and EASTR models (thick lines) to the prediction of the RI reference model. We also compare
the prediction of the EAST model to the prediction of the EASTR model (dotted lines). The dashed diagonal line corresponds to an unskilled
forecast. The shaded area indicates the zone in which the prediction of the tested model outperforms the prediction of the reference model at a
level of significance α � 1%. Dark points on Molchan trajectories show the limit at which the alarm-function value of the EAST model
switches from Ea1 to λRI (see equation 3). The Ea1-value of the EASTR model is equal to the cumulative expected rate of target earthquakes
on the corresponding magnitude range. The color version of this figure is available only in the electronic edition.

Table 1
L- and S-Test Results for the Forecasts of the EASTR and RI

Reference Models*

L-Test S-Test

Period EASTR RI EASTR RI Ntarget

Jul.–Aug. 2009 �34:95 �38:13 �19:27 �20:90 3
Sep.–Dec. 2009 �153:18 �167:78 �112:00 �127:29 19
Jan.–Mar. 2010 �178:57 �181:16 �121:28 �122:96 22
Apr.–Jun. 2010 �957:49 �978:11 �573:23 �620:13 129
Jul.–Aug. 2010 �142:68 �144:12 �102:77 �103:94 17
Sep.–Dec. 2010 �104:60 �105:49 �76:47 �77:57 12

*Ntarget is the number ofM ≥3:95 earthquakes during the three-month forecast
periods.
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A general problem for operational forecast is the low
magnitude of the predicted event rate in rate-based models
(Jordan and Jones, 2010). Evaluating these rates in large
clusters may be an appropriate solution for this problem, at
least from the point of view of time prediction. For example,
let us count the cumulative expected rate ofM ≥6 earthquakes
in the three clusters of high λEa1

-value enclosed by boxes in
Figure 2c. We obtain cumulative rates of 0.045, 0.014, and
0.038 in boxes I, II, and III respectively. Although thesevalues
are higher than the corresponding cumulative rates given by
the RI reference model (i.e., 0.039, 0.005, and 0.018, respec-
tively), they remain quite small. Indeed, for a short-term op-
erative forecast, an expected rate of 0.05 seems to be required
(Jordan and Jones, 2010). However, for a medium-term fore-
cast, a probability of 0.5 to have an earthquake over a given
time period is a reasonable goal. To obtain such a probability,
the expected rate of a homogeneous Poisson process should
be equal to� ln�1 � 0:5� � 0:69. Considering the cumulative
rates of the three clusters, we conclude that, in California, a
time step of three months is too small for an intermediate-
forecast ofM ≥6 events using the EASTR model. A time step
of two years would be more appropriate. A similar analysis
suggests a time step of at least six months for Mtarget � 5.
Finally, a time step of three months seems appropriate for
Mtarget � 4, even if we consider smaller clusters.

Our conversion method from alarm- to rate-based fore-
cast model can be considered as a more general technique to
combine the predictive skills of different types of forecast
models. First, this is because all types of forecast models
can be easily converted into an alarm-based form. Second,
and more importantly, this is because the differential prob-
ability gain is a local measure of the additional amount of
information provided by an alarm-based model with respect
to a rate-based model. Then, multiplying these initial rates by
the local differential probability gain is a strategy to amalga-
mate this knowledge into a reference model. By definition, it
makes sense only when the predictions of the alarm-based
model outperforms the prediction of the reference model.
In this case, this technique may be used several times to com-
bine the advantage of different types of forecast models and
seismic hazard maps.

Using the concept of the differential probability gain, we
infer that a larger predicted event rate may be achieved from
pairwise combinations of the best forecast models. Hence,
research efforts can now focus on two directions of study:

1. The conversion from alarm-based to rate-based forecast
models in order to estimate the probability of occurrence
of an earthquake within the space–time region occupied
by alarms.

2. The combination of different forecast models into a sin-
gle one in order to reach sufficiently high predicted
event rates.

Then, we conclude that these studies may provide new
opportunities for operational forecast purposes within the
framework of CSEP testing centers.

Data and Resources

The prospective test of the EAST model is carried out in
the framework of Collaboratory for the Study of Earthquake
Predictability (CSEP; http://www.cseptesting.org/, last ac-
cessed September 2011). The Advanced National Seismic
System (ANSS; http://quake.geo.berkeley.edu/cnss/catalog-
search.html, last accessed September 2011) earthquake cat-
alog was searched. Most of the plots were made using the
Generic Mapping Tools, version 4.2.1 (http://gmt.soest
.hawaii.edu, last accessed September 2011; Wessel and
Smith, 1998).
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