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SUMMARY
A time-dependent stochastic process with three states (solid, broken and moving) is
considered in a hierarchical system made of embedded cells of increasing levels. An
earthquake of a given scale k is associated with the moving state of a cell of level k and
results from the coherent self-organization of fractures of lower scales. A direct cascade
of stress redistribution generates small-scale stress heterogeneities in the neighbour-
hood of the active fracture. An interesting feature of the model is that the size of the
domain where stress redistribution takes place grows proportional to the length of
the fracture. In the framework of the general model, inspired by the progress in the
use of the renormalization techniques in approaching critical point phenomena, we
independently study a `fracturing' submodel and a `friction' submodel. These submodels
are two-state models that act on di¡erent timescales. In the `friction' submodel, which
comprises broken and moving states, the transitions between these two states are
associated with stick^slip behaviour in a completely fractured fault zone. In the
`fracturing' submodel, which comprises solid and broken states, we model the brittle
behaviour of rock material. In both models we obtain a spatio-temporal clustering
of earthquakes, realistic aftershock sequences whose frequency decreases respect
the modi¢ed Omori law, and a frequency^magnitude relationship that respects the
Gutenberg^Richter law. We show that the model behaviour is controlled by the stress
heterogeneity in the fault zone, we ¢nd evidence for a relationship between the
periodicity of the largest earthquakes and the b-value, and we indicate how the di¡erent
physical ingredients underlying each submodel can be gathered together in a more
general model.
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1 INTRODUCTION

Earthquakes mainly occur in fault zonesöboundaries between
tectonic platesöand result from the relative large-scale motions
of these plates. These fault zones include a large number
of faults that interact together (Harris 1998) to accommodate
the large-scale deformation. Most faults are schematically
characterized by two phases during their history: an aseismic
long time period, without relative motion of the two sides
of the fault, separated by short periods of seismic activity
(foreshocks^main shock^aftershocks sequence, swarm of small
earthquakes). Other faults produce aseismic slip (slow earth-
quakes, creep) with a large number of microearthquakes.
Information collected has revealed a spatio-temporal cluster-

ing of the seismicity and various types of statistical behaviour
such as the Gutenberg^Richter power law concerning the size^
frequency statistics [Gutenberg & Richter (1994), who noted
that `earthquakes may be expected to occur in the future, as
in the past'], the Omori law, which describes the aftershock
frequency decrease (Omori 1894; Utsu et al. 1995) as well as
the foreshock frequency increase (Papazachos 1975), and the
relation between the energy radiated by an earthquake and its
size (Kanamori & Anderson 1975).
The fracturing process determines the length of the major

fault as well as the distribution of cracks at all scales. Friction
can then play its part in the fractured zone. The development
of a constitutive law of rock friction (Dieterich 1979) has pro-
vided a frictional interpretation of a large range of deformation
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phenomena (Scholz 1998) associated with pre-existing fractures:
creep (Scholz 1990), seismic regimes (Marrone & Scholz 1988;
Tse & Rice 1986), aftershocks (Dieterich 1994), nucleation
phases (Campillo & Ionescu 1997), seismic cycles (Ben-Zion
1996; Rice & Ben-Zion 1996) and coseismic phases (Cochard &
Madariaga 1994). Nevertheless, shear fractures do not always
occur along pre-existing structures and the rupture could be
initiated in or propagate into intact or healed bulk rock. For
long time periods, and to include the large-scale heterogeneity
of rheological rock properties, the analysis of the rupture of a
fault zone has to include the fracture mechanism (Yamashita &
Ohnaka 1991).
Earthquake genesis can also be tackled with tools of non-

linear physics (e.g. Dubois & Gvishiani 1998). The seismogenic
layer of the Earth has been considered to exhibit a state of
`self-organized criticality' (SOC) (Bak & Tang 1989; Main 1997).
A large number of phenomenological models (see references
in Main 1996) reproduce this statistically stationary state
characterized by spatial and temporal correlation functions
with a power-law behaviour. This was also obtained by Correig
et al. (1997), who used a cellular automaton to model the
aftershock frequency decrease. Discarding the state of SOC,
Knopo¡ (1997) suggested that the healing of cracks and
the rate of healing have to be taken into account in a fault
zone (Marrone 1998) to obtain an understanding of the self-
organization of earthquakes. The Burridge^Knopo¡ (BK)
model (Burridge & Knopo¡ 1967) models a fault by a spring-
block system lying between two rigid tectonic plates; it repro-
duces the Gutenberg^Richter law. By including a relaxation
time, Hainzl et al. (1999) also reproduced the Omori law and
the increase with time of the foreshock frequency.
Our approach can be compared with renormalization tech-

niques used for other examples of critical point phenomena in
di¡erent areas of physics (Binney et al. 1992). It can be seen as a
link between the physical approaches noted above, the BKmulti-
blocks approach and the scaling approaches to earthquakes. In
previous work (Alle© gre et al. 1995, 1998) we modelled a fault
zone with a hierarchical system made of embedded cells.
Earthquakes that occur within the fault zone are the result of
tectonic loading. Each earthquake is a critical phenomenon
that is the expression of a self-organization of fractures at all
scales. This view is supported by ¢eld observation (King 1983)
and laboratory experiments (Tapponnier & Brace 1976). The
potential elastic energy coming from the outside increases
the density d of cracks at the lowest level; the density of cracks
at higher levels is directly calculated from d by a criterion of
coherent fracture organization (which we call the SOFT rule;
Alle© gre et al. 1982). The cornerstone of this former SOFT
approach (which we call the integral approach) is the appearance
of a critical density of cracks dc; the density of cracks versus d
at a given level k tends toward a (Heaviside) step function
H(d{dc) with increasing k. The whole organization process,
through all scales, is completed during a chosen unit of time
and, after an event, part of the energy is redistributed in the
unbroken part of the medium, while another part is emitted
by acoustic waves or consumed by friction. With this kind of
approach it is possible to obtain some characteristic classes
of seismic behaviour (seismic noise, swarms, earthquakes with
or without precursors; Alle© gre et al. 1995) and a typical time
distribution of aftershocks (Alle© gre et al. 1998), and also,
following somewhat di¡erent lines, to generate an algorithm
of prediction based on the variation of the local slope of the

magnitude^frequency relationship (Blanter et al. 1997). A large
range of critical behaviours is also observed depending on the
fracture criterion (Shnirman & Blanter 1999).
The present model is an implementation and an improve-

ment of the integral approach; we now study a hierarchical
system of identi¢ed cells, each of them being in one of a given
number of states. Non-stationary transition rates between
the various states and a stochastic process at the lowest scale
de¢ne the location in time and space of each transition. We
can determine the origin (in time and space) of the modelled
structures (fractures) and their history on di¡erent time-
scales. Our basic assumptions are as follows: the rupture can
be initiated by the fracturing of a solid part of the medium
(asperity) or can take place in a broken part through the
friction process. The rupture can propagate until it is stopped
by more solid parts (barriers; Aki 1984). These more solid parts
of the medium favour in turn the loading up of the shear stress,
which can be eliminated by both earthquakes and creep pro-
cesses. We also include healing of cracks and a direct cascade
(from higher levels to lower levels) of stress redistribution
after each event. The stress redistribution generates small-scale
stress heterogeneities from which one can compute the stress
¢eld at di¡erent scales. A time delay is precisely de¢ned using
the shear wave velocity, and this implies a more sophisticated
SOFT rule with memory.We can describe the nucleation phase
and the coseismic phase of an earthquake in terms of a cascade
model (Ellsworth & Beroza 1995). A low frequency of the
stick^slip behaviour at the smallest scale can be associated with
the seismicity along creeping faults or during slow earthquakes.
We eventually generate long-duration synthetic catalogues
containing the time, magnitude and location of the events.
We will somewhat systematically compare the model results

with seismicity observations. We are aware that confrontation
of theory and experience cannot, in the present case, lead to
what could be called a proof of the validity of our approach.We
will come back to this point in Section 5.

2 THE GENERAL MODEL

In this paper we use the integral approach of the SOFT model
(Alle© gre et al. 1995, 1998) as a starting point for a stochastic
time-dependent model of a fault zone in which we incorporate
the stress redistribution following seismic events. Indeed, in a
homogeneous system the redistribution of stress at di¡erent
scales and locations is the main cause of the heterogeneous
distribution of cracks.
We propose ¢rst a general model that assumes the coexistence

only of `friction' along existing fractures and `brittle fracture'
of the solid parts of the medium (`asperities', `barriers').
These two rupture mechanisms are then independently studied
and their characteristic behaviour described, as well as the
seismic phenomena they are associated with. The ¢rst variant,
the `friction' model, starts from a completely fractured state
(all the cells, at all scales, are broken) and there is no healing
process. In the second variant, the `brittle fracture' model, we
neglect friction and assume that only the solid (unfractured)
part of the medium concentrates the elastic potential energy;
rupture is initiated in a solid part and can propagate in the
fractured part. The rupture threshold is constant for each
model but larger in the case of the fracturing process.
Let us present our basic assumptions. The seismicity

generation process takes place in a certain domain of a fault
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zone. This domain is modelled by an abstract hierarchical
system composed of embedded D-dimensional cells in the
manner explained in Fig. 1 (with D~2): the highest level is
associated with one cell and is subdivided into RD cells of the
same shape, R being the renormalization factor. For each of
these cells we repeat the same operation until we obtain a
hierarchical stem of cells with K di¡erent scales. Let k~0 be
the smallest scale, and k~K the largest. Our model is based
on the simultaneous consideration of all scales. It is important
to stress that our hierarchical system of cells does not represent
a system of solid or quasi-solid blocks. Each cell at each level
instead represents a boundary between two blocks, or a fracture.
It can then be associated with a possible fault plane that
is located somewhere within this cell. Each cell (crack) will
interact with neighbouring cells (cracks) and possibly create a
fracture at a larger scale in a larger cell.
We assume that, as a result of the long-term, large-scale,

tectonic fracturing process, our system is polarized in the
direction of the fault plane of the largest possible fracture. We
shall call this direction the `main direction'. For the sake of
simplicity, we assume that the rupture propagates only along
this `main direction'. We only study the case of simple-shear
stress loading, which corresponds to a strike-slip earthquake
faulting mode. This idealized geometry can be modelled by a
2-D hierarchical system that represents a plane (Fig. 1, D~2).
The source of this loading is the motion of two tectonic
plates in opposite directions. We assume a constant rate of
motion and a constant normal stress; accordingly, shear stress
would increase constantly but for the strain energy dissipated
by earthquakes or non-elastic deformation (creep, plastic
deformation). This process is associated with both discon-
tinuous energy dissipation and temporal variation of the average
shear stress. Furthermore, the complex geometry of fracturing
creates a heterogeneous stress distribution. We neglect the
heterogeneity of elastic and fragile properties of the medium.

According to Baç th, the duration of an earthquake, q, de¢ned
as the rupture time, has the following empirical dependence on
magnitude:

log q~ log
L

or

� �
~0:5Mz1:9 , (1)

whereL is the earthquake fault length, or the fracturing velocity
and M the earthquake magnitude. A larger earthquake has
a longer duration, and while part of the earthquake fault
continues to move, some other parts have already stopped, and
during the fracturing process it is impossible to determine
the ¢nal magnitude of the event. In this paper we consider a
constant rupture velocity of the order of the magnitude of the
shear wave velocity.
We now discuss in more precise terms the stochastic

dynamical system that we study in this paper.

2.1 The hierarchical system

The hierarchical system is obtained, as mentioned above, by
dividing a D-dimensional cell into RD smaller cells, K times.
There are thus n(k)~RD(K{k) cells at scale k, k~0, . . . , K.
Let us denote by C~Ck

i , i [ f1, 2, . . . , RK{kgD the RD(K{k)

cells of scale k and by "j(Ck
i ), j < k, all the cells of scale j

contained in Ck
i (Fig. 1). In the case where j§k, "j(Ck

i ) stands
for the unique cell of scale j in which Ck

i is included. Thus
"k("kz1(C)) are all the cells of level k contained in the same
cell of the next larger-scale cell that contains C. At each
moment any cell can be in three possible states:

(1) solid (unfractured or unbroken): state s;
(2) broken (locked by friction, fractured and motionless):

state b;
(3) moving (active): state m;

C [ fs, b, mg :

etc ......

Figure 1. Abstract representation of a fault zone: opposing tectonic motions on either side of the fault zone generate an increase in microcrack
density. We study the rupture phenomena on di¡erent scales through a hierarchical system. Here we draw the hierarchical system used with D~2
and R~2.
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The characteristic length of a cell of scale k is

l(k)~l0Rk , (2)

where l0 is the length of the cells of the elementary level. For a
given cell of scale k, to be in the state solid means that there
is no fracture of length l(k) in it. On the other hand, a broken
or a moving cell has fractures of size l(k). A broken cell is
weaker than a solid one, and consequently a smaller shear
stress su¤ces to initiate its motion. A moving cell corresponds
to a rupture of size l(k) taking place. The propagation of this
rupture is not instantaneous but rather takes a characteristic
time, *Tk. Due to our assumption of a constant rupture
velocity, this means

*Tk~
l(k)
or

(3)

(however, see Section 3.2). After de¢ning the state transitions,
we describe the smallest-scale dynamics, then the inverse
cascade (from small scales to large scales) of rupture (fracture
and friction) and ¢nally the dynamics of the direct cascade
(from large scales to the smallest scale) of stress redistribution.

2.2 The state transitions

There are four possible transitions for the cells (see Fig. 2):

s?m , (4)

b?m , (5)

m?b , (6)

b?s . (7)

Fracturing.The s?m transition is associated with a fracturing
process. By this transition, we model the brittle behaviour of
rocks under a given state of stress: the appearance of new
cracks, crack development and cracking along old healed cracks.
We do not detail any precise failure mechanism but con-
sider only the initiation of cracks and their propagation along
distance l(k). This phenomenon implies motion of both sides of
the crack.

b?m and m?b are the two transitions that constitute the
stick^slip process.
Friction. The b?m transition is associated with a friction

process. The slip takes place on an irregular fractured surface
(microfault plane). During all the broken state time, the
opening of the crack is kept constant; we neglect the complex
geometry of this pre-existing crack.
Stopping. Corresponding to a stress drop, the m?b transition

represents the stopping of both rupture processes (friction and
brittle). The locally accumulated shear stress is released by
the motion of the sides of the old or of the new crack.When the
release is great enough, the motion stops and the sliding
surface becomes a static microcrack (broken state).
Healing. The b?s transition is associated with a healing

process. This phenomenon results from physico-chemical
processes at the microscopic scale in rocks: compaction in
the presence of £uid, grain growth and crack crystallization.
We consider that a healed crack has the same mechanical
properties as a part of the rock material that has never been
fractured.
The two other transitions do not occur since a solid cell ¢rst

starts moving and stays sliding during *T0 before it becomes
broken (recall that broken means fractured but not moving);
moreover, a moving cell can obviously not become solid
without stopping.

2.3 The smallest scale

We de¢ne the whole process in terms of non-stationary
transition rates between the various states. In general, these
transition rates will depend on the present state of a cell and on
its past, as well as on the past of its neighbouring cells. At the
smallest scale it depends in addition on the local stress, which
changes as a result of seismic events and global large-scale
loading.
We attach to each cell C~C0 a real number, p~p(C, t),

that varies with time and represents the local accumulated
stress. The dynamics at the smallest scale are given by a time-
dependent stochastic process. In the following we write au?o
for the variable transition rate from state u [ fs, m, bg to
o [ fs, m, bg. Recall what this means that given that a cell is in
state u, the probability that it undergoes a transition towards
the state o in the in¢nitesimal time interval dt is au?odt. The
transition rate for b?s is ¢xed to some constant value b, which
is independent of the state of the system:

ab?s~b . (8)

We neglect the complex dependence on physical parameters
such as temperature, local pressure and amount of £uid of the
geochemical healing process (b?s).
The transition rate s?m depends on the local stress only.

For its dependence on the local shear stress we use the
following expression (p~p(C, t)):

as?m(p)~

0 for p¦ps ,

ks
pÿ ps

ps

� �ds
for p > ps ,

8><>: (9)

where ps is the fracture threshold, ks is a constant with dimen-
sions of the inverse of time and ds is some phenomenological
material constant.

BROKEN

fracturing
friction

healing (k=1)
geometrical blocking (k>1)SOLID

MOVING

stopping

Figure 2. Di¡erent possible states of a cell and possible transitions.
Note that the s?b and m?s transitions are forbidden.
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The transition rate m?b is deterministic:

am?b(t)~d(t{[t0z*T0] ) . (10)

Here t0~t0(t) is the time when the cell became moving for the
last time and *T0 is a time delay (see eq. 3). In other words, a
cell that has started to move becomes broken (and not moving)
after a time *T0. A constant rate of stress release (stress drop)
during *T0 justi¢es this assumption.
The transition rate b?m has two contributions corresponding

to two di¡erent possible mechanisms:

ab?m~a1b?mza2b?m . (11)

The ¢rst is the analogue of the transition s?m. It is a
spontaneous random transition that depends only on the
actual local stress in the cell:

a1b?m(p)~

0 for p¦pb ,

kb
pÿ pb

pb

� �db
for p > pb ,

8><>: (12)

where pb is the friction threshold, kb is a constant with dimen-
sions of the inverse of time and db is some phenomenological
material constant.
The second contribution corresponds to a transition that is

induced by some neighbouring cell (intrascale propagation):
a broken cell starts moving at time *T0 (intrascale growth of
`fracturing') after a neighbouring solid cell along the main
direction starts moving (nucleation of the `fracturing'). In
more precise terms, a broken cell becomes moving at time t if
at time t{*T0 one of its `neighbours' underwent a transition
from solid to moving. Here the `neighbouring' cells of C are
those in the set "0("1(C)) (the RD cells within the same cell of
scale 1 that contains C) that lie along the main direction with
respect to C. Thus

a2b?m(t)~d(t{[t0z*T0] ) , (13)

where t0~t0(t) is now the latest time point when a neighbour-
ing cell (in the above sense) underwent a transition s?m.
Such an intrascale propagation will also hold for scales k > 0
(see below). The intrascale propagation direction is the same as
the direction involved in the critical rule of the interscale
rupture propagation (SOFT rule), which we detail in the next
section.
In our numerical experiment we will denote by n(t) the sum

of all the transition rates, at time t, at the elementary level of
the hierarchical system. It is a measure of the actual stochastic
activity in our system.

2.4 The inverse cascade of `fracturing', `friction' and
`blocking'

In previous papers on the SOFT model (Alle© gre et al. 1995,
1998), only solid and broken cells were considered in the
hierarchical system. The transfer of fracturing from lower
levels to upper levels (inverse cascade) was determined by a
simple rule: if at least one straight line (following the main
direction) of cells (R cells) of level k is composed only of
broken cells, the corresponding cell of level kz1 is also broken
(Fig. 3). In this case the state of all cells at all levels is entirely
determined by the con¢guration at the smallest scale. At each
time, the state of larger scales is a function of the instantaneous

picture at the smallest scale. The di¡erent scales do not have
any proper dynamics since they are, so to speak, `slaves' of the
smallest scale.
Here we consider a system with a memory, a next-neighbour

correlation (cf . the intrascale propagation) and a more
elaborate SOFT rule. The new SOFT rule associates with a
cell C at level k a `virtual' state that is a function of the con-
¢guration of the RD cells in "k{1(C). However, the `real' state
of C will also depend on its history and on its next neighbours.
No additional stochasticity is introduced at scales larger than
the elementary scale (k~0).
The new SOFT rule is as follows:C~Ck

i is `virtually' moving
if the moving cells in "k{1(C) are in a critical state with respect
to the classical SOFT rule. C is `virtually' broken if the broken
cells in "k{1(C) are in a critical state with respect to the
classical SOFT rule. In the case of a con£ict between the two
rules, the moving rule prevails. In all other cases C is `virtually'
solid.
The rules for the various transitions of a cell of level k are

as follows.

(1) Suppose C is in the solid state. It undergoes the
transition solid ? moving if it becomes `virtually' moving.
(2) Suppose C is in the moving state. It undergoes the

transition moving ? broken at time t if it started to move at
time t{*Tk. That means that, once it starts moving, it stays
moving for *Tk (according to eq. 1) before it becomes broken.
Therefore, it may happen that, while a cell is moving, the smaller-
scale con¢guration changes in such a way that it becomes
`virtually' non-moving; nevertheless, the cell keeps moving
until the time *Tk is completed. This is the main di¡erence
between our new concept with memory and the classical static
SOFT rule: if, as in Alle© gre et al. (1995), the moving state at all
scales k=0 is a function of the instantaneous con¢guration
at scale k~0, the lifetime of the moving cells (the average
duration of the moving state during the numerical experiment)
can be smaller for higher degrees.We show this di¡erence with
the simplest example: R~2, K~1, D~1. The hierarchical
system is made of two cells C0

1 and C0
2 of level 0, aligned along

the main direction and included in the unique cell C1
1 of level 1.

If the cell C0
1 starts to move at t1 for an interval of time *T0,

and the cell C0
2 starts to move at t2 [ [t1; t1z*T0] for an interval

of time*T0,C1
1 is moving: (a) during [t2; t1z*T0] in the case of

the static SOFT rule; (b) during [t1; t1z*T1] in the present
case of the SOFT rule with memory.
(3) Suppose C is in the broken state. It undergoes the

transition broken ? solid if it becomes `virtually' solid
(hierarchical geometric blocking).We extract from the simplest
example (as above R~2, K~1, D~1) some interesting
behaviour: if C0

1 is broken during [t1; t1z*tb1] and C0
2 is broken

(2) (4) (1)
Figure 3. The critical con¢gurations of the SOFT rule (D~2, R~2).
The number of critical con¢gurations for a given number of broken
or moving cells is given in brackets. The arrow indicates the `main
direction'.
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during [t2; t2z*tb2] with t2 [ [t1; t1z*tb1], C1
1 is only broken

during [t2; min (t1z*tb1, t2z*tb2)]¦(*tb
1
z*tb2)/2 (superscript

b indicates that *t intervals are related to the broken state
lifetime). Consequently, even if physico-chemical healing pro-
cesses are longer the larger the scale is, the process of healing
by geometrical blocking (non-cooperative behaviour at smaller
scales) can be more rapid for larger fractures. This is due to the
increase of possible blockings (`barriers') at every smaller scale.
(4) Suppose C is in the broken state. It undergoes, at

time t, the transition broken?moving if it becomes `virtually'
moving at time t, or, if at time t{*Tk, one of its solid
neighbours in "k("kz1(C)) lying in the main direction with
respect to C started moving (intrascale propagation, already
mentioned in Section 2.3 for the 0 scale).

Bear in mind that the inverse cascade of rupture is instan-
taneous according to the SOFTrule. Consequently, a transition
at the lowest level could correspond to a similar transition at
higher levels. This does not mean that the rupture process itself
is instantaneous because this process is in fact made of all the
ruptures at lower levels that occurred before this transition
(intrascale propagation and SOFT rule with memory).

2.5 The direct cascade of stress redistribution

We detail here the source of the stress heterogeneity. As we saw
in the previous section, the small-scale dynamics depends on
the local stress in elementary cells C0

i , i [ f1, 2, . . . , RK{kgD.
This local stress is changed on the one hand by the external
large-scale loading process, and on the other hand by the
internal stress redistribution following the seismic events
(varying with time),

dp(C0
i , t)

dt
~EzIi(t) , (14)

where E (assumed to be constant) and Ii(t) are respectively the
external loading rate and the internal stress redistribution rate.
A seismic event is a cell in the moving state (see, however,
Section 3.2) . For a cell Ck

j of level k we denote by Ts(Ck
j ) and

Tb(Ck
j ) the sets of time points qs and qb when it starts to move

from a solid and a broken state, respectively. For the sake of
simplicity we assume that the stress is redistributed uniformly
in time during the event. Therefore, we write Ii(t) as follows:

Ii(t)~Isi (t)zIbi (t) , (15)

Isi (t)~
XK
k~0

X
Ck

j

X
q [Ts(Ck

j )

m[q,qz*Tk ](t)
*spk

i, j

*Tk , (16)

Ibi (t)~
XK
k~0

X
Ck

j

X
q [Tb(Ck

j )

m[q,qz*Tk ](t)
*bpk

i, j

*Tk , (17)

with

m[q,qz*Tk ](t)~
1 t [ [q, qz*Tk]

0 otherwise
:

(
Thus *spk

i, j and *bpk
i, j are the amounts of stress, during time

*Tk, internally redistributed into the cell C0
i of the elementary

level when a cell Ck
j has moved from a solid or a broken state.

For each transition through the moving state, three contri-
butions are taken into account. Suppressing the indices s and b,

we have

*pk
i, j~*pk

loc;i, jz*pk
red;i, jz*pk

uni f ;i, j , (18)

where *ploc, *pred, *puni f are respectively the local stress drop,
the redistribution of stress from neighbouring cells, and the
uniform stress drop.
First, if a cell C~C0

j at the elementary level moves, it
undergoes a local stress drop that we assume to be constant.
This local stress drop does not happen for moving cells at
higher levels and thus

*pk
loc;i, j~{plocdijdk0: (19)

Second, if cells at higher level move, they induce a
stress redistribution in adjacent cells. To model this stress
redistribution we introduce for each scale k a mask Fk

l ,
l [ f{1, 0, z1gD, that, for each event, determines the change
of local stress in the neighbourhood of the cell where the
event took place. For simplicity we only consider the next and
next-nearest neighbours. Moreover, we assume that all the
redistribution masks are obtained via a scaling of the mask at
the smallest scale F 0. More precisely, if an event takes place in
a cell Ck

j of level k, the stress in the elementary cell C0
i changes

according to the following formula:

*pk
red;i, j~

Fk
l , if C0

i ["0(Ck
jzl), l [ f{1, 0, z1gD

0 otherwise
.

(
(20)

The mask Fk
l is derived from F 0

l according to the rule

Fk
l ~jRhk F 0

l (21)

with some parameters h and j. The boundary is treated by
0-extension.
For a typical example in two dimensions, see Fig. 4, where

we approximate in a discrete and abstract way the actual
observed redistribution patterns (Okada 1985, 1992). Four
parameters are used to de¢ne the mask F 0 in two dimensions.
Here, we simply consider that there is a relative increase of the
shear stress along the main direction (A0, A1 on Fig. 4) coupled
with a relative decrease in the other direction (A2 in Fig. 4);
these relative variations represent a few per cent of the local
shear stress. Note that, with these de¢nitions, an event of
scale k a¡ects the stress in all the smallest-scale cells located
in the neighbourhood of Ck

j (direct cascade); this neighbour-
hood grows proportionally to l(k). As mentioned in Section 2.4,
an event at the elementary scale may instantaneously produce
larger-scale events through the inverse cascade; the stress

A A A

A

AAA

A A

0 0

00

1

1

2 23

main

direction

Figure 4. Typical stress redistribution pattern generated by the
motion of the central cell (subject itself to a stress change A3) (for
any level k). The shear stress increases along the main direction
(A1 > A0 > 0) and decreases along the other direction (A2 < 0).
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redistribution corresponding to these events generates a large
heterogeneity in the stress ¢eld through the direct cascade. This
is one of the key points of the model: multiscale interactions
govern the seismogenic process.
Third, an event at scale k is assumed to produce a total

global stress drop *pk
glob, which we will specify below. In order

to respect this constraint, we add, in the case of an event at
scale k, to every cell of the elementary level a uniform stress
change,

*pk
uni f ;i, j~*pk

uni f , such that
X
i

*pk
i, j~*pk

glob , Vj . (22)

Let us show in detail how we calculate the global stress drop,
*pglob. Kostrov (1974) has suggested a formula generalizing
Brune's (1968) formula to the case of a seismic process taking
place in a volume V . Each event of seismic moment M0 is
associated with a negative variation of the average strain, *ea,

*ea~{
M0

2kV
, (23)

where k is the shear modulus. The corresponding change of the
average stress, *pa, is

*pa~k*ea~{
M0

2V
. (24)

In our hierarchical system, the seismic moment, M0(k), of an
event of level k is given by

M0(k)~kS(k)u(k) , (25)

where u(k) is the displacement caused by the event and S(k) is
the fault surface area. The displacement is proportional to the
linear size of the corresponding moving cell (u(k)*Rk), while
the surface is the product of the length l(k) of the cell and its
height h(k)*l(k): S(k)*R2k. It follows that

M0(k)~k1R
3(k{K) , (26)

where k1*kl2(K)u(K) is a constant. From eqs (24)^(26), the
global stress drop, *pglob, due to an event of level k, is

*pglob(k)~{k2R
3(k{K) , (27)

where k2*0:5kl{1(K)u(K) (we assume V*l3(K)). From
eqs (18) and (22), we deduce the uniform stress drop, which is
redistributed in the whole domain.

3 A `FRICTION' MODEL AND A
`FRACTURING' MODEL

The general model described above has very complex behaviour,
and no large range of parameters values has yet been explored.
Therefore, in the present paper we examine two submodels that
have been explored in some detail and constitute the ¢rst two
steps of a complete numerical simulation that will be explored
in a future study. Considering the two submodels separately
is a preliminary approach to understanding the origin of the
di¡erent characteristics of the general model. We study here
two distinct ranges of parameters, one that corresponds to a
`fracturing' model and the other that corresponds to a `friction'
model. They do not describe the faulting mechanism at the
same timescale; they are in fact complementary submodels of
the more complete model that corresponds to the theoretical
formalism examined above (Section 2). For the sake of simplicity

and to save on computation time, we consider in the follow-
ing D~2. If we conserve our anisotropic SOFT rule (the
critical con¢guration is an alignment along only one particular
direction) and our schematic stress redistribution mechanism,
which again introduces anisotropy, a 3-D approach would not
constitute a major change in principle (see Section 2, Figs 3
and 4), even if, in the classical renormalization techniques, the
dimensionality of the system exerts an important control on its
behaviour. Nevertheless, a full realistic 3-D approach would
not be so simple to implement, given that faults may occur in
di¡erent orientations, and that the addition of gravitational
e¡ects may be signi¢cant.

3.1 A `friction' model

This model corresponds to a completely fractured fault zone.
To study this `friction' process starting from our general model,
we simply take a completely broken initial state (all the cells,
Vk, are broken) without healing process (b~0) (see Table 1c).
We give the basic properties of this simpler model within the

framework of the general model. We are left with two states,
broken and moving. The transition b?m at the elementary
level is determined by a stochastic random process (eq. 12),
whilst at higher scales (k > 0) it is determined by the SOFT rule

Table 1. (a) Parameters that are kept constant in both models
(*ploc~*ps

loc~*pb
loc); (b) parameters of the `fracturing' model;

(c) parameters of the `friction' model.

(a)

R 2
D 2
or 3000 m s{1

pb 100 bar
ps 110 bar
*ploc 30 bar
k2 2 RDK bar
E 10{9 bar s{1

ks 10{4 s{1

ds 3
db 1:5

(b)

`Fracturing' model

K 6
b 3|10{11 s{1

kb ??
hs 1:5
As

i~f0,...,3g 1, 2, {7, 0
js 5:8|10{2 bar
initial condition completely solid
event s?b

(c)

`Friction' model

K 4
b 0
kb 2:5|10{2 s{1

hb 0:5
Ab

i~f0,...,3g 1, 2, {4, {8

jb 2 bar
initial condition completely broken
event m
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applied to the cells of the lower level (k{1). The transition
m?b is deterministic at all scales k; a cell stops moving a time
*Tk after it started moving at time t. If during this time span
(t, tz*Tk), the moving cell becomes virtually moving again
(because at smaller scale a SOFT con¢guration occurs) it will
still stop at tz*Tk.
Before generating a seismic catalogue (time, magnitude,

location), let us de¢ne what we call in this model an earth-
quake, its magnitude and its nucleation time and location. We
de¢ne the nucleation time point and its position in a recursive
way. If a cell C at level k starts moving, it either participates in
the nucleation of an event of larger scale kz1, or it represents
the endpoint of a `friction' cascade. It is the endpoint in a
`friction' cascade, if, during its moving time *Tk, the cell
"kz1(C) does not start moving. Note that "kz1(C) may
already be moving, in which case the event occurring at C is
automatically the endpoint of a friction cascade.We say that a
cell C of level k participates in the nucleation of an event if
during *Tk, its moving time, the cell "kz1(C) undergoes a
transition to the moving state as well. This motion, however,
may have been initiated by some other cell in "k("kz1(C)).We
now de¢ne the nucleation location and time at scale k of a
larger event of scale kz1: it is the position of the ¢rst cell in
"k("kz1(C)), lying in the main direction with respect to C, that
started to move and the time when it started to move. This
de¢nes in a recursive way the nucleation location and time of
any event at the smallest scale. In the case where a cell Ck at
level k is the endpoint of a cascade (see above), we report in the
catalogue its nucleation time and location at the elementary
scale through the recursive scheme described above; we say
that an earthquake of level k was initiated at this time point
and location.
An earthquake of level k is associated with the moving state

of a cell of level k. This event has to be given a magnitude
completely de¢ned by its level k. This magnitude, M(k), can be
obtained from eq. (26) using the relationship log (M0(k))~
1:5M(k)zconst, or directly from M(k)~ log (S(k))zconst
(Kanamori & Anderson 1975). In both cases, we obtain

M(k)~2k log (R)zconst . (28)

Let us state some characteristics of the model. First, we can
describe the nucleation phase, the coseismic phase and the
stopping phase of an earthquake (see Section 4.3) as a cascade
model (Ellsworth & Beroza 1995). Second, the propagation of
the moving state (due to stress redistribution) at the elementary
level can proceed at di¡erent rates and may or may not be
associated with a higher-scale event. We illustrate di¡erent
situations in the 1-D case of Fig. 5 (N and ti are de¢ned in
the caption).

(1) tN{t1&*TK: the propagation proceeds very slowly
and there is no highest-level event; this corresponds to the
seismicity along creeping faults (we call this behaviour creep).

(2) tN{t1 > *TK: the propagation proceeds slower than
the rupture and there is no highest-level event; this corresponds
to the seismicity during a slow earthquake.
(3) tN{t1¦*TK: the propagation is very rapid and there is

an event of the highest scale with a stick-slip mechanism.

3.2 A `fracturing' model

As in our previous approach (Alle© gre et al. 1995, 1998), this
model corresponds to a weakly fractured fault zone where
the healing process is e¡ective at the lowest scale (b=0).
This process generates a hierarchical geometric blocking at
higher scales. To distinguish the `fracturing' submodel from the
general model, we simply adopt (see Table 1b) an instantaneous
propagation of rupture (*Tk?0, Vk) and a continuous shear
stress dissipation by friction. Thus we end up with a two-state
model, solid and moving-broken. To incorporate the dissipation
by friction, we let kb go to in¢nity in eq. (12), in such a way that,
as soon as the stress reaches the critical threshold value pb,
the cell undergoes a transition b?m and stays moving for an
in¢nitesimally small time *Tk before it becomes broken again.
Note that the transitions b?m?b are not visible in our con-
densed two-state (solid andmoving-broken) `fracturing'model.
During the in¢nitesimal time *Tk, the excess of stress with
respect to pb is eliminated from the system by the `friction'
process.
Let us recall, in the framework of the general model, the

basic characteristics of this simpler model.We have two states,
solid and moving-broken (we now use the term `broken' for this
double state). The transition s?b at the elementary level is
determined by a stochastic random process (eqs 4^9), whilst at
higher scales it is determined by the SOFT rule applied to the
broken cells of the lower level. The transition b?s is also
determined by the SOFT rule: a cell which is not in the broken
state is in the solid one.
To generate a seismic catalogue (time, magnitude, location),

let us de¢ne precisely what we call, in this model, an earth-
quake, its magnitude and its nucleation time and location. An
earthquake is here associated with the s?b transition. Since
the rupture instantaneously propagates through the higher
levels, transition s?b at the elementary scale is called a
`hypocentre', which is the nucleation of the fracture, which can
propagate through the scales, thanks to an inverse cascade. All
these nucleations are noted in the catalogue. Of course, there is
no earthquake duration in this case. For a given event, the
magnitude is given by eq. (28), as in the `friction' model.

4 RESULTS OF NUMERICAL
SIMULATIONS

As mentioned above, we study two distinct ranges of para-
meters, one that corresponds to a `friction' model and the other
that corresponds to a `fracturing' model. We are interested in
the most general properties of the event sequences obtained
from the numerical simulations; these are the magnitude^
frequency relationship, the temporal variation of the number
of foreshocks and aftershocks per unit of time and the
periodicity of strong events. For both models, for a wide range
of parameter values, event (earthquake) sequences perfectly
obey both the Gutenberg^Richter law and the modi¢ed Omori
law.

t t t t t
1 2 3 4 5

...........
N-4
t

N-3 N-1 N
t t

N-2
t t

Figure 5. Ideal propagation of the friction (from left to right) in a 1-D
hierarchical system (N~RK). The ti are the fracturing times of cells Ci

and ti < tj if i < j. Depending on the value of (tN{t1), one obtains
di¡erent kinds of seismic events (see text).
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Let us discuss the parameters kept constant in each model
(see Table 1a). R is taken equal to 2; a larger renormalization
factor would only provide a more realistic magnitude^k
relationship (eq. 28) and an increase in the number of fore-
shocks and aftershocks (Alle© gre et al. 1998). The latter state-
ment is still valid when considering the e¡ect of an increase in
the number of scales,K (see Fig. 12). A small number of scales
is not a big drawback because of the self-similar behaviour
at all scales except the elementary scale (K~0); note that
the typical length of an elementary cell is related to this
number of scales. All the parameters concerning the stress
¢eld (pb, ps, *ploc, k2) are of the order of the magnitudes of
the observed ones. Parameters related to eqs (9) and (12)
(ds, db, ks, kb) are arbitrarily chosen.

4.1 Method of analysis

We obtain numerical catalogues of events (see above). These
catalogues contain the times of events, the `hypocentre'
coordinates, the hierarchical level reached by the event and
the corresponding magnitude (see eq. 28). We also follow the
evolution of the total transition rate at the lowest scale, of the
average shear stress, and of the heterogeneity of the stress ¢eld.
Making use of eq. (28) for the conversion from hier-

archical level to magnitude, we estimate the b-value of the
Gutenberg^Richter relationship through the formula

b~
1

2 log (R)
log 1z

1
k{km

� �
, (29)

where k and km are respectively the average and the minimum
hierarchical levels in the set or subset of events considered. This
formula is the maximum likelihood estimate of the b-value
in the case of an unlimited range of discrete magnitudes
with integer values (Molchan et al. 1997; Kulldorf 1961). The
limitation of the magnitude of events by the highest scale in
our model is not important for the comparative analysis. The
magnitude band of the model is derived from the number
of hierarchical levels through eq. (28), and the maximum
magnitude is ¢xed by the characteristic length of the highest
level.
For the temporal analysis of foreshocks and aftershocks, we

used the program aft developed by Utsu et al. (1995). This
program is available in the IASPEI Program Library (Lee 1997).
We estimated the parameters of two di¡erent models of after-
shock decay (or foreshock increase): the modi¢ed Omori law
(Utsu et al. 1995) and its modi¢cation, known as the Otsuka
model (Otsuka 1985). The modi¢ed Omori model assumes a
power-law decay:

f (t)~
A

(tzc) p
, (30)

where f (t) is the number of events per time unit, t is the
time since the main shock, p is the Omori exponent and c is a
shifting parameter. In the Otsuka model the long tail of the
power law is reduced by introducing an exponential with a
characteristic time T :

f (t)~
A

(tzc) p
exp {

t
T

� �
. (31)

The parameters of eqs (30) and (31) are computed with the
program aft using the maximum likelihood method and

the Davidson^Fletcher^Powel optimization procedure (Utsu
et al. 1995). Unfortunately, this program does not work with
sequences containing more than 5000 events. We developed
our own code, which can be applied to unlimited sequences.

4.2 Identi¢cation of the events

Let *Taft be a time span that will be de¢ned below. Main
shocks and aftershocks are identi¢ed in the following way:

if an event of level k at time t is preceded by only lower-level
events in [t{*Taft, t], it is a main shock with precursors;

if an event of level k at time t is not preceded by an event
during [t{*Taft, t], it is a main shock without precursors;

if an event of level k at time t is preceded in [t{*Taft, t] by
an event of level k that is not an aftershock, it belongs to a
swarm of level k;

if an event of level k at time t is preceded by a higher-level
event during [t{*Taft, t], it is an aftershock.

*Taft is chosen (by trial and error) in such a way that about
90 per cent of the aftershocks of a main shock (identi¢ed
as described above) that occurred at time t are contained in
[t; tz*Taft]. *Taft depends essentially on the parameters of
the mask. These rules are somewhat arbitrary, but we have
observed that the results do not depend much on *Taft if this
value is a few orders of magnitude less than the average time
interval between two main shocks.

4.3 Numerical results of the `friction' model

In the `friction model' n(t) is the total transition rate b?m
at the elementary scale and we will interpret in terms of
foreshocks-main shock-aftershocks the short time period from
the nucleation phase to the stopping phase of a given event.
`Friction' model with weak load. We assume a very small

loading rate that will not change the system signi¢cantly
during the characteristic duration of a foreshocks^main shock^
aftershocks sequence. Starting from a homogeneous state, the
system may have been loaded up to the critical stress value
(RDKpb bar) by the stress (E) applied to the boundary of
the domain by plate tectonics. According to eq. (12), this is
indeed possible in the case of a homogeneous system, because
nothing occurs as long as pi < pb. We can take as the initial
(t~0) con¢guration pi~pa~pb Vi. A ¢rst transition b?m is
randomly chosen in the volume. This ¢rst nucleation is enough
to obtain, without additional loading, an increase in the fore-
shock activity, a main shock and aftershocks. We explain this
behaviour as follows. The perturbation of the stress ¢eld
around the ¢rst moving cell (*pred) is larger than the uniform
stress change (*puni f ) calculated from the global stress change
(*pglob). Consequently, at the elementary level the rate of
transitions b?m (n(t)) increases; the heterogeneity of the stress
¢eld increases after each event at the elementary level, and so
on. The process is autoaccelerated, events at higher levels occur
and, ¢nally, a strong event may occur. This is the time of the
largest stress ¢eld heterogeneity. A strong event (or strong
events) signi¢cantly unloads the whole system. This starts the
cascading of the aftershocks, which unloads the areas of high
stress and decreases the average stress (pa). The value of n(t)
decreases rapidly at the beginning, but this decrease then slows
down due to the decrease of pa.
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The general results are as follows. First, in a very large
range of model parameter values, we obtain sequences with an
increasing frequency of foreshocks preceding a main shock or
several strong events (swarm) followed by a sequence of after-
shocks with decreasing density. Second, the temporal decay of
the number of aftershocks per time unit obeys in general the
modi¢ed Omori law, in many cases perfectly. The value of
the power exponent is usually around 1.5. Third, the event size
distribution follows the Gutenberg^Richter law very closely;
b-values vary in the range 0.5^5.0, depending upon the
di¡erent parameter value sets, and they also vary with time,
for given parameters, during the foreshocks^main shock^
aftershocks sequence. Fourth, foreshocks also often follow a
power-law increase.
We now present in more detail the behaviour of the system

for di¡erent values of the parameters equal to and close to
those reported in Tables 1(a) and (c). Results corresponding to
the parameter value sets of Tables 1(a) and (c) (the reference
sequence) are shown in Fig. 6 against both linear (Fig. 6a) and
logarithmic (Fig. 6b) timescales, calculated from the time of
the ¢rst nucleation (see above). In both parts of the ¢gure, the
¢rst graph shows the level of the events, the second shows
the total transition rate b?m at the elementary scale, the third
represents the evolution of the average global stress, the one
the evolution of the standard deviation of the stress distri-
bution for levels 0 and 1, and the last graph shows the density d
of currently moving cells at the elementary level; note that at
the moment of the main shock this number is less than at the
time of the strong foreshocks. Both values of d are much less

than the critical density value (0.618) of the corresponding
integral SOFT model. This `reference' sequence summarizes
the typical behaviour of the `friction' model. The main shock
is preceded by a short sequence of foreshocks. With the
logarithmic timescale we clearly see the temporal clustering of
events: strong foreshocks are themselves preceded by fore-
shocks and have their own aftershocks. The main shock has
a rather long sequence of aftershocks. Fig. 7 shows that the
temporal aftershock activity decay with time obeys very well
the modi¢ed Omori law. Fig. 7(a) shows on a logarithmic
timescale the cumulative number of aftershocks compared with
the theoretical curve (eq. 30) for the values p~1:52, c~203
given by the maximum likelihood estimation. Fig. 7(b) shows
the cumulative number of aftershocks versus the number given
by eq. (30).
The event size statistics follow the Gutenberg^Richter law.

Fig. 8 shows separately the magnitude^frequency curves for
foreshocks and aftershocks with b-values respectively equal to
1.43 and 2.06. The slope break for the magnitude^frequency
curve for all events (b~1:85) at k~K{1 is a ¢nite size
e¡ect (only one highest-scale event is recorded in the analysed
sequence). Fig. 9 shows the temporal variation of the b-value,
estimated at time t by eq. (29) using the last 200 events before t.
We see that the b-value has a minimum just before the main
shock, as is often observed for large earthquakes (Smith 1981),
even if not systematically. Such an observation was discussed
in Main et al. (1990) and has been observed in controlled
tests by Sammonds et al. (1992). These authors invoke a (short
or prolonged) strain-softening mechanism. Similarly, in our

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

4

K
(t

)

t (s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−2

10
0

10
2

π(
t)

t (s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
80

85

90

95

100

σ a(t
) 

(b
ar

)

t (s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

χ(
t)

 (
ba

r)

t (s)

level 2

level 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

t (s)

d(
t)

(a)

10
1

10
2

10
3

0

1

2

3

4

K
(t

)

t (s)

10
1

10
2

10
3

10
−2

10
0

10
2

π(
t)

t (s)

10
1

10
2

10
3

80

85

90

95

100

σ a(t
) 

(b
ar

)

t (s)

10
1

10
2

10
3

0

5

10

15

20

χ(
t)

 (
ba

r)

t (s)

level 2

level 1

10
1

10
2

10
3

0

0.1

0.2

0.3

t (s)

d(
t)

(b)

Figure 6. The reference sequence of the friction model on (a) a linear and (b) a logarithmic timescale. From top to bottom: the sequence of
events, the total transition rate, the average shear stress, the standard deviation of the local shear stress, and the density of moving cells at the
elementary level.
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approach this minimum of the b-value stems from the growth
and the coalescence of old cracks, two major ingredients of
the strain-softening mechanism. Coalescence at all scales
(self-organization) is an intrinsic property of the SOFT rule, and
no particular mechanism (e.g. pore £uid pressure) is implicitly
modelled; this is an advantage (and may be a drawback) of our
model.
We varied the parameters around the values of the refer-

ence sequence and found that the behaviour is unexpectedly
insensitive to changes in most parameters. Except for marginal
cases with no strong events or sequences of aftershocks that are
too short, the system gives almost perfectly both a Gutenberg^
Richter distribution of event sizes (with b-values for fore-
shocks smaller than for aftershocks) and an Omori law of
the temporal aftershock decay (see Discussion, Section 5). The
model appears to be the most sensitive to changes in the
parameter kb, which has the dimension of the inverse of time.
The foreshocks^main shock^aftershocks sequence can be

more complex than in the reference case. Fig. 10(a) shows
a main shock followed by a short sequence of aftershocks.
Afterwards, during a rather long time interval, no event occurs,
and, after this `quiet' period, the aftershock sequence starts
again to ¢nally relax the system. Fig. 10(b) shows the case of
several main shocks (a swarm). The case without a strong event
corresponds to creep (see Fig. 13; this case is discussed below).

An interesting log-periodic variation of the aftershock fre-
quency is superimposed on the trend (Fig. 11a). In Fig. 11(b)
these log-periodic oscillations are seen around the theoretical
straight line. This re£ects the temporal distribution of the
major (leading) aftershocks, which are themselves followed by
a sub-sequence of aftershocks (Correig et al. 1997). In
some cases we obtained similar behaviour for the foreshock
sequences, but with only two^four oscillations (Fig. 6). Note
that an attempt to test this pattern rigorously in earthquake
catalogues (Gross & Rundle 1998) produced a negative result.
Similarly, it is not observed in all of our numerical simulations;
we have not yet been able to de¢ne the range of parameters
where this pattern clearly occurs.
Let us now show how the model behaviour depends on

the number of levels K; if the scaling works properly, this
dependence must be weak. Figs 12(a1), (b1) and (c1) show
sequences obtained with 5, 6 and 7 levels (K~4, 5 and 6),
retaining only the ¢ve highest levels. All the other parameters
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sequence versus a logarithmic timescale and the curve representative
of the modi¢ed Omori law (eq. 30). (b) Cumulative number of after-
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of the model are kept the same; this corresponds to systems
with di¡erent spatial sizes but the same physical parameters.
The sequences corresponding to the di¡erent K obey almost
perfectly the Gutenberg^Richter law of event size distributions
and the Omori law of aftershock decay. The most important
di¡erence is the duration of the power-law behaviour of the
aftershock sequence as estimated by the parameter T in the
Otsuka formula (eq. 31). It decreases with the number of levels
(Figs 12a2, b2 and c2). This decrease of T is due to the fact that
the direct cascade redistributes more stress at the lowest level
for a higher value of K. A more sophisticated rule including
a redistribution of stress at all scales would increase the value
of T (and make the system behaviour depend less strongly
on K).
`Friction' model with constant load. What happens after

the main shock and aftershocks have passed? How does the
external loading start new events? Is it possible to obtain
an analogue of the seismic cycle? We understand the term
`seismic cycle' as the recurrence time (quasi-periodic or almost
stochastic) of strong earthquakes, generally preceded by a
growing seismic activity (foreshocks), followed by sequences of
aftershocks and with a relatively aseismic behaviour between
foreshocks^main shock^aftershocks sequences (Fedotov 1965;
see also the detailed review in Scholz 1990). In the model
described above, no strong events occur again and all the
received energy is dissipated in small events; in this `weak'
system (low value of E) the dissipation keeps the average
stress below the critical value (Fig. 13a). In the case of a

`strong' system (high value of E) with a high rate of external
loading, the average stress can be larger than the critical
value (Fig. 13b). Both cases can be interpreted as creep.
However, in another `friction' submodel derived from the
present one through only a small modi¢cation, we do obtain
a seismic cycle; we assume that the local stress heterogeneity is
slowly decreasing with time due to some kind of `di¡usion'
process, at a rate asymptotically proportional to the square
root of time:

p(C, tz*t)~pa(t)z
l������������������

l2z*t�
p (p(C, t){pa(t)) , (32)

where l is a dimensionless constant parameter, p(C, t) is
the local shear stress in the cell C, pa(t) is the average stress and
� is a reduced di¡usion coe¤cient (s{1). Fig. 14 shows the
numerical results for the set of parameters of the reference
sequence except for E~10{4 bar s{1 and �~10{4 s{1,
l~1. Each peak corresponds to a foreshocks^main shock^
aftershocks sequence that has the same statistical behaviour as
the reference sequence.

4.4 Numerical results of the `fracturing' model

In the `fracturing' model, n(t) is the total transition rate s?b
and b?s at the elementary level. At higher scales, the s?b and
b?s transitions are respectively associated with a seismic
event or a geometric blocking. Given a slow physico-chemical
healing at the lowest scale, we study the seismicity over long
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Figure 10. More complex sequences. (a) A seismic quiescence a few seconds after the main shock (same parameter values as the reference sequence
except for hb~1:5). (b) A swarm of large earthquakes. From top to bottom on a logarithmic timescale: the event sequence, the total transition rate and
the average shear stress (same parameter values as the reference sequence except for jb~20 bars). Note that the modi¢ed Omori law is still respected
in these two cases.
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time periods. The stress balance is between the external input
and both discontinuous `fracturing' events (s?b transition)
and continuous `friction' [broken cells C lose the excess
stress p(C){pb they receive from outside (E) or from internal
redistribution]. We now present some typical earthquake
sequences and describe the statistical behaviour of the model
for di¡erent values of the parameters. The unit of time in all the
¢gures is 102 s. In the captions we indicate the di¡erences
between the Table 1(a) and (b) parameter values and the those
of the current numerical experiment.

4.4.1 General properties of a sequence (a realization for a
given set of parameters)

Temporal distribution of earthquakes. Fig. 15 shows a typical
sequence over a short time period (a time interval containing
two events of the highest level). We observe several main
shocks of di¡erent amplitudesö(b2) and (b3) of level 6, (b1)
of level 5, (c) and (d) of level 4 and (e) of level 3. Depending
on their geometrical distribution, the same number of broken
cells can give events of di¡erent levels (compare a1 and a3).
Comparing (a3) with (a2) shows that the average stress is
correlated with the number of solid cells at the elementary
level. Some main shocks have precursors (b3, c1, c2), whilst

others do not (b1, b2, e). These precursors can themselves
be followed by aftershocks (b3, c1). Each main shock has its
own aftershock sequence. The last main shock in (b3) has a
large aftershock followed by a sub-sequence of aftershocks;
this large energetic release reduces the duration of themain after-
shock sequence. For lower-level main shocks (k <K{1~5),
due to the small number of levels (K~6) and the value of the
scaling parameter h (eq. 21), one observes a longer aftershock
sequence duration but a smaller number of aftershocks. This
long duration of the aftershock sequence is not observed for
higher-level main shocks (k > 4); it is a consequence of the
direct cascade mechanism, which redistributes all the stress
drop from higher-level events directly onto the elementary
level. The evolution of the average shear stress is self-similar
(a2, c2, d2 and e2 have the same behaviour but on di¡erent
timescales). The interseismic period between the two main
shocks of the highest level (b2 and b3) is 600 yr, the duration
of (e1) is 4 yr and the durations of b(1) and (b2) are 45 days.
Note that the global stress drop associated with (b3) is due to
a temporal seismic migration: a level 4 event triggers a level 5
event, which in turn triggers a level 6 event. Finally, in Fig. 15
there is a clear temporal clustering of events. The spatial
clustering is also present: aftershocks (main shocks) occur in
the neighbourhood of the main shock (foreshock), where the
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Figure 11. (a) The cumulative number of aftershocks versus time
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Omori law (eq. 30). (b) The cumulative number of aftershocks obtained
in the numerical experiment versus the theoretical experiment (straight
line). Same parameter values as the reference sequence except for
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Figure 12. Experiment with di¡erent numbers of levels: left-hand
side graphs show the event sequences versus time; right-hand side
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logarithmic scale and the representative curve of the Otsuka law
(eq. 31) for estimated p and T parameters (same parameter values as
the reference sequence except for jb~5 bar).
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redistribution of stress is positive. Given our 2-D system and
the anisotropy of the critical SOFT rule, we postpone the study
of the spatial distribution of our events.
Aftershocks. Fig. 16 shows a typical aftershock sequence

(over 2 months) without large events (this explains the low
number of aftershocksöthere is no secondary sequence of
aftershocks). Eq. (30) is respected (Figs 16a4 and a5), and this
is the case for a large range of parameters (see below). We
explain the aftershock generation mechanism as follows. The
redistribution of stress rapidly increases the transition rate s?b
according to eq. (9). The increase of the transition rate b?s
is much slower because during the aftershock sequence this
rate is inversely proportional to the number of solid cells
(Fig. 16a3); in other words, just after the main shock, the
`fracturing' process is more e¤cient than the healing process.
Later, both the local and the global stress drops (Figs 16a1
and a2) favour the decrease of the transition rate s?b, whilst
each fracturing event increases the transition rate b?s. This
balance is reached rapidly just after the main shock and more
slowly later on, in agreement with the modi¢ed Omori law. The
main cause of this typical (1/(tzc)p) behaviour is the hetero-
geneity of the stress ¢eld (Fig. 17b); in the case where an event
perturbs a medium where the stress ¢eld is completely homo-
geneous, the decrease in aftershock frequency is exponential
(Fig. 17a).
Foreshocks. Foreshocks are obviously present here: the

fracturing mechanism cannot directly reach the highest level
and the organization of a fracture at a given scale requires
lower-scale fractures. Nevertheless, due to the history of

the fault zone, their time distribution is very complex. For
studying only the distribution of foreshocks we select in our
catalogues examples where earthquakes of lower amplitude
precede a main shock, and we eliminate the aftershocks (i.e.
all the lower-level events occurring after the higher-level
event). If the medium is weakly fractured (high value of b)
and the stress ¢eld is homogeneous (pa~ps), the foreshock
activity satis¢es the modi¢ed Omori law [with t?{t; the
typical exponent is called q instead of p (Fig. 18a)]. If the
medium is not fractured (high value of b) and the stress ¢eld is
heterogeneous, the foreshock activity respects the modi¢ed
Omori law (t?{t) with a lower value of q (Fig. 18b). If the
medium is fractured (low value of b) and the stress ¢eld is
heterogeneous, a main shock occurs without foreshocks and it
is very di¤cult to isolate the foreshocks from the background
seismicity.
Magnitude^frequency relation. Fig.19 shows the magnitude^

frequency relationship for a typical sequence over a very long
time period (0.3 Myr). The slope of the magnitude^frequency
relationship for the main shocks is smaller than the slope of the
magnitude^frequency relationship for all the events, which is
in turn smaller than the slope corresponding to the aftershock
sequences for di¡erent levels of main shocks. The magnitude^
frequency relationships for aftershock sequences of main
shocks with di¡erent magnitudes do not have signi¢cantly
di¡erent slopes. The b-value could easily be made closer to 1
with a more appropriate renormalization factor (see eqs 28
and 29). The slope break between levels K and K{1 is an
e¡ect of the ¢nite domain.
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Figure 13. Examples of creep sequences. From top to bottom: the sequence of events, the total transition rate, the average shear stress, the standard
deviation of the local shear stress and the density of moving cells at the elementary level. (a) The `weak' state with pa < pb (same parameter values as
the reference sequence except for E~10{4 bar s{1). (b) The `strong' state with pa > pb (same parameter values as the reference sequence except for
E~10{2 bar s{1).
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4.4.2 Statistical properties of a set of sequences

In the following we select main shocks of level k§4 (i.e. 4, 5
and 6), and *Taft is adjusted for each sequence.
Aftershocks. The behaviour of the aftershock sequence

essentially depends on the sharpness of the s?b transition
(ds in eq. 9). As shown above, the aftershock sequence is
due to the increase of the local shear stress resulting from
the direct cascade of stress redistribution. Each aftershock
modi¢es in turn the local shear stress in its neighbourhood; this
perturbation decreases with magnitude following the scale-
dependent law of parameter h (eq. 21). Fig. 20 shows that the
power-law decrease (1/(tzc)p) is still respected if ds > 2; below
this threshold value, c/*Taft becomes too large: the global and
local stress drops due to each aftershock are not large enough
to decrease the s?b transition frequency, and a constant rate
of aftershocks results. We observe that the p value decreases if
the value of ds increases (Fig. 20a). The number of aftershocks
and the b-value (Figs 20c and d) do not depend on ds.
In£uence of the stress redistribution. The external loading

rate E and the healing rate b are physical parameters that
obviously compete.We have studied the di¡erent outputs of the
model as a function of the density of fractures for di¡erent
values of E [ [10{9; 10{4] and b [ [10{11; 10{5]. In Figs 21, 22

and 23 each point results from a numerical simulation over a
sequence of long duration *T (*T~106*Taft).
Fig. 21(a) shows the b-value of the frequency^magnitude

distribution versus the density of broken cells of the lowest
level (in fact, the density average over the whole sequence
duration).We observe a minimum at d*0:3 and a plateau for a
large range of d [ [0:4; 0:7]. The theoretical curve obtained by
the integral approach has a minimum at dc~0:618, the critical
value of this approach (see caption to Fig. 21). This di¡erence
in behaviour is due to the stress redistribution, which organizes
the `fracturing' process in a weakly fractured medium: the mask
increases the stress in the neighbouring cells along the main
direction of the cracked cells. Thus the fault zone can generate
high-magnitude events even if the density of cracks is less than
the critical value.
Fig. 21(b) shows the ratio f~w1/w2 between the total stress

eliminated by the `fracturing' process (through the global
stress drop,

w1~
X
k

X
events

k2R
3(k{K) ,

eq. 26) and the total stress eliminated by the `friction' pro-
cess (see Section 3.2; w2~E*T{w1) versus the density of
broken cells. The theoretical curve obtained from the integral
approach has a maximum at the critical value of this approach.
For d > dc the two modes of behaviour are similar; below this
value the `fracturing' process is more e¤cient for the present
model with stress redistribution. The maximum value of f is
reached at the value of d giving the minimum of the b-value
(Fig. 21a).
The stress input during the lifetime of the broken state (1/b).

Let us now study the behaviour of our system versus E/b,
which has the dimension of stress. Fig. 22 shows that some of
the main system characteristics are largely controlled by this
single parameter. The `fracturing process' (Fig. 22a) is negligible
if E/b > 102. Below this value a typical peaked behaviour is
observed.We will return to this result in Section 5. The b-value
versus (E/b) curve shows that b is controlled by (E/b) as long
as (E/b)< 102 and exhibits a clear minimum (Fig. 22b). For
high values of E/b, the number of high-degree events is weak
and the b-value is controlled by the healing mechanism. The
critical (E/b) value for which b is at a minimum can also
be inferred from Fig. 22(c), whose di¡erent curves represent
the densities of cracks versus E/b for di¡erent values of b; the
convergence point corresponds to the critical density of cracks
and the critical value of E/b. Note that this value, expressed in
bars, is of the same order of magnitude as the average stress
(see Table 1). A dimensional analysis could be performed in
future work.
The seismic cycle. After eliminating the strong aftershocks

and foreshocks, as explained previously, we noted the time
intervals between two events of level k§K{1 (i.e. 5 and 6).
For a minimum set of 50 time intervals, we calculated Q, the
ratio of the average time interval to the standard deviation
of the distribution of these time intervals. Larger values of
Q re£ect a more periodic behaviour. In Fig. 23(a) we show Q
versus E/b for (E/b) varying from 10{3 to 103 (for lower or
higher values, the high-level main shock number is too weak).
A large £uctuation of Q exists, but a more periodic behaviour
is observed for lower values of E/b. In Fig. 23(b), we show the
b-value versus Q. An increase of the b-value is coupled with a
more periodic behaviour. Such an observation is still di¤cult
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Figure 14. Examples of seismic cycles obtained with the parameter
values of the reference sequence and homogenization by di¡usion (see
text). From top to bottom: the sequence of events, the total transition
rate, the average shear stress, the standard deviation of the local shear
stress and the density of moving cells.
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to make in real seismicity due to the short time period covered
by earthquake catalogues.

5 COMPARISON WITH EXPERIMENTAL
EVIDENCE: A DISCUSSION

We are aware that even a good reproduction of some
regularities or empirical laws of real seismicity by a model
might not be taken as strong evidence of the validity of this
model. One of the reasons is that many of the regularities
or empirical laws that have been claimed to have been found in

the experimental evidence are controversial to various degrees,
except maybe for the Gutenberg^Richter and Omori laws.
However, these two very general laws do not constrain the
models as strongly as might be hoped. Indeed, the Gutenberg^
Richter distribution is rather easy to obtain (Alle© gre et al.
1998). Simple toy models of self-organized criticality such
as a sand pile or a forest ¢re display a power-law distribution
of the cluster sizes (Chen et al. 1991; Turcotte 1999). The
Omori law appears more di¤cult to ¢t with model series.
Nevertheless, Gutenberg^Richter and Omori laws must be
observed by the model results.We note that obeying both laws

Figure 15. Intermediate sequences of earthquakes: (a1), (b1), (b2), (b3), (c1), (d1), (e1). Average shear stress versus time: (d2), (c2), (e2). Number of
solid cells versus time: (a3).
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simultaneously is signi¢cantly more constraining than obeying
one law or the other. Comparison with more controversial
observed regularities or empirical laws of seismicity must be
accompanied by the required caveats. When necessary, the
subdomain of parameters in which the model products and
experimental evidence agree must be sketched (models in
general and our own in particular have several adjustable
parameters). In any case, comparing the model results with
regularities or empirical laws observed in real seismicityö
even these are controversial to some extentöis more e¤cient
than comparing them with experimental evidence as a whole,
without sorting. Moreover, it gives one the opportunity to
explain why the model works the way it does.
We have discussed the stress pattern in the model (Sections

2.5 and 3), although little is known about the seismogenic stress
in nature. In fact, we do not use in our reasoning any detailed
knowledge of the stress ¢eld. We only call for a heterogeneous
stress ¢eld, which results from the mechanism of multiscale
redistribution of stress described in Section 2.5 and chosen for
its simplicity (stress is relaxed in some cells and enhanced in
neighbouring cells at all scales). An important aspect of the
model is that the zone of in£uence where stress redistribution
takes place (Fig. 4) grows proportionally to the length of the
fracture. This is consistent with much of the literature on fault
growth (e.g. Main 1996), but not with what happens with many

SOCmodels, which do not have this property since they rely on
the nearest neighbour e¡ects at small scales.
The above discussion concerns the comparison of model

results with real seismicity laws (statistics on the occurrence
times and magnitudes). Comparison with ¢eld tectonics is
another requirement. We postpone this (ambitious) objective
until we can make use of the localization properties of the
model described in the present work (see the next section).

6 CONCLUSIONS AND PERSPECTIVES

The new approach presented here, with a direct simulation
of the stress redistribution, is an extension of the previous
SOFT model. We have now built a numerical laboratory
that will allow a large number of experiments characterized
by di¡erent timescales, from the dynamics of the rupture
(`friction' submodel) to the history of a fault zone (`fracturing'
submodel). Our present modelling produces a large range
of observed seismic sequences with a precise temporal (and
spatial) location of events.
The multiple-scale approach coupled with the SOFT rule

with memory has allowed us to incorporate the major com-
ponents of brittle fracture: healing of cracks, increase in micro-
crack density, rupture threshold, heterogeneity of the stress ¢eld
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Figure 16. (a1) is a main shock^aftershock sequence. (a2) and
(a3) show respectively the corresponding evolution versus time of
the average stress and of the number of solid cells. (a4) shows the
cumulative number of aftershocks on a logarithmic timescale and a
representative curve of the modi¢ed Omori law (eq. 30). (a5) shows the
cumulative number of aftershocks versus the theoretical number
(straight line).
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Figure 17. The cumulative number of aftershocks versus time on a
logarithmic scale calculated from a critical con¢guration of broken
cells at the elementary level (the highest-level cell is broken) and
without stress redistribution (j~0), without healing (b~0), without
external loading (E~0): (a) all the solid cells have the same local stress
ph > ps; (b) the average stress of all the solid cells is ph, but, for each
individual solid cell, the stress is randomly chosen in [ps; psz2ph]. The
best-¢tting curve is plotted and its formula is written [(a) gives an
exponential frequency decay; (b) a (1/(tzc)p) frequency decay].
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and propagation of fractures. Incorporating these properties in
our abstract modelling gives rise to a large number of complex
types of behaviour that can be related to the complexity of real
earthquakes. The simplicity of the model is an advantage in
better understanding the physical origin of the complexity of
the behaviour. The statistical properties of our system have been
studied, even though the main goal of the present paper was to
reproduce the spatio-temporal clustering of earthquakes.
We have shown that the 1/(tzc)p behaviour of the after-

shock frequency is a direct expression of the heterogeneous
stress distribution at the main shock time (see Sections 4.3
and 4.4). This conclusion is valid for both submodels since the
mechanism of stress redistribution is the same. In real earth-
quakes, aftershocks are present in most cases and the variation
of p can be analysed as a function of the heterogeneity of the
stress distribution.
The physics of the healing (physico-chemical process or

geometrical blocking) has to be taken into account in a fault
zone. The ratio (E/b) between the external loading rate and
the healing appears to be a general control parameter. The
value of this parameter discriminates between the domains of
applicability of the two submodels. The foreshock activity during
the long time period preceding an earthquake depends strongly
on E/b. If this rate is high, an increase in seismicity is observed
before the main shock, and foreshocks obviously occur; the
unstable state is reached through the fracturing of the solid

parts of the medium. On the other hand, with a low healing
rate the system always stays in an unstable state around a
critical distribution of cracks, and the foreshock activity is
random.
The relative density and the distribution (structural hetero-

geneity) of the solid parts of the medium on the one hand
favour the loading of the shear stress, which can be eliminated
by earthquakes, and on the other hand control the dimension
of the largest earthquake that can occur in a fault zone.
A quasi-periodic seismic cycle is obtained in both sub-

models when the stress ¢eld becomes quasi-homogeneous
during the loading period (interseismic phase). In the case of
the `fracturing' submodel, the periodic character of the seismic
cycle is enhanced when the b-value increases.
There are many points that we intend to tackle in the

future. We have to develop systematic studies of the statistical
properties of our system and determine the origin of their
variations. To understand the mechanism that leads to the
main shock, and to decide whether or not this mechanism is
di¡erent from the relaxation process, we have to study how
the distribution of the stress ¢eld in£uences the increase in
foreshock activity. The relative density of the main shocks with
precursors has to be evaluated, and we will try to draw a phase
diagram representing the di¡erent types of seismic processes:
creep, swarms of small earthquakes, and earthquakes with
or without precursors. We will try to develop the relation-
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Figure 18. (a1), b(1) Example of complete foreshock sequences with a linear timescale (parameter value set of Tables 1a and b with di¡erent initial
conditions; see text). (a2), (b2) The sequences of the selected foreshocks on a logarithmic timescale. (a3), (b3) The cumulative number of foreshocks on
a logarithmic timescale and a theoretical estimate from the modi¢ed Omori law (eq. 30). (a4), (b4) The cumulative number of foreshocks versus the
theoretical number (straight line).
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ship between these seismic processes and, for example, the
parameters of the friction and fracturing laws (eqs 9 and 12)
(as done here for the aftershock frequency decay as a function
of ds). We will also pay careful attention to the particular
case of earthquake triggering.
We will also consider a 3-D hierarchical model with a

tensorial stress ¢eld rather than a scalar one, and interactions
between cracks of di¡erent orientations (e.g. following Alle© gre
& Le Moue« l 1994). It will be possible to compare our synthetic
cataloguesöcontaining both times and locationsöwith real
data and in turn to constrain our physical parameters. This
stage is of course the most important from the geophysical
point of view. We have to interact with rock mechanicists
to incorporate in our model more realistic ingredients for the
rupture propagation and to develop a fragility criterion in the
static (nucleation) or dynamic case (growth). It will be possible
to calculate synthetic seismograms of large events taking into
account the history of the rupture. It will also be important to
re¢ne the mechanism of the stress redistribution during the
relatively short time period following an event and its relation
with the aftershocks activity and the heterogeneity of the stress
¢eld. With our multiple-scale approach we will try to answer
the following questions: how can an a priori heterogeneous
stress ¢eld at the smallest scale produce major ruptures
accommodating the global tectonic stress ¢eld (introduced at
the highest scale), and how does the system redistribute this
global tectonic stress ¢eld at smaller scales?
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Figure 19. The magnitude^frequency relationship for all events
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indicated.
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Figure 20. (a) The average value and standard deviation of the para-
meter p of eq. (30) compiled from a large number of aftershock
sequences (*103; we run the model for a very long time to get this large
number) versus ds. (b) The average value of the parameter c of eq. (30)
versus ds. (c) The average number of aftershocks and the standard
deviation of this number versus ds. (d) The average b-value versus ds.
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Figure 21. Evolution of (a) the b-value and (b) the f -value (see text)
versus the average density of fractures at the lowest level. Open
circles are from numerical experiments with di¡erent values of E
and b (see text), while the solid line is calculated from the integral
approach [if fl and dl are respectively the event frequency and the
crack density at level l, the event frequency at the higher level is
flz1~fl (1{dlz1)(1{(1{d2

l )
2)].
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133The geology of any area is obviously heterogeneous.
Introducing a 3-D fault zone model with pre-existing geo-
logical structures is a promising perspective. In the domain
of the fault zone where an event takes place, the system will
not only receive a constant rate of potential elastic energy
but also an unsteady rate through the interaction with the
neighbouring fault systems (see the multidomain approach of
Alle© gre et al. 1995). This can be done in the framework of a 3-D
rupture process, where our multiple-scale approach constitutes
a necessary simpli¢cation.
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