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Giant earthquakes have mostly been recorded at subduction 
zones, where an oceanic plate penetrates into the convect-
ing mantle. These events are generally described as an abrupt 

release of elastic strain accumulated in the upper plate under con-
ditions of high coupling with the downgoing plate. Thus, their 
occurrence probably depends on patterns of strain accumulation, 
which are monitored in the upper plate thanks to space geodetic 
measurements of surface displacements. However, these observa-
tions alone are not sufficient to determine how giant earthquakes 
relate to convective processes and far-field plate motions1–3. High-
accuracy determinations of crustal movements have evidenced 
slow-slip episodes of the subducting plate downdip of the seismo-
genic zone4,5, but it is still not possible to quantify changes in the 
on-going subduction conditions at greater depths. Yet, occurrences 
of seismic events with focal depths exceeding 200 km before great 
shallow earthquakes raise the question of their link with the deeper 
slab evolution at timescales of months to years6. Thus, improve-
ments in our current understanding of giant earthquakes and fore-
casting capabilities call for a better description of plates and slab 
movements at depth. The only means to detect these transient mass 
changes associated with subduction is by observing Earth’s gravity. 
In real time for earthquake early warning, surface gravimeters and 
seismic networks are now able to detect gravitational field variations 
before the arrival of seismic waves7,8. At longer time scales, Earth’s 
mass redistributions are reflected in the monthly time variations of 
the gravity field monitored by the Gravity Recovery and Climate 
Experiment (GRACE) satellites since 2002, from near-global to 
250–400 km resolution9. These data can bridge the gap between 
local and global patterns of plate dynamics over periods of decades 
to months, and provide unique information on the processes lead-
ing to giant ruptures at subduction zones.

A gravitational image of the Tohoku-Oki earthquake. We anal-
ysed the long-term dynamics of mass transport before and after 

the 11 March 2011, Mw 9.0 Tohoku-Oki earthquake in a 150° ×  100° 
region around Japan. Previous investigations using GRACE and 
Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) 
satellite gravity data have focused on the co- and post-seismic varia-
tions in the epicentral area and its vicinity10–16. Here, we search for 
earthquake-related gravity signals at a regional scale, considering 
the entire subduction system of the Northwest Pacific, from the 
Izu–Bonin and Ryukyu arcs to the south, to the Kuril–Kamchatka 
arc to the north. For that, we develop a space-time analysis of Earth’s 
gravity vector variations reconstructed from the August 2002− June 
2014 time series of GRACE Centre National d'Etudes Spatiales/
Groupe de Recherches de Géodésie Spatiale (CNES/GRGS) Release 
3v1 monthly Stokes coefficients, with a resolution down to 250 km 
(ref. 17; Supplementary Section 1). Our approach differs from pre-
vious works in three key ways. First, we investigate large spatial 
scales, up to 1,600 km, in addition to more localized signals, down 
to 800 km. Second, we consider the entire variability at timescales of 
months to years in the data, without using prior models. Third, we 
enhance the signals following the geometry of the subduction system 
by analysing time changes of Earth’s gravity gradients in relevant, 
rotated frames (Supplementary Section 2.2). Initially, we recon-
struct the gravity gradients tensor every month from the GRACE 
geoids at different spatial scales, in the local south-east-up spheri-
cal frame. By progressively rotating the frame along the local radial 
axis, we look for gravity signals oriented along the strikes of both 
plate boundaries and subducted slabs. For each spatial scale and ori-
entation, we map anomalous transient gravity gradients variations 
near the earthquake time using a wavelet transform of the time 
series (Supplementary Section 2.3.1). This approach is analogous to 
searching local velocity peaks in the time series smoothed at differ-
ent temporal resolutions. The timing and the duration of the peak in 
a window around March 2011 inform on the predominance of a pre-
seismic, co-seismic or post-seismic variation. Successively applied 
before and after removing a co-seismic step, we can determine  
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whether the different components of a piece-wise linear model 
of the time series are part of an earthquake-related signal, or not 
(Supplementary Section 2.3.2).

The obtained gravitational image of the earthquake reveals two 
striking behaviours (Fig. 1). First, gravity variations start a few 
months before March 2011. Second, the earthquake signals near the 
epicentral area are surrounded by broad-scale variations through-
out the entire subduction system. Starting in late 2010, regional 
gravity variations develop on both sides of the Boso triple junction 
(Fig. 1a). In March 2011, they spread along the subduction bound-
aries over three tectonic plates, reaching the southern Kuril, the 
Ryukyu and the Izu–Bonin arcs (Fig. 1b). This large-scale spread-
ing is also found along the strike of the northern Philippine Sea 
subduction, from the Boso triple junction to south-central Japan 
(Supplementary Section 2.3.2). It is concomitant with a strong local 
gravity signal near the epicentre, at the monthly time resolution of 
GRACE. From April 2011, slower gravity variations progressively 
concentrate near the epicentral area, first on the trench (Fig. 1c) and 
then on the oceanic side of the subduction, east of Tohoku (Fig. 1d). 
In this long-term gravitational picture, the earthquake appears as 
the most striking event of a wide and silent deformation evolving 
over months to years.

At locations where the gravity signals start before the earth-
quake, there is a clear contrast between the pre-seismic behaviour of 
the time series and their long-term variability (Fig. 2b). West of the 
Japan subduction zone, we observe a large and uninterrupted gravity 
gradient increase from December 2010 to March 2011, synchronous 
with a decrease on the Philippine Sea plate, south of the triple junc-
tion (Fig. 3a,b). Over the previous seven years, all the series exhibit 
a constant and slow trend. For example, when applying our analysis 
between 2006 and 2009, no anomalous July–February changes are 
detected around Japan (Fig. 3a,b). These fast variations before the 
Tohoku-Oki earthquake are large with respect to the usual water 
signals and noise in this area (Supplementary Sections 3 and 5): on 
the same order of magnitude as the annual snow cycle over Japan, 
and at least two times larger than the seasonal ocean mass varia-
tions in the surrounding areas (Supplementary Section 3.2). In fact, 

these anomalous signals can be detected in the original time series 
even before correction for the periodic components, especially 
west of Japan (Fig. 2a). Beyond the seasonal cycle, their unusual 
amplitude with respect to water signals and noise is evidenced in 
a statistical test of detection before the earthquake (Supplementary 
Section 2.4). We decompose the time series into a long-term lin-
ear trend and residuals, assuming a Gaussian distribution of inde-
pendent monthly deviations. Stacking the time series in longitude 
across the pre-seismic anomalies, the 97.5th percentile level of the 
August 2002− May 2010 distribution is systematically approached 
or exceeded starting from December 2010 in the areas where the 
gravity signals precede the earthquake (Fig. 2c; spatial map in Fig. 
3c,d and Supplementary Section 2.4). Furthermore, the residual val-
ues remain close to, or above the 90th percentile level until the end 
of the time series, even after subtracting the co-seismic and post-
seismic signals (Fig. 2c and Supplementary Section 4.1). The abrupt 
gravity changes recorded before the rupture are thus persistent over 
time and spatially coherent over a wide ocean/islands area, what-
ever the subsequent seismic signals (Supplementary Section 3.3). 
Indicating a sudden movement of mass, largely completed before 
the earthquake, this pattern cannot be explained by water signals 
and we attribute its origin to a precursory activity at depth.

These results suggest that the Tohoku-Oki earthquake belongs to 
a broader sequence of large motions starting a few months before the 
rupture, the initial phase of this sequence being detectable in the grav-
ity data before the event. The space-time distribution of the gravity 
signals is summarized in Fig. 4. In this diagram, the near-epicentral 
zone corresponds to the highest and most localized perturbations, in 
the middle of a larger area undergoing gravity changes over longer 
timescales. From late 2010, the gravity signals migrate from the deeper 
side of the Pacific plate subduction zone, where they spatially coincide 
with the slab at 100− 350 km depth, to its shallow and even oceanic side, 
more than 1,000 km within the Pacific plate interior in March 2011. 
This migration points to a depth-to-surface dynamics of mass redis-
tributions during the months before and after the earthquake, over a 
volume that includes and extends far beyond the seismic rupture. The 
sequence involves commensurate large-scale mass transfers in the  
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Fig. 1 | Pre-, co- and post-seismic variations of the Tohoku-Oki earthquake gravity signal. a–d, Time sequence of the 1,400-km-scale φ φ  gravity gradients 
in the local south-east-up spherical frame of unit vectors (eθ, eφ, er), rotated in the direction Az1. They correspond to φ φ  gravity gradients averages for 20–
55° clockwise rotations (defining the direction range Az1) of the frame about the radial axis (Supplementary Section 2.2). Star: 11 March 2011 earthquake 
epicentre; orange lines: plate boundaries41; thin violet lines: Pacific slab isodepth contours42, every 200 km (a,b) or 100 km (c,d). Tectonic plates: Pacific 
(Pac), Philippine Sea (PHS), Okhotsk (Ok), Eurasian (Eur); island arcs: Kuril (Ku), Izu–Bonin (IB), Marianna (M), Ryukyu (R), Honshu (H).
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pre-seismic and early post-seismic phases, as indicated by similar 
amplitudes of the 1,400-km-scale signals for a limited depth range of 
sources. This regional evolution is further supported by the constant 
dominant northeast–southwest orientation of the gravity signal dur-

ing the pre-seismic and the co-seismic phases (Supplementary Section 
2.3). Consistent with the geometry of the entire subduction system, it 
can therefore be a broad subduction acceleration releasing accumulated 
stresses from depth to the surface all around the Boso triple junction.
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A deep precursory phase. In this scenario, we explain the wide-
spread pre-seismic gravity gradient increase west of Japan by a 
diffuse mass decrease in the slab (that is, a precursory intra-slab 
extension episode). Such deformation is consistent with the 
reported acceleration of the seismic release and extensional mecha-
nisms below 50 km depth from January 2011 up to the earthquake 
time18. In addition, a significantly larger aseismic motion initiated 
months before is likely to occur deeper in the slab. Indeed, Fig. 4 
shows that the precursory gravity changes are located above a sec-
tion of the slab where seismicity vanishes. As an equivalent repre-
sentation, we estimate the amount of quasi-static normal faulting in 
the slab leading to commensurate gravity signals. We find a slip of 
40 cm along a 100 ×  1,200 km2 fault plane dipping at 60° from 245 to 
330 km depth, which corresponds to a Mw 8.4 earthquake over a few 
months (Supplementary Section 6.2.1). However, at upper mantle 
depths, such a large-scale increase of the pre-seismic gravity gradi-
ent requires a relatively distributed source, more than a localized 
slip (Supplementary Section 6.1.5), which could be another argu-
ment for ductile deformation.

Coherent with a northwest-oriented upper-mantle slab pull 
downdip of northeastern Japan1, the gravity signal orientation sug-
gests that the sinking slab extends under the pulling force of its 
deeper root1,19. This transient deformation manifests the long-term 
slab evolution in a regional configuration where vertically and lat-
erally extensional stresses accumulate at depth in the Pacific plate 
slab, beneath northeastern Japan. In this zone of transition between 
two steeply dipping arc systems with different strikes, the Kuril–
Kamchatka and Izu–Bonin–Marianna arcs20,21, such stresses may 
result from the coupling with the upper plate3,22, and from the geom-
etry of the subduction system20,21. Consistently, evidence of slab 
thinning and tearing below 250 km depth is found in seismic data 
(for example, refs 21,23,]). In addition, the Pacific plate slab beneath 
Japan appears only partially attached to its subducting plate, which 
enters into the mantle along a more westerly path than that imposed 
by the deep pull force1. South of the Boso triple junction, the deep 
pull can directly accelerate subduction from depth to the surface, as 
the slab is fully connected to its oceanic plate and decoupled from 

the upper plate along the Izu–Bonin Trench3,23. In agreement, the 
negative pre-seismic signal indicates mass influx into the Izu–Bonin 
subduction zone.

A deep source for the pre-seismic gravity signal is reinforced 
when investigating the potential impact of shallower sources. First, 
the northeastern Japanese arc undergoes east–west compressional 
stresses from the eastward motion of the Amur plate24, ruling out 
regional extension of the lithosphere in areas of gravity gradient 
increase. In addition, the observed anomaly does not align with 
the north–south-trending Amur–Okhotsk plate boundary. Second, 
the amount of lithospheric mass decrease that would fit our grav-
ity observations corresponds to a 1.8 ±  0,6 cm subsidence over the 
islands (Supplementary Section 6.2.3)—a small value, but regionally 
coherent, which could make it detectable in northern Japan. Finally, 
overriding plate dilation would more probably result from aseismic 
slip along the Japan subduction; however, the gravity signals would 
shift eastward, or include unobserved negative anomalies near the 
trench (Supplementary Section 6.2.2). Thus, the full spatial pattern 
of the GRACE pre-seismic anomalies is hardly explained in these 
alternative hypotheses, further supporting deeper motions, faster 
and wider than the long-term accelerating slip reported along the 
Japan Trench25–27. Interestingly, widespread gravity variations are 
also detected before the 2015 Mw 7.8 Nepal event28.

Propagation of deformation within the oceanic plates. This 
regional-scale precursory phase explains why, on both oceanic 
plates around the triple junction, the dimension of the co-seismic 
signals derived from gravity data far exceeds that predicted from 
co-seismic or post-seismic slip distributions based on crustal move-
ment and tsunami data29,30, shown in Fig. 5 and Supplementary 
Section 6.1.5. In this figure, high values of the modelled gravity 
gradients indicate co-seismic mass decrease from subsidence and/
or crustal dilation31; low values result from incoming mass flux. 
The magnitudes of the gravity and crustal deformation-based co-
seismic signals agree on the upper plate, but their orientations and 
spatial extents differ, as already noticed at local scales13,14. The ori-
entation of the crustal movement signals coincides with the align-
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ment of the Pacific plate subduction east of Honshu, but not with 
the pre-seismic and co-seismic gravity signals, which align along 
the regional strike of the subduction. These differences show that 
the GRACE-based deformation pattern of the plate/slab system at 
proximity of the giant earthquake is much larger than expected 
from surface motions and seismic data.

The large-scale spreading of the observed March 2011 grav-
ity anomalies over the ocean (Fig. 1b) suggests that the rupture is 
followed by a short-term aseismic acceleration of the Pacific and 
Philippine Sea subduction along 2,000 km of the boundaries and 
1,500 km within the plate interiors, implying some lithosphere 
mobility over the underlying mantle32,33. An acceleration of these 
two plates after the earthquake is also recorded from seismic data34, 

and explains well the continent/ocean asymmetry of the GRACE 
anomaly (Supplementary Section 6.3.1). From the amplitude of the 
signals, we estimate the increase in mass of the oceanic plates near the 
trench and the decrease in mass in their interiors. We find it equiva-
lent to ~15 cm of horizontal motion towards the trench of a 50-km-
thick lithosphere, on the same order of magnitude as the pre-seismic 
slab deformation (Supplementary Section 6.3). This observation 
supports regional mass transfers extending as far as the adjacent 
oceanic plates. As a consequence of these widespread motions, the 
observed post-seismic gravity variations shift towards the ocean 
with respect to the signals derived from afterslip or visco-elastic 
relaxation models using surface data (Fig. 5). Their different spa-
tial structures at small and large scales (Supplementary Section 2.3)  
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suggest an interplay between continuous slip and viscous relaxation 
of stress perturbations in the mantle35, already proposed from com-
posite patterns of GRACE post-seismic variations15. In the endmem-
ber case of a pure visco-elastic asthenosphere relaxation (Fig. 5e and 
Supplementary Section 6.1.5), our results support nonlinear rheol-
ogies with low transient viscosities near the trench, and Maxwell 
viscosities slightly below 5 ×  1018 Pa s for the slower response of the 
oceanic asthenosphere (for example, refs 16,36,37).

Geodesy efficiently highlights a range of transient surface dis-
placements reflecting slow slip near plate boundaries (for example, 
refs 4,5). The main outcome of the gravitational image presented 
here is that episodic mass transfers at intermediate timescales of 
months are detected within the entire subduction system, from 
depth to the surface. Some of these deep changes are inaccessible 
to other observation systems. Data from the Global Navigation 
Satellite System networks record no surface displacements before 
the earthquake at the spatial and temporal scales of the pre-seis-
mic gravity variations38. Furthermore, the orientation of both 
the co-seismic and early post-seismic crustal motions towards 
the trench east of Honshu39 does not coincide with that of the 
observed gravity signals (Fig. 5a,b). These deep mass fluxes indeed 
require highly deformable layers along the slab, which decouple 
the slab from the surrounding mantle, limiting the effect of its vis-
cosity that would otherwise hinder deformation rates of 10−12 s−1. 
Besides, a high stress sensitivity of the strain rate could facilitate 
large responses to small stress variations, such as the Coulomb 
stress changes associated with our simplified pre-seismic slip 
model, on the 1 kPa order of tidal stresses on the earthquake fault 
plane40. At the same time, such a specific rheology at depth may 
localize strain along the subducted lithosphere and explain the 
absence of crustal deformations.

Thus, while measurements of strain accumulation in the upper 
plate near major boundaries point to areas prone to a large seis-
mic rupture, satellite gravity allows us to replace its occurrence in 
the context of Earth’s global dynamics. Our results provide evi-
dence that Earth’s convection system includes timescales as short 
as months as slabs slowly penetrate into the upper mantle. This 
is where we find the origin of the Tohoku-Oki earthquake, along 
with detectable precursor signals in the gravity field. Their possible 
occurrence before the other M9 events in the GRACE era is now 
to be explored, together with a link between the slow convective 
motions in the mantle and giant earthquakes.

Data availability. The data that support the findings of this study 
are available from the corresponding author upon request.
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