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Figure S1: Comparison of wind speed data. Wind shear velocity derived from temporary wind speed measure-
ments made during the threshold experiment (blue) and simultaneous measurements obtained on the local (red) and
the airport wind towers (yellow). There is a general agreement between all these data sets.

1 Supplementary Note 1
Wind data

We installed a 2 m high wind tower in the center of our new experimental site and collected the
wind data of the local airport located 10 km east. We use the local tower for the measurements
of the transport threshold and the saturation length (see Figs. 2 and 3 of the main manuscript).
We check the consistency between the local wind data and those collected at the airport. For the
long-term experiment, we only use the wind data of the local airport.

Fig. S1 shows the shear velocity derived from a local wind measurement, the 2 m high wind
tower and the airport meteorological tower during the transport threshold experiment (see Fig. 2
of the main manuscript). All these data are consistent with each other. As a consequence, the
threshold shear stress derived from the local measurement can be extrapolated to other wind data
to compute sand fluxes (Sec. 3).

2 Supplementary Note 2
Grain size distribution

The landscape-scale experiment site is located close to the oasis city of Shapotu at 8 km from the
Yellow River in the Tengger Desert, which covers an area of about 36,700 km2 in the northwest part
of the Zhongwei County in the Ningxia Hui Autonomous Region of the People’s Republic of China
(37° 31´ N, 105° E). This desert is characterized by a lognormal grain size distribution with a mean
value d=190 µm (Fig. S2).
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Figure S2: Grain size distribution in
the Tengger Desert. The line is the best
fit using a lognormal distribution with a
mean value d = 190 µm ≈ 10−3.72 m.

3 Supplementary Note 3
Transport properties on a flat sand bed

Wind data are used to predict sand flux properties on a flat sand bed. Tab. S1 shows the results
obtained using the formalism that follows.

Wind measurements provide the wind speed ui and direction ~xi at different times ti, i ∈ [1;N ].
For each time step i, the shear velocity writes

ui∗ = uiκ

log(z/zs)
, (1)

where z is the height at which the wind velocity ui has been measured and κ the von-Kármán
constant. Instead of the geometric roughness that depends only on grain size, we consider here
the aerodynamic roughness zs that accounts for the height of the transport layer in which saltating
grains modify the vertical wind velocity profile. The value of the threshold shear velocity for motion
inception is determined using the formula calibrated by Iversen and Rasmussen[1]

uth = 0.1
√
ρs
ρf
gd. (2)

Using the gravitational acceleration g, the grain to fluid density ratio ρs/ρf ' 2.05 × 103 and the
grain diameter d = 190µm, we find uth = 0.19 m s−1, which corresponds to a threshold wind speed
of u10 = 4.4 m s−1 ten meters above the ground. It is close to the values we measured in the field,
which are uth = 0.23± 0.0.4 and u10 = 5.3± 0.92 m s−1.

For each time step i, the saturated sand flux −→Qi on a flat sand bed is computed from the
relationship proposed by Ungar and Haff[2] and calibrated by Durán et al.[3]

Qsat(u∗) =


25 ρf
ρs

√
d

g

(
u2
∗ − u2

th

)
for u∗ > uth,

0 else.
(3)

In this formula, the prefactor takes into account a dune compactness of 0.6.
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Variable Units Value

Acceleration of gravity g m s−2 9.81
Grain size d m 190×10−6

Air density ρf kg m−3 1.29
Grain density ρs kg m−3 2.55×103

Aerodynamic roughness zs m 10−3

von-Kármán constant κ ∅ 0.4
Shear velocity and sand flux on a flat sand bed

Threshold shear velocity uth m s−1 0.19
Mean shear velocity 〈u∗〉 m s−1 0.29
〈u∗〉/uth ∅ 1.5
DP = 〈‖−→Q‖〉 m2 yr−1 18.4
RDP = ‖〈−→Q〉‖ m2 yr−1 5.7
RDP/DP ∅ 0.32
RDD mod 360° 266.6

Table S1: Shear velocity and
sand fluxes derived from the
airport wind data from Jan-
uary 1, 2013 to October 31,
2017. The wind and sand flux roses
are shown in Fig. 1B of the main
manuscript. See text and Eqs. 1-9
for the description of all the vari-
ables. The resultant drift direction
(RDD) is measured counterclock-
wise from East.

From the individual saturated sand flux vectors −→Qi, we estimate the mean sand flux vector on
a flat erodible bed

〈
−→
Q〉 =

N∑
i=2

−→
Qiδti

/ N∑
i=2

δti, (4)

where δti = ti− ti−1. The norm of the mean sand flux is usually called the resultant drift potential:

RDP = ‖〈−→Q〉‖. (5)

This quantity is highly dependent on the wind regime. Since it is a vectorial sum, the contributions
of winds from opposite directions cancel each other out. For the entire time period, we also calculate
the drift potential,

DP =
N∑
i=2

∥∥∥−→Qi∥∥∥ δti/ N∑
i=2

δti. (6)

Unlike the resultant drift potential, this mean sand flux does not take into account the orientation
of the individual sand fluxes computed from the successive wind measurements[4].

The ratio RDP/DP is a non-dimensional parameter, which is often used to characterize the
directional variability of the wind regimes[5, 6]: RDP/DP → 1 indicates that sediment transport
tends to be unidirectional; RDP/DP → 0 indicates that most of the transport components cancel
each other. Finally, RDD is the resultant drift direction, i.e., the direction of 〈−→Q〉.

The mean shear velocity 〈u∗〉 is defined as the shear velocity averaged over the transport periods.
i.e. when Qsat > 0. Using the Heaviside function Huth defined as

Huth =

1 for u∗ > uth,

0 else.
(7)
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the mean shear velocity can be defined directly from the shear velocity

〈u∗〉 =
N∑
i=2

H i
uthu

i
∗

/ N∑
i=2

H i
uth , (8)

or from the integrated flux using the inverse function Q−1
sat of the transport law (Eq. 3)

〈u∗〉 = Q−1
sat

(
DP×

N∑
i=2

δti

/ N∑
i=2

H i
uthδti

)
. (9)

These two estimations of 〈u∗〉 are close to each other considering wind data from the Tengger Desert.

4 Supplementary Note 4
Estimating the saturation length lsat in the field

Let us consider an infinite flat granular bed under a unidirectional wind in a statistically steady
state. Eventually, the transport rate reaches an equilibrium state due to the negative feedback
between the density of moving grains and the strength of the flow, which determines the saturated
flux Qsat (Eq. 3). We consider now a situation for which the flow and the sediment flux is non-
homogeneous or unsteady in space or time. The actual flux q does not immediately adjust to the
local value of the shear stress[7, 8, 9]. It needs some space and time to reach its equilibrium Qsat-value
(Fig. S3). Over bedforms, the transport is never far from its saturated state, so it can be expressed
by a first-order linear relaxation in both space and time

tsat
∂q

∂t
+ lsat

∂q

∂x
= qsat − q, (10)

where lsat and tsat are the saturation length and the saturation time, respectively[8, 10, 11]. The
tsat-value is usually much smaller (≈ 1 s) than the characteristic time scale for the evolution of the
bed (≈ 105 s). Such a separation in scale justifies the simplifying assumption that the fluid flow and
sediment transport can be considered and computed as if the bed was fixed[3]. Neglecting tsat, the
saturation transient described by Eq. 10 has been successfully applied to the description of dune
formation[9, 11, 10, 12, 13]. Under the configuration shown in Fig. S3, we have

q(x) = Qsat

(
1− exp

(
x− x0
lsat

))
. (11)

In practice, the saturation length lsat scales as (ρs/ρf)d the distance needed for one grain to be
accelerated up to the wind velocity[10, 14, 15, 16]:

lsat ≈ 2.2 ρs
ρf
d, (12)

As shown in Fig. S4 and in Fig. 3 of the main manuscript, we determine the value of lsat from
the evolution of the topography of a rectangular sand pile placed downstream of a non-erodible
bed composed of gravels. We thus have the experimental setup that best reflects the theoretical
conditions presented in Fig. S3. The rectangular sand pile has a length of 12 m and a width of
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Fixed bed

Wind

Erodible bed
Figure S3: A schematic representation of
the saturation length experiment. The satu-
ration length may be described as the relaxation
length of the sand flux q toward its saturated value
Qsat. The experiment set-up is a flat sand bed
preceded by a flat non-erodible bed. When the
wind blowing over this rigid surface reaches the
erodible bed, the sand flux relaxes exponentially
towards its saturation value Qsat over a charac-
teristic distance lsat in the direction of the flow.

3 m with its main axis aligned in the northwest-southeast direction, parallel to the orientation of
the prevailing wind (Fig. S4a). The initial sand pile was prepared and scanned on April 22, 2014
(Fig. S4b). A storm occurred on April 24 with winds from the north-northwest and irregular wind
speeds reaching 15 m s−1 at a height of 2 m. The sand pile was scanned again on April 25 (Fig. S4c).

Considering the ideal assumption of our initially flat surface under a steady wind of constant
direction, strength and transport rate q, Eq. 11 can be combined with the equation of conservation
of mass to estimate the erosion rate

∂h(x)
∂t

= −∂q(x)
∂x

= −Qsat
lsat

exp
(
x− x0
lsat

)
. (13)

This equation can be integrated to estimate the net erosion over a given time period. In this case
the exponential regime is expected to hold. However, it cannot be observed from the start of the
erodible bed for several reasons, both theoretical and experimental. The main reasons are related to
(1) the natural variability of wind speed and direction and (2) the development of a discontinuity in
the topographic profile between the non-erodible and the erodible beds. In addition, Eq. 13 neither
takes into account the possible dependence of lsat on wind speed[17], nor the spatial shift associated
with the establishment of a transport layer when the sand flux starts from zero[16].

Using the field data and despite the number of simplifying assumptions, we study the difference
in height ∆H between the two surface elevations to look for zones where

∆H ∼ − exp(x/lsat). (14)

In practice, we use 2D elevation profiles aligned with the primary sand transport direction during
the storm. It forms an angle of 22° with the orientation of the initial sand pile. This angle is
estimated from the sand flux rose as well as from the orientation of ripples and accretion mounds
(Fig. S4c).

The slope of the exponential decay in Eq. 14 gives the value of lsat (Fig. 3D of the main
manuscript). We find a value of 0.95 m from our field data, a value that can be directly com-
pared to the 0.83 m predicted by Eq. 12 and the parameters given in Tab. S1.
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a

b

c

Figure S4: Measuring the saturation length lsat in the field. (a) Setting up the lsat experiment between the
two sand piles of the elongating dune experiment in a triangular area of bare sand within a flat bed armored with
gravels. In this area, a rectangular sand pile 12 m long and 3 m wide is placed downstream of the non-erodible gravel
bed. The long axis is aligned along the northwest-southeast direction, the orientation of the prevailing wind. The
sand bed is flattened so that there is no vertical step between the erodible and non-erodible zones. (b) Elevation of
the rectangular sand pile on April 22, 2014 before aeolian transport. (c) Elevation of the rectangular sand pile on
April 25, 2014 after the passage of a northwestern depression (see flux rose in Fig. 3C of the main manuscript). H
is the absolute elevation from a base level. H ′ is the difference of elevation with a smoothed surface obtained using
a sliding window with a radius of 20 cm. The inset in c show the transect along which the elevation profile used to
estimate lsat has been extracted (see Fig. 3B of the main manuscript). It is parallel to the sand deposits that form
downwind of topographic obstacles and perpendicular to aeolian ripples.
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5 Supplementary Note 5
Upwind velocity shift at dune crests and troughs

5.1 The inner and outer layers

Flows that are topographically forced by obstacles (e.g., hills or sand dunes) accelerates on the
upwind slopes and decelerates on the downwind slopes. Then, in order to study sediment transport
over a dune, we should first describe some properties of the turbulent flow over an undulating topog-
raphy. Conceptually, as proposed by Jackson and Hunt (1975)[18] in the limit of small amplitudes
bedforms, the turbulent flow over a sinuous bed elevation profile of wavelength λ can be decomposed
into two layers:

• The outer layer is the external region (supposed infinite) where the pressure gradient set up
by the topography is balanced by the inertial forces. The streamlines follow the topography.
At a given height, the wind speed is maximum (minimum) above the top (bottom) of the
topography. The amplitude of the perturbation vanishes on a characteristic height that varies
according to the wavelength of the topography. Then, sufficiently far above the obstacle, the
wind speed is finally equal to the undisturbed wind speed in the absence of topography (see
Eq. 1).

• The inner layer is a zone in which the longitudinal pressure gradient exerted by the fluid is
compensated by the Reynolds shear stress induced by the turbulent motions at the surface
of the bed. Then, the pressure gradient is in phase quadrature with the topography and is
maximum where the stoss slope is steepest. Hence, there is an upwind velocity shift within the
inner layer. The characteristic thickness l of the inner layer depends on both the wavelength
of the bed elevation profile and on the aerodynamic roughness zs so that[18, 19]

l

λ
log2

(
l

zs

)
= 2κ2. (15)

For typical value of the aerodynamic roughness (zs < 10−2 m) and wavelengths of hundreds
of meters, the inner layer is always confined in a meter scale envelop above the topography.
For λ = 20 m and zs = 10−3 m, common values observed during the development of aeolian
bedforms under high wind speed, the inner layer is less than 20 cm.

5.2 Measuring the upwind velocity shift within the inner layer

A sufficiently strong wind and a stable wind orientation are essential for the quality of the measure-
ments. The sequence of measurements consists in moving an anemoter mast upwind along a given
profile of known elevation. The entire procedure to estimate the upwind velocity shift on dunes is
described in full details in Claudin et al. (2013)[20]. We follow here the same procedure with the
specifications detailed below.

We performed our measurements on low dunes with sinusoidal shape. The density of measure-
ments is high near the crests and troughs (≈ 20 cm) but lower in the steeper sections (≈ 1 m).
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Cup anemometer

100 cm

Cup anemometer

50 cm

Sonic 

4 cm

Sonic 

12 cm

Wind vane

Reference 

cup anemometer

100 cm

Datalogger

Datalogger

a

b c

d

Successive

measurements
mean 

wind direction

Mobile

anemometer mast

Figure S5: Experimental set-up to estimate the upwind velocity shift at the crests and troughs of
incipient dunes. (a) The mobile anemometer mast, with anemometers located at heights of 4 and 12 cm in
the inner layer and at heights of 50 and 100 cm in the outer layer. Arrows show the mean wind direction and the
measurement path. (b) The anemometer mast and the reference anemometer. (c) A measurement path perpendicular
to the crest orientation of the bed instability. (d) Setting a new measurement for 10 min with a sampling frequency
of 1 Hz.
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Each measurement lasts 10 min with a sampling frequency of 1 Hz. The mobile anemometer mast
has sonic anemometers located at heights of 4 and 12 cm and cup anemometers at heights of 50
and 100 cm (Fig. S5a). Given the natural variability in wind speed between two measurements,
the wind speeds measured along the mobile mast are normalized by the wind speed measured at
one meter high by a reference cup anemometer located at the top of a larger dune in the vicinity
(Fig. S5b). The normalized wind speeds along the profile can then reveal how sensitive is the flow
to topography at different heights. As shown in Fig. 4B of the main manuscript, in the limit of
small sinusoidal oscillations, the wind profiles at all heights reflect the topography, i.e., the spatial
variation of the wind speed exhibits the same wavelength as the bedforms. Most importantly for
our present purposes, the flow is in phase with the topography at heights of 50 and 100 cm and in
phase advance at heights of 4 and 12 cm. It indicates that the inner layer has a thickness between
12 and 50 cm, a range of value that covers entirely the values given by Eq. 15 for aeolian dune
systems on Earth.

5.3 From the upwind velocity shift to the hydrodynamic parameters A and B

On several occasions during our field campaigns, we have measured wind velocity in the inner and
outer layers on a succession of crests and troughs to estimate the phase shift over more than a
wavelength of the dune pattern (Fig. S5c,d). Here, we focus only on individual dune crests or
troughs, which are approximated by

H(x) = Href + h cos(kx), (16)

where k is the wave number (wavelength λ = 2π/k), h the amplitude. The position of the dune
crests and troughs are set at x = 0 and x = λ/2, respectively. The arbitrary reference level Href is
here chosen such that H > 0. Fitting Eq. 16 to the dune elevation data gives the values of k and
h. The dune aspect ratio is R = 2h/λ = hk/π. When the aspect ratio is below ' 0.05, we expect
that the (low) perturbation calculation of the aerodynamics to be valid. A more refined analysis
would involve the computation of the Fourier transform of the dune profile, in order to account for
a whole range of wave numbers k.

Alike topography, the wind profile at a given height along the dune can also be fitted by a
sinusoidal function of the same wave number k as for the dune elevation:

ub(x) = u0
b + δub cos(kx+ ϕb). (17)

As said in Sec. 5.1, the topography Z(x) and the wind velocity ub(x) are not in phase for anemome-
ters at heights of 4 and 12 cm: the velocity reaches its maximum upstream of the crest. Here the
phase difference is ϕb so that the upwind velocity shift in the inner layer is ϕb/k.The two other
fitting parameters are u0

b and δub.

Because the logarithmic law of the wall (Eq. 1) locally holds in the inner layer at each position x,
the velocity can be used as a proxy to calculate the basal shear stress with τb ∝ ρfu

2
b. By expansion

to the first order, we can then write:

τb(x) ∝ ρf(u0
b)2 (1 + kh (A cos(kx)−B sin(kx))) , (18)
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where A and B are given by

A = 2× δub
u0

b
× cos(ϕb)

kh
and B = 2× δub

u0
b
× sin(ϕb)

kh
. (19)

Eqs. 18 and 19 are specific to the quadratic relation between τb to ub. Since sediment transport
is controlled by the basal shear stress, these two parameters A and B are all that are needed as
aerodynamical inputs in bedform evolution models. As described in the introduction of the main
manuscript, they are of fundamental importance for the understanding of the mechanisms of dune
growth and dune size-election (see also Sec. 6 and Eqs. 23-24). Tab. S2 shows the results obtained
in April and November 2015 in our experiment. We observe no significant trend in the variation of
A and B during dune growth.

6 Supplementary Note 6
Dispersion diagram from successive topographic surveys

Dispersion relations are plotted as growth rate σ and phase velocity c with respect to wave number
k. They are used in linear stability analysis to identify the most unstable wavelength, which is likely
to be observed. We describe here how we measure the growth rate of dunes as a function of their
wave numbers k from successive topographic surveys throughout the duration of our experiment.
Before, we present the rational for studying dune formation as a linear instability in a landscape
scale experiment.

6.1 Aeolian dune formation as a linear instability

In what follows, the term instability characterizes the growth of a small perturbation in a system,
which is often considered to be as homogeneous and simple as possible. Conversely, stability refers
to the ability of this system to return to its original state when perturbed. The main objective of
stability analysis is to identify the ranges of perturbation wavelengths over which the system exhibits
stable or unstable behavior. Quantitative approaches consists of estimating the initial growth rate of
each mode (wavelength) considering that all these modes are independent of each other. Obviously,
the highest and zero growth rates are particularly important. The highest ones are associated with
the most unstable modes, which will have the greatest impact on the system. Those at zero are
neutral modes that often mark the transition between stable and unstable regimes.

The analysis of the time and length scales of instabilities by means of linearized equations is a
standard approach in hydrodynamics and many other branches of physics. By identifying stabilizing
and destabilizing mechanisms, these linear stability analysis reveal how they together govern the
the evolution of the system over the entire range of possible wavelengths. During the first stage of
the instability (the linear regime), the initial wavelength λg of the perturbation is assumed to stay
constant, whereas its amplitude h grows exponentially with time

h(kg, t) ∝ exp(σ(kg)t). (20)
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Variable Units Description
Topography

λ m dune wavelength
k m−1 Dune wave number
h m Amplitude of the dune
R ∅ Dune aspect ratio

Flow
δub m s−1 Amplitude of wind speed variation in the inner layer.
u0

b m s−1 Mean wind speed in the inner layer.
ϕb

o Phase shift between the flow and the topography in the inner layer.
Hydrodynamic parameters

A ∅ In-phase hydrodynamic parameter
B ∅ In-quadrature hydrodynamic parameter

14/04 15/04 15/04∗ 15/04 16/04 18/04 03/11 03/11∗ 03/11 15/11
Topography

λ 14.84 18.57 10.50 16.45 21.92 14.51 25.05 14.49 21.06 14.33
k 0.423 0.338 0.598 0.382 0.287 0.433 0.251 0.437 0.298 0.439
h 0.297 0.262 0.185 0.414 0.358 0.338 0.662 0.323 0.264 0.361
R 0.020 0.014 0.018 0.025 0.016 0.023 0.026 0.022 0.012 0.025

Flow
δub 0.126 0.111 0.108 0.198 0.0624 0.143 0.306 0.134 0.132 0.174
u0

b 0.683 0.650 0.656 0.678 0.743 0.701 0.568 0.622 0.739 0.661
ϕb 25.51 11.89 15.95 20.79 45.95 10.92 11.36 19.13 17.42 9.80

Hydrodynamic parameters
A 2.648 3.770 2.860 3.453 1.138 2.737 6.362 2.906 4.328 3.278
B 1.264 0.794 0.817 1.311 1.176 0.528 1.278 1.008 1.358 0.566

Table S2: Topography and wind measurements carried out in April and November 2015. Measurements
on dune troughs are shown with a ∗ on April 4 and November 3, 2015. They are located between two dune crests
along the same transect to estimate the phase shift over more than one wavelength of the dune pattern.

In this expression, kg = 2π/λg is the wave number and σ(kg) the growth rate with units of frequency.
Positive and negative growth rates correspond to unstable and stable modes, respectively. The
dispersion relation σ(k) gives the growth rate value of the perturbation as a function of the wave
number k. The largest positive σ-value corresponds to the most unstable mode {kmax, λmax}. Zero
values corresponds to neutral modes {k0, λ0}. In diffusive systems, dispersion relations are often
characterized by a transition from a stable to an unstable regime. for an increasing wavelength. In
other words, σ(k) > 0 for k < k0 and σ(k) < 0 for k > k0. Beyond the linear stage of the instability,
when the amplitude of the initial perturbation is too high, the dispersion relation no longer applies
because the different modes interact with one another. It is described as the non-linear stage of the
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instability.

Here, we study the formation of aeolian dunes as a linear instability. More exactly, we focus
on the dependence and feedback between bed forms, wind flow and sand transport properties. The
governing equations lead to the theoretical expression of a dispersion relation as a function of the
different physical parameters of the system (see Eq. 1 of the main manuscript). Thus, the minimum
size for dunes is associated with a neutral mode and a transition from unstable to stable regime for
decreasing wavelength. The emergence and growth of periodic dune patterns are associated with a
most unstable mode which is going to prevail within the whole dune field. Based on observation of
mature aeolian dunes in nature, previous studies have measured the wavelength and the migration
rate of dunes in order to derive values of λ0, λmax and σmax under various conditions. Dispersion
relations have been given less attention or even disregarded, certainly because of the length and
time scales involved in the mechanism of aeolian dune growth. Then, a direct validation of the
dune instability theory is to investigate whether or not dispersion diagrams can be derived from
field data. Another solution is to verify whether the theoretical formalism used with the values
of the underlying physical parameters measured independently in the field is actually capable of
accurately predicting the observations.

Here, we apply this methodology to the formation of dunes in a landscape scale experiment.
Our initial system is a sand bed after flattening by a bulldozer. In such an experimental set up,
but also in all natural dune environments, there are always heterogeneities and defects at all length
scales and our initial condition already contains all the perturbation wavelengths.

6.2 The transition from the linear to the non-linear phases of dune growth

The continuous transition from the linear to the non-linear phases of dune growth is controlled by
dune aspect-ratio, which is the main control parameter for aerodynamic non-linearities. Figs. S6a-b
show the elevation and slope maps during incipient dune growth in our experimental field from
April 10, 2014 to July 6, 2015. There is a significant change in slope maps between October 30
and November 12, 2014. Over this time interval, the local slopes not only become steeper, they
also become spatially organized, just like dune crest, to form more regular transverse structures
across the flattened area. This occurs for a mean slope of about 0.03 (Fig. S6c) at the same time
as incipient slip faces a few centimeter high emerge (Fig. S7). The mean slope 〈‖~∇H‖〉 variations
can be compared to the amplitude of the bedforms in Figs. S6b-c. Based on these observations, we
set the transition between October 30 and November 12, 2014. This transition is not spontaneous
but it is surely completed in April 2015, when the mean slope reaches a value of about 0.07.

6.3 A transport time scale for dune growth under variable wind strength

In order to quantify dune growth under variable wind strength, it is necessary to define a new time
scale that accounts for the intensity of transport. For example, periods during which there is no
transport should not be used as time increments, while storm periods should contribute more to
the total time.
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Figure S6: The transition from the linear to the non-linear phases of dune growth. (a) Elevation and (b)
slope maps during incipient dune growth from April 10, 2014 to July 6, 2015. The colormap in Fig. S6b is saturated
to distinguish the slopes of bedforms in fall 2014, around the transition from the linear to the non-linear phases of
dune growth. In non-saturated areas, ripples can be observed. A cable crosses the experimental field from 28 April
2015. (c) The mean amplitude 2

√
2(〈h2〉 − 〈h〉2)1/2 of bedforms and (d) the mean slope 〈‖~∇H‖〉 with respect to

time. The higher mean slope value on April 10, 2014, after the flattening, is due to bulldozer tracks that can be seen
in Fig.S6b. Colors and dashed lines are used to separate the linear (orange) and the non-linear (blue) phases of dune
growth. For comparison with slope data, Fig. S6d is the same as Fig. 5C of the main manuscript.
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Figure S7: Bedforms during the transition from the linear to the non-linear phases of dune growth.
(a) Incipient slip faces a few centimetres high on November 6, 2014. (b) Periodic dune patterns on November 10,
2014. This pictures can be compared to elevation and slope maps of October 30, 2014 and November 12, 2014 shown
in Fig. S6a and S6b.
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In practice, the new time scale is defined sequentially from the wind data using the saturated
sand flux (Eq. 3) and the saturation length lsat. Starting at t = 0 at the flattening time, the new
times write

ta(t) =

t∑
i=1
‖
−→
Qi‖δti

l2sat
. (21)

This time scale is dimensionless allowing for comparison across different time series and various
time periods. Using the saturated sand flux derived from the local wind data (Eq. 3), Fig. S8 shows
the dimensionless times with respect to time from April 10, 2014 to October 31, 2017 using the
saturation length lsat = 0.95 m measured in the field (Fig. 3 of the main manuscript). By definition,
periods of stronger winds are associated with steeper slopes, and vice versa. The choice of the
characteristic length for the computation of the dimensionless transport time scale, (here lsat) is of
minor significance since we consider it to be constant.

Figure S8: A dimensionless transport time scale for dune growth under variable wind strength. Using
the saturated sand flux derived from wind data (Eq. 3), the red solid line shows the dimensionless transport time
scale ta as a function of time from April 10, 2014, when the dune field was flattened. By definition, the mean slope is
given by the RDP (blue line, Eq. 5). Light and dark gray lines show the transport time scale for constant sand fluxes
of 10 and 30 m2 yr−1, respectively. Highlighted areas show the spring periods from March 21 to June 21.
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6.4 Topographic surveys during experimental dune growth

From April 2014 to November 2017, we performed a series of topographic surveys of the dunes devel-
oping from the flat sand bed using a ground-based laser scanner Leica Scanstation C10 (Fig. S9a).
To compare these different measurements, a reference system of concrete posts was installed over
the entire experimental dune field (Figs. S9b-d). For each survey, the zone under investigation is
scanned from four different view points. Over the 42 months of the experiment, the density of points
varies from 472 to 2368 points/m2.

To map surface elevation, we select only elevation points within the 4-sided polygon determined
by reference points t6, t7, t8 and t9 (Figs. S9c-d). Within this polygon, to avoid disturbances from
the surrounding bedforms, we have chosen a central rectangular area with a width of 48 m and
a length of 82 m (ABCD in Figs. S9c-d). The long side of this rectangle is oriented Northwest-
Southeast to align perpendicular to the final orientation of the dunes at the end of the experiment.
We remove the mean slope of this rectangular area by adjusting a plane to the elevation data. This
plane has always a southwest-facing slope during the entire duration of the experiment. The residual
topography is shown for different times in Fig. 5A of the main manuscript. Within the rectangular
area, we study 2D transects parallel to the main axis using a spacing of 1.4 m between two transects
(see for example transect aa′ in Figs. S9c-d). For each of the 34 transects, we select the elevation
data points in a 0.2 m wide band on either side. All these points are horizontally projected on their
respective transect line. After substracting the average slope and the mean elevation, we resample
these data to a regular spacing of 0.1, 0.25 and 0.35 m. Thus, we can use the fast Fourier transform
method to explore different values within the frequency domain.

Fig. 5B of the main manuscript shows the elevation profiles with respect to time for the transect
aa′ shown in Figs. S9c-d. Over the 42 months of the experiment, the amplitude of the dunes varies
from a few centimeters to a few meters.

6.5 Spectral analysis, amplitude and phase

For each transect and all topographic surveys, we use a fast Fourier transform method to analyze the
signal in the frequency domain (Figs. S10a,b). By selecting only one frequency value, the individual
contribution of each wavelength is computed by an inverse Fourier transform (Fig. S10c). Thus, we
obtain a sine wave

Hj
λi

(tn) = hjλi(tn) cos(kix+ φjλi(tn)) (22)

for each wavelength λi = 2π/ki of each transect j at the different times tn of the nth topographic
survey. Considering the 34 different transects, the amplitude h and the phase φ can be used to
estimate growth rates σλi and phase velocities cλi with respect to time, respectively. We perform
this analysis on the same elevation profiles sampled at different rates (0.1, 0.25 and 0.35 m) to verify
that it has no effect on the spectral behavior.

Taking as an example transect No 20 in the middle of the selected area, Fig. S11 shows the
logarithm of the amplitude A20

λ of individual wavelengths with respect to the dimensionless time

18



a

t6

t7

t8

t9

B

C

A

a

a'

t5
t2

t1
t3

t4

b d

t4

t6

t2
t1

t3

B

CD

A
a

a't9 t8c

D
t1

t2

t9

30 m

N

Figure S9: Topographic surveys during experimental dune growth. (a) Ground laser scanning in the
landscape-scale experiment. (b) Ground view of three posts of the local reference system. (c,d) Reference system
(dots) and selected area (blue rectangle) for the entire duration of the experiment. All 2D elevation profiles are taken
parallel to the transect aa′ (red line). They are separated by a distance of 1.4 m. The elevation profiles of the same
transects at different times are used to study the dune instability.
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scale. A sudden change in behavior is observed between ta = 10.7 and ta = 11.3, i.e. from October
30 to November 12, 2014. Over this time period, there is an abrupt increase in growth rate and
then a more irregular behavior than during the initial phase. As shown in Fig. 5C of the main
manuscript, it is also during this period that the mean amplitude of the bedforms begins to increase
more rapidly. These behaviors are interpreted as the transition between linear and non-linear growth
phases. This interpretation is supported by the observation of the first slip faces downwind of the
crest under the prevailing wind.

In order to quantify dune growth in the linear phase according to the dune instability (see
Sec. 6.1 and Eq. 20), we perform an exponential fit to the amplitude data from ta = 0 to ta = 10.7,
i.e. from April 10 to October 30, 2014, for each wavelength and each transect (see red lines in
Fig. S11). The agreement between the exponential regime and the data as well as the variation of
the exponential rate at different wavelengths indicate that there is a coherent behavior at different
length scales, which can be analyzed thanks to a dispersion diagram.

6.6 Dispersion diagram of the growth rate

Fig. S11 shows the dispersion relation for transect No20 during the linear phase from ta = 0 to
ta = 10.7, i,e. from April 10 to October 30, 2014. In this figure, the exponential rates of growth
or decay of the different wavelengths λi are plotted with respect to the wave number ki = 2π/λi.
From the longest wavelengths (i.e. smallest wave numbers), there is an increase in the growth
rate. The maximum growth rate is reached for kmax ≈ 0.43 m−1 (λmax ≈ 14.6 m). For shorter
wavelengths, the growth rate is decreasing and the neutral mode is reached for a value of k0 of about
0.67 m−1 (λc ≈ 9.3 m). Then, shorter wavelengths have negative growth rates. These decay rates
are associated with small amplitudes of less than one centimeter, so that their rapid variations can
not be captured given the resolution of our topographic data.

Fig. S12a shows the dispersion relations of the growth rate for all transects and the three
sampling rates. The mean and standard deviation of these growth rates are plotted with respect
to the wave number in Fig. S12b. Using these data, we find kmax ≈ 0.45 m−1 (λmax ≈ 14 m) and
kc ≈ 0.7 m−1 (λc ≈ 9 m).

Theoretically, the growth rate writes

σ(k) = Qk2 B −Ak lsat

1 + (k lsat)2 (23)

where A and B are the aerodynamic parameters (Sec. 5), lsat the saturation length (Sec. 4), Q a
constant flux proportional to u2

∗. This equation does not take into account the transport threshold
and is therefore theoretically valid only within the limit of strong winds when the sand flux is large.
However, the role of the transport threshold is included in our estimates thanks to the dimensionless
time scale and a prefactor correcting for the intensity of the sand flux. In practice, the growth rate
derived from the elevation profiles scales as σ(k)/Q and we consider a prefactor 〈u∗〉2/(〈u∗〉2− u2

th)
that integrates all the variations of wind strength. Thus, the parameter A and B in Eq. 18 and in
Eq. 23 are compatible with one another.
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Figure S10: Spectral analysis of elevation profiles with respect to time. (a) Two consecutive elevation
profiles of transect No 18 during dune growth. (b) Power spectral density of the elevation profiles using a fast Fourier
transform. Dashed lines show wavelengths λ{1,2,3} of {51.2, 20.5, 7.9} m. (c) The reconstructed elevation profiles
using individual wavelengths λ{1,2,3} and the inverse Fourier transform. By definition, they take the form of sine
waves Hλi = hλi cos(kix + φλi ) where ki = 2π/λi is the wave number and φλi the phase. Values of hλi and φλi at
different times can be used to estimate growth rate σλi and phase velocity cλi , respectively.
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The dispersion relation using Eq. 23 and the values of {lsat, A, B} = {0.95, 3, 1.5} measured
independently in the field are plotted in orange in Figs S11 and S12 as in Fig. 6B of the main
manuscript. The blue curve in these figures corresponds to a dispersion relation with the best-fit
values of {lsat, A, B} = {0.7, 1.96, 0.96}. In addition, to investigate the sensitivity of the dispersion
relation to the values of {lsat, A, B}, the shaded area in Fig. 3c of the main manuscript shows the
best-fit values of A and B using values of lsat ∈ [0.5; 1.1] in Eq. 23. All these results underline
the consistency of the experimental dispersion diagram derived from the topographic data not only
with the theory but also with our independent measurements of flow and transport properties in
the field.

6.7 Dispersion diagram of the phase velocity

During the linear-growth phase, the analysis of the variation of the phase φ(λi) (Eq. 22) as a function
of time do not at present provide conclusive evidence about the dispersion diagram of the phase
velocity. An obvious limitation comes from the time delay between two consecutive topographic
surveys. Indeed, the phase shift can be too large to be accurately computed, even by folding
the data modulo the period from large to short wavelengths. The orientation and magnitude of
the resultant sand flux associated with each time interval is another obvious issue. In fact, wind
reversals and the subsequent back and forth of the incipient bedforms were frequent during the
experiment. Variation of the phase data during periods of strong winds and small resultant sand
flux are particularly difficult to be interpreted.

To simplify the problem, we can also estimate dune migration distance by cross correlation
between two elevation profiles over a time interval over which the wind is almost unidirectional,
from April 25 to May 13, 2014, (Figs. S13a,b). The dune migration rate can then be computed
using the dimensionless time scale to be compared to theoretical dispersion relations. With the
same notation as in Eq. 23, dispersion relations write

c(k) = Qk
A+B k lsat

1 + (k lsat)2 . (24)

Considering the dimensionless time scale and the same prefactor as for the growth rate, Fig. S13c
shows the dispersion relations of the phase velocity using the same parameters as in Figs. S11 and
S12. It also shows the phase velocity of the most unstable wavelength λmax, the mean value of the
migration rate averaged over all transects and the corresponding standard deviation. As expected,
the migration rate derived from the cross correlation is close to the phase velocity of the most
unstable wavelength.
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