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Résumé. Nous proposons un modèle générique de bifurcation noeud-col pour décrire des transitions rapides
d’amplitude finie qui apparaissent par exemple en géophysique. Les transitions sont génériquement précédées
par une phase annonciatrice, moins rapide. Lorsqu’une source extérieure de bruit perturbe la transition, nous
montrons que les propriétés statistiques des fluctuations sont modifiées avant la transition, ce qui pourrait être
utilisé comme signe précurseur de la catastrophe.

Abstract. A generic saddle-node bifurcation is proposed to modelize fast transitions of finite amplitude arising
in geophysical (and perhaps other) contexts, when they result from the intrinsic dynamics of the system. In
this model, if an external source of noise exist, the correlation length of the fluctuations increases before the
transition, and its spectrum tends to drift towards lower frequencies. This change in the fluctuations could be a
way of detecting catastrophic events before they happen.

Earthquakes, like volcanic eruptions as well as other physical phenomena and perhaps also some kinds
of socio-economical ”revolutions”, show an abrupt transition from one state to another. We consider cases
where this transition is intrinsic (not the result of an excitation from outside) and dynamical in the sense
that, as a parameter changes slowly, the system jumps by a finite amount in a time much shorter than the
typical time of evolution of the external parameter. In earthquake physics, this typical time of evolution,
the earthquake recurrence time, is on geological scales of plate tectonics although the time scale of seismic
ruptures is within the second to minute range [1]. Our basic assumption is that, as a dynamical system,
an earthquake shows a ”dynamical saddle-node” bifurcation. At the bifurcation point, a pair of fixed
points, one locally stable the other locally unstable, merge and vanish as a control parameter varies. Take
a damped dynamical system, with a coordinate x(t) solution of the equation

dx

dt
= −∂V

∂x
. (1)

In this equation V (x) is a potential. In the geophysical context of earthquakes, the scalar variable x could
be the relative displacement across the fault. The equation (1) is too general to be very helpful. However,
as time varies slowly, it may describe a saddle-node bifurcation where a stable equilibrium disappears,
assuming that V depends slowly on time in a prescribed way, to become a function V (x, t). Near the
transition, one may use a mathematical picture which is correct for a short time around the transition if
the potential V (x, t) is a smooth function (see below for what happens beyond this local study).

Assume first that V (.) does not depend explicitely on time and takes the form

V (x) = −(
1

3
x3 + bx), (2)

with b real constant (for the moment).
For b negative V (x) has two real extrema (i.e. the roots of ∂V

∂x = 0), one −
√
−b is a stable equilibrium,

the other,
√
−b, is an unstable equilibrium. For b = 0 the two equilibria merge and disappear for b positive,

see Figure (1-a). This is the saddle-node bifurcation. The shape of V (x) near x = 0 and for b small is
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universal : for a given smooth V (x) showing this saddle-node bifurcation, one can always rescale time
and external parameter to find the ”local’ problem in this form.

The extension to time dependent variation of the control parameter b goes as follows. If b is a smooth
function of time, one can assume that b(t) crosses the critical value, i.e. zero in the present case, at time
zero in such a way that b(t) = at + ... with a non zero constant, and the dots being for higher terms in
the Taylor expansion of b(t). For t and x close to zero, after elementary rescaling, one can represent the
dynamical system (1), close to the saddle-node bifurcation, by an ”universal” parameterless equation

dx

dt
= x2 + t. (3)
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Figure1. (a) Cubic potential for b = −1, 0, 1. (b) Quartic potential, b = −1, 0, 1

Outside of the neighborhood of x = 0, the solution of (1) depends on other parameters like the one
defining V (.) far from x = 0 , as studied below.

Let first consider what happens close to the saddle-node bifurcation. We look for a solution of equation
(3) transiting from the ”stable” fixed point at ”large” negative times to the rolling down one towards
positive value of x at positive times. This solution behaves like x(t) ≈ −

√
−t at large negative times.

The equation (3) is of the Riccatti type and can be integrated by introducing the function y(t) such that

x(t) = −y′

y where y′ = dy
dt and y(t) is a solution of Airy’s equation y′′ + ty = 0. The solution relevant

with the given condition for x(t) at t → −∞, is the Airy function Ai(−t) which writes Y (t) = Ai(−t) =∫ +∞
0

cos(u
3

3 − ut)du and leads to the curve x(t) drawn on Figure(2-a).
Yet we have only solved the transient problem near the saddle-node bifurcation. The transition ends-

up when t becomes equal to the first zero of the Airy function Ai(−t), corresponding to a divergence of
the original x(t). Let tc be this critical value of t, i.e. the smallest root of Y (t) = 0, a pure number, about
tc ≈ 2.338, and let us look at the behaviour of x(t) just before this transition. From the Laurent expansion
of Y (t) close to tc, and returning to the original variable x(t), one obtains x(t) ≈ 1

tc−t −
tc
3 (tc − t)....

As this solution diverges, it looses its validity because the ”universal” dynamical equation (3) was
derived under the condition that x remains close to zero. This local theory cannot deal with finite
variations away from the critical conditions, therefore we shall add finite amplitude effects to limit the
growth of the instability after the transition.

We shall study now two questions, first the response of this dynamical system to an external noise
source, then the dynamics of a system showing a saddle-node bifurcation of the type just studied and
reaching a new stable fixed point after this bifurcation.

We explore first the response of our system to a small external noise, and search whether the response
to the noise changes qualitatively and so could be a signal ahead of the transition.

Let us consider the equation (3) with a small noise added, so that equation (3) is replaced by

dx

dt
= x2 + t+ ϵζ(t), (4)

where ζ(t) is a random function of time, and ϵ a small factor.
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In the limit ϵ small, one can solve equation (4) by expansion in powers of ϵ, x(t) = x0(t)+ ϵx1(t)+ ....

where x0(t) = −Y ′(t)
Y (t) ,

The linear response to the noise is

x1(t) =
1

Y 2(t)

∫ t

t0

dt̃ ζ(t̃) Y 2(t̃). (5)

Because Y 2(t̃) tends rapidly to zero as (t̃) tends to minus infinity, one can take t0 = −∞ to get rid of
the effect of the initial conditions.

Let us take a delta-correlated (or white) noise, such that ⟨ζ(ta)ζ(tb)⟩ = δ(ta − tb).

The correlation function of x1(t) is given by ⟨x1(t)x1(t
′)⟩ = 1

Y 2(t)Y 2(t′)

∫ inf(t,t′)

−∞ dt̃Y 4(t̃), whose behavior

for large negative values of both t and t′, is derived from the asymptotic expression of the Airy function,

Ai(−t) ≈ e−
2
3
(−t)3/2

2
√
π(−t)1/4

. Setting w = t̃
t , and F (w) = 1 − w3/2, the variance σ2 = ⟨(x(t) − x0(t))

2⟩ of the

fluctuations writes ⟨x1(t)
2⟩ ≈ (−t)

∫∞
1

dw
w e

8
3 (−t)3/2F (w). In the limit (−t) → ∞ the integral is concentrated

near w = 1 so that

⟨x1(t)
2⟩ ≈ 1

4
(−t)−

1
2 , (6)
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Figure2. (a) Solutions of equation (4), with and without noise, ϵ = 0 (smooth curve) and ϵ = 1 (noisy curve).
(b) Noise ζ(t). (c) Solution of equation (8) for a = 10−3. The rectangle around the origin defines the region
−t0 < t < t0 and −1/t0 < x < 1/t0, with t0 ∼ a−1/3. The critical time is tc ∼ 2.34 t0. The two vertical lines
inserted between the two arrows delimitate the large slope time duration, of order unity.

which shows that the fluctuations increase as time goes on, some time before the transition itself. As
the transition approaches, the variance of the fluctuations increases close to the critical time tc, because
Y (tc) = 0.

Because of the divergence of the solution at t = tc, it does not make sense to describe the dynamical
behavior of the fluctuations due to the external noise very close to tc. This unbounded growth is a
consequence of the local cubic form of V (x) as expanded near x = 0, which is valid around x = 0 only,
in obvious contradiction with the fact that x(t) diverges. To suppress the divergence of x(t) after the
saddle-node bifurcation we add a stabilizing (positive) term to the potential V (x) which becomes quartic,

Vq(x) = −x3

3
− bx+

x4

4
, (7)

as drawn in Figure(1-b). Because of the growth of Vq(x) at infinity, like x4, the solution of the

differential equation dx
dt = −∂Vq

∂x = b + x2 − x3, does not diverge at finite time. The equation (7) can
be written in the given scaled form, provided the coefficient of x4 is positive. For such a potential one
parameter only remains. In equation (7) the coefficient is chosen as b, the one of the linear term. For b = 0
the dynamical system is exactly at the saddle-node bifurcation, because at b = x = 0 the first and second
derivative of Vq(x) both vanish, but not the third one. Contrary to the case of the pure cubic potential,
this system has always, that is for any value of b, a stable fixed point beyond the pair of fixed points
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collapsing at the saddle-node bifurcation. This makes it a fair candidate for describing the dynamical
saddle-node bifurcation without blow-up.

As in the previous case, we shall look now at the case of a time dependent b, that will be taken as
b = at with a positive constant. Because of the rescaling of the cubic and quartic term, the parameter
a cannot be eliminated (another possibility is to put a parameter in front of the cubic term). For the

potential Vq(x) = −x3

3 − atx+ x4

4 we shall analyse the solution of the dynamical equation

dx

dt
= at+ x2 − x3, (8)

tending at large times to the quasi-equilibrium point x = (at)1/3, t being considered as a parameter, see
Figure(2-c). Moreover we consider the limit a small, which could describe a wide range of slip phenomena
[2], as earthquakes where a is generally very small, of order 10−9 (see below). In this limit we show first
that there are three characteristic time intervals, depending how x is close to zero.

The long time scale is the average recurrence time of an earthquake at the same site along the fault.
It is typically of order tphysb ∼ 200 years. In our model it is the time needed for the potential Vq(x, t) to
change significantly, to move from a pair of fixed points to a saddle-node bifurcation. Because time enters
in Vq(x, t) through the combination (at), the adimensional time needed for a change of shape of Vq is of
order

tb ∼ a−1. (9)

The short time teqk is of order unity in our model equation (8) as stated in the next paragraph. It
is the duration of the abrupt change of the slope of the solution x(t). This short time corresponds to
the dynamic rupture duration, which is typically of order ten seconds for a magnitude 6 earthquake,

tphyseqk ∼ 10s [1]. Therefore the ratio of these two time scales
tphys
eqk

tphys
b

=
teqk
tb

, is small as a = 1.6 10−9 in the

geophysical context.
There is another time scale, t0, the time interval standing before the transition, and close to it, during

which the potential is very flat, while the solution has not jumped. During this time, x and at are much
smaller than unity, then the cubic term on the right-hand side of equation (8) is negligible. In this range
one recovers the universal equation of the dynamical saddle-node bifurcation (3) by taking X = xa−1/3

and T = ta1/3, with the boundary condition X(t) ≈ −
√
−T at T tending to minus infinity. This property

concerns the rectangular domain drawn on Figure (2-c), where x is small, x ∼ a1/3, and t extends from
−a−1/3 to t ∼ a−1/3, located before the abrupt increase. Therefore the time extension of this domain
introduces the intermediate time scale,

t0 ∼ a−1/3, (10)

long compared to unity (the adimensional time scale teqk for the duration of a seismic rupture) and small
compared to tb = a−1, the average recurrence time between earthquakes.

Let us prove that the short time is of order unity, by matching the solution X(T ) of the universal
equation to the solution of equation (11) below, in the vicinity of the critical point tc(a) = a−1/3 tc.
Because X(T ) behaves like 1

tc−T before it diverges, it follows that the solution x(t) behaves as ≈ 1
a−1/3tc−t

for ”large” values of δt = t−a−1/3tc before the critical time. Using δt in this development as time variable,
x(δt) becomes of order one when δt becomes of order one too. When this happens, the term at in equation
(8) is negligible, therefore the solution of this equation which can be matched with the solution near the
bifurcation is the solution of the integrable equation

dx(δt)

d(δt)
= x(δt)2 − x(δt)3, (11)

with the asymptotic behavior for very large negative times x(δt) ∼ − 1
δt . This equation shows that the

time scale for the earthquake rupture is of order one, because it has no explicit dependence with respect
to the small parameter a. This result is confirmed by the numerics : For a small we find that the rising
time of x(t) close to tc(a) (defined as the half-width of the slope dx

dt solution of equation (8)) is teqk ∼ 2.5,
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independent of a. From the observational point of view, the catastrophe takes place during this time teqk
of order one, because the displacement is of order one then, compared to the displacement of order a1/3

taking place during time a−1/3 typical of the ”universal” transition process. The two solutions match in
the range 1 ≪ (−δt) ≪ a−1/3. Supposing that the physical fast time scale for earthquakes is tphyseqk ∼ 10s,

the intermediate time scale is tphys0 ∼ a−1/3tphyseqk , which is a few hours for a = 10−9.
With a noise source added, the dynamical equation (1) becomes,

dx

dt
= x2 − x3 + at+ ϵζ(t). (12)

Actually the effective noise amplitude is not equal to ϵ close to the saddle-node, but depends on the
value of the parameter a. Indeed for |t| ≤ t0 , the cubic term in equation (13) is negligible, and the
equation reduces to

dx

dt
= x2 + at+ ϵζ(t). (13)

which may be written on a form dX
dT = X2 + T + ϵ̃(a)ζ(t), by setting X = xa−1/3, T = ta1/3, and

ϵ̃(a) = ϵa−2/3. Therefore the effective noise is larger than ϵ in the rectangular domain of figure (2-c).
Let us study the fluctuations of the solution x(t) of equation (13). For a small noise input, the solution

may be expanded in power of ϵ as above. At first order it gives

dx1

dt
= [2x0(t)− 3x2

0(t)]x1(t) + ζ(t), (14)

whose solution is formally

x1(t) =

∫ t

t0

dt̃ ζ(t̃) exp[g(t)− g(t̃)], (15)

where g(t) is the time integral of the second derivative of the potential −d2Vq(x)
dx2 , g(t) =

∫ t

t0
[2x0(u) −

3x2
0(u)]. The standard deviation σx1(t) has to be calculated numerically. We expect it to display the same

behavior as for the cubic case in the whole domain where x(t) ≪ 1 , i.e. before the transition, and close
to it, because the potential is cubic in this region. After the transition, we expect that the fluctuation
decreases, because the solution without noise becomes quasi-steady. This is confirmed by the numerics : as
for the cubic potential, the fluctuations strongly increase close to the critical time tc. With respect to time,
the maximum of σx1 occurs at time tc(a) for small noise. Therefore the variance of the signal fluctuations
cannot be used as a precursor for predicting the transition. Such a correlation between the standard
deviation of the fluctuations and the sudden change of the solution has been reported recently [3] where
the GPS geodetic signal, which can be assimilated to our x0(t), is shown to be strongly correlated to the
seismic signal (which we see as related to the fluctuations x1(t)). Note that when the noise increases, the
growth of the fluctuations occurs earlier and earlier, their maximum progressively shifting before tc. This
shift becomes visible only for an effective noise amplitude larger than unity, that is physically outside the
range of noise values.

Consider the case of small effective noise, where the correlation function and the spectrum of the
fluctuations x(t)−x0(t) are well described by the correlation function and spectrum of x1(t), respectively.
The calculation of these functions requires some care because the system is not in a statistically steady
state. Therefore the spectral density of the fluctuations depends on time and the correlation function

Γx1
(t, τ) = ⟨x1(t− τ/2)x1(t+ τ/2)⟩, (16)

depends both on t and on τ . A time dependent spectrum is formally defined by the (real) Wigner transform

Sx1(t, f) =

∫ −∞

−∞
dτe−2iπfτ ⟨x1(t− τ/2)x1(t+ τ/2)⟩, (17)

that has to be modified for numerical applications, by introducing a slipping window.
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Figure3. (a) Width (in arbitrary units) of the correlation function of the fluctuation x(t) − x0(t) for a = 10−9

(t0 = 103) ; (b) Spectral width (a. u.) and (c) flat shape of g(t) before the critical time, for a = 10−6 (t0 = 102) ;
(d) ”Precursor time” tc(a)− t1/3 versus a, in Log scale ( t1/3 being the time where the width is 1

3
of its maximum

value, before the catastrophe time tc(a)).

The width τx of the correlation function and the spectral width ∆f are reported in figures (3) in a
range of time of few t0 around the transition, together with the solution x0(t) drawn in solid red line for
covering. Both widths show an interesting behavior which provides the same result. Consider first the
left curve, obtained for the parameter value a = 10−9, typical for earthquake phenomena, as discussed
above. The figure displays a strong increase of the correlation time τx of x(t)− x0(t) in the intermediate
time range, reaching its maximum value at time t ∼ 1.5 t0 (which was estimated as a couple of hours
before the earthquake), then it displays a rapid decrease before the critical time tc(a) ∼ 2340. In addition,
we observe a slow growth of τx as t increases from large negative values (not shown in the figure), τx
increasing by a factor ten for −100t0 < t < 0, that corresponds to a time interval about one week. Such
a remarkable behavior should be used as precursor. The increase of the correlation length before the
catastrophe can be understood when looking at the formal expression (15). The second derivative of the
potential vanishes at t = t0, that leads to the flatness of g(t) in the whole domain 0 < t < tc(a), as
shown in figure (3-c). Figure (3-d) shows that the ”precursor time” (see caption) is proportional to t0.
As for the spectral width, the result is just the opposite : it continuously decreases from large negative
time, until the time t ∼ 1.5t0, where it suddenly grows. The slow decrease of ∆f corresponding to a slow
shift of the spectrum towards low frequencies, is followed by a rapid spectral broadening at the end of
the intermediate domain, before the transition time tc(a). The two stages of the width change are both
important, because they occur before the transition.

The growth of the fluctuations and their shift to lower frequencies can be understood as follows. As
the transition approaches the potential V (x, t) becomes flatter and flatter, making weaker and weaker
the restoring force toward the equilibrium. Therefore, at constant noise source, the amplitude of the
fluctuations driven by this noise source will grow because the damping is less and less efficient. Moreover,
the typical time scale for this damping will get larger and larger because of the decreasing stiffness of the
potential, which will favour noise at lower and lower frequencies.
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