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S U M M A R Y
Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic
unrest, earthquake mechanisms and fluid injection in the subsurface. The standard monitoring
approach relies on measuring traveltime changes of late coda arrivals between daily and
reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The
main assumption of this method is that the shape of the noise correlations does not change
over time or, in other terms, that the ambient-noise sources are stationary through time.
These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic
tremor, for example, perturbs the reconstructed Green’s function. In this paper, we propose
a general formulation for retrieving continuous time-series of noise-based seismic velocity
changes without the requirement of any arbitrary reference cross-correlation function (CCF).
Instead, we measure the changes between all possible pairs of daily cross-correlations and
invert them using different smoothing parameters to obtain the final velocity change curve.
We perform synthetic tests in order to establish a general framework for future applications of
this technique. In particular, we study the reliability of velocity change measurements versus
the stability of noise CCFs. We apply this approach to a complex data set of noise cross-
correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the
presence of highly non-stationary seismic tremors.

Key words: Time-series analysis; Coda waves; Seismic interferometry; Seismic noise; Vol-
cano monitoring.

1 I N T RO D U C T I O N

Noise-based monitoring techniques have been used extensively in
the past decade for different applications. The observation of con-
tinuous seismic velocity changes proved to be useful for detecting
crustal seasonal changes (e.g. Sens-Schönfelder & Wegler 2006;
Meier et al. 2010; Ugalde et al. 2014), co- and post-seismic evo-
lution of stress in fault areas (e.g. Brenguier et al. 2008a; Hobiger
et al. 2012) and, more recently, for studying the effects of fluid
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injection (e.g. Zhou et al. 2010; Ugalde et al. 2013) and aseismic
deformation transients (Hillers et al. 2015).

Estimation of temporal velocity changes in volcano interiors us-
ing seismic noise cross-correlation has been shown to be an efficient
method for early detection of volcanic unrest prior to eruptions at
Piton de la Fournaise Volcano, La Réunion (e.g. Brenguier et al.
2008b; Duputel et al. 2009). Although precise eruption and eruptive
intensity forecasting is still a challenge, it has been demonstrated
that this method provides meaningful constraints on the location of
oncoming eruptions (Obermann et al. 2013).

The most important step in noise-based monitoring is the Green’s
function (GF) reconstruction between two receivers from the cor-
relation of ambient seismic noise (e.g. Shapiro & Campillo 2004;
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Shapiro et al. 2005; Larose et al. 2006; Wapenaar et al. 2010;
Campillo et al. 2011). If the noise sources are evenly distributed
over the Earth’s surface, leading to an isotropic and equipartioned
wavefield at the two station locations, the cross-correlation function
(CCF) between these two stations converges towards the GF (e.g.
Roux et al. 2005; Wapenaar & Fokkema 2006). This is an ideal
situation but, in practice, noise sources are distributed irregularly
leading to a partial reconstruction of the GF (Shapiro et al. 2006).

For monitoring purposes, it is possible to retrieve temporal seis-
mic velocity changes over a set of repetitive in-time noise cross-
correlations, even with anisotropic distributions of noise sources, as
long as this distribution does not change too much over time (Hadzi-
ioannou et al. 2009). Moreover, measuring traveltime changes in the
coda part of the noise cross-correlations makes velocity change
measurements less sensitive to noise source temporal changes
(Sens-Schönfelder & Wegler 2006; Wegler & Sens-Schönfelder
2007; Colombi et al. 2014). The standard monitoring approach re-
lies on measuring traveltime changes of late coda arrivals between
a daily and a reference noise-cross-correlation, usually chosen as
a stack of all daily cross-correlations. There are two main tech-
niques for the retrieval of the relative velocity changes. One is the
stretching technique for which the relative velocity variation is the
best-fitting factor by which the time axis of the current CCF is
stretched or compressed to obtain the best correlation with the ref-
erence trace (e.g. Obermann et al. 2013; Sens-Schönfelder et al.
2014; Hillers et al. 2015). The second technique is the moving win-
dow cross-spectral (MWCS) analysis where we obtain the relative
velocity change by adjusting, in the frequency domain, the phase
differences between the current and the reference CCF in each time
window (e.g. Brenguier et al. 2008b; Clarke et al. 2011). Advan-
tages and disadvantages of both techniques have been discussed in
the literature (e.g. Hadziioannou et al. 2009; Hillers et al. 2015).
In this study, we use the MWCS technique because we consider
that this technique is less sensitive to source variability. We assume
that the measured time delay from the coda waveform of noise
cross-correlations (dτ ) is caused by a spatially homogeneous rela-
tive velocity change, dν/ν. Under this assumption, the relative delay
time (dτ /τ ) is constant and independent of the lapse time at which
it is measured: dτ /τ = −dν/ν.

In different environments, and especially on volcanoes, the noise
correlations can be altered by strong episodic sources of noise, such
as a volcanic tremor, for example, that overlaps in frequency with
more stable microseismic noise. Thus, there is a problem with the
definition of the reference function if the sources are non-stationary
(Sens-Schönfelder et al. 2014). Very strong non-stationary noise has
been described by Ballmer et al. (2013) and Droznin et al. (2015) in
case of emission of low frequency volcanic tremor, a typical feature
of the unrest of many volcanoes and an important seismic source
for monitoring plumbing systems (e.g. Chouet 1996).

In this paper, we describe a generalized approach for retrieving
robust noise-based seismic velocity changes, where the final time-
series is obtained by measuring the changes between all possible
pairs of CCFs and inverting them (Brenguier et al. 2014, Section 2),
that is, without the definition of an arbitrary reference CCF. We de-
tail the method carrying out synthetic tests that allow us to evaluate
the reliability of measured velocity changes in regard to the level
of stability of noise CCFs and the influence of temporary changes
(Section 3). Finally, we apply our procedure to a data set from the
Klyuchevskoy volcanic group (Kamchatka) as a case study (Sec-
tion 4), where the recorded wavefield is dominated by strongly
localized volcanic tremor sources and is characterized by loss of
data.

2 M E T H O D

We retrieve continuous time-series of velocity changes without the
requirement of a reference stacked CCF. The procedure relies on
measuring seismic velocity changes between all possible pairs of
daily CCFs. An inversion step is further required to retrieve a con-
tinuous time-series of daily seismic velocity changes (Brenguier
et al. 2014). By considering (ccfi) as a CCF that corresponds to day
i, we can thus estimate a seismic velocity change between day i and
day j (δν ij) by applying the MWCS analysis to ccfi and ccfj:

δνi j = ν j − νi

νi
= MWCS(cc fi , cc f j ), (1)

where δν ij is referred as a doublet measurement. This concept was
used, initially, in pairs of microearthquakes (Poupinet et al. 1984).
In a systematic manner, we can then estimate a velocity change
between all of the pairs of daily CCFs for one given station pair.
This constitutes the data vector of eq. (2):

d =

⎡
⎢⎢⎢⎢⎢⎣

δν12

δν13

δν14

...
δνn−1n

⎤
⎥⎥⎥⎥⎥⎦, (2)

where d is of length n·(n−1)
2 , with n the number of daily CCFs.

Our final goal is to reconstruct the time-series of daily velocity
changes. We can define these velocity changes as δνi = νi −νref

νref
, with

νref the reference velocity averaged along the entire time period
considered. The series of velocity changes constitutes our model
vector, m, of eq. (3):

m =

⎡
⎢⎢⎢⎢⎢⎣

δν1

δν2

δν3

...
δνn

⎤
⎥⎥⎥⎥⎥⎦, (3)

where m is of length n, the number of daily CCFs.
The relation between d and m is given by

δν j − δνi = ν j − νi

νref
= ν j − νi

νi
· νi

νref
= δνi j · νi

νref
= δνi j · (1 + δνi ).(4)

Under the assumption that δν i and δν ij are small compared to 1
( <0.1%), we can write at the first order the direct linear relationship
between d and m as δν ij = δν j − δν i or d = Gm, with G being a

sparse matrix of dimension
[

n·(n−1)
2 , n

]
:

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 . . . . . . 0

−1 0 1 0 . . .
...

−1 0 0 1 0 . . .

...
. . .

...
0 . . . . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

The assumption made above (δν i and δν ij< 0.1%) is necessary to
apply our method. Temporal velocity changes (δν i) are sensitive
to transient stress changes (e.g. Niu et al. 2008) and the magnitude
order of the seismic velocity changes depends on the level of applied
stress in the medium. Some examples of typical magnitude orders of
δν i estimations are ∼ −0.1% in the Piton de la Fournaise volcano
(Brenguier et al. 2008b; Obermann et al. 2013), ∼ −0.12% due
to the Tohoku-Oki earthquake (Brenguier et al. 2014), ∼ −0.15%
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due to the Parkfield earthquake (Schaff 2012), ∼ −0.5% due to
the Nicoya Peninsula earthquake (Chaves & Schwartz 2016) or
∼ −0.8% in Ruapehu volcano (Mordret et al. 2010).

The final time-series of velocity changes (m) is obtained by fur-
ther inversion, using a classical Bayesian linear least-squares for-
mulation (Tarantola 2005; details in Brenguier et al. 2014):

m = (
Gt C−1

d G + αC−1
m

)−1
Gt C−1

d d, (6)

where Cd is a covariance matrix of dimension
[

n·(n−1)
2 ,

n·(n−1)
2

]
that

describes the Gaussian uncertainties of the data vector d. These
values correspond to the estimated uncertainties of each δν ij value,
using the MWCS analysis. Cm is an a priori covariance matrix of
dimension [n, n] for model vector m. The parameter α is a weighting
coefficient: it is determined in a way that matrix

(
Gt C−1

d G
)

and(
αC−1

m

)
have approximately the same weight. As α behaves as the

amplitude of the inverse of the distribution Cm, the higher the α,
the less the model can change from one point to another. Therefore,
the amplitude of the final time-series becomes lower and smoother.

The values of Cm describe for day i how δν i is correlated to δν j

at day j:

Cmi j = e
−|i− j |

2β , (7)

where β is the characteristic correlation length between the model
parameters δν i. A day, i, is more correlated with the β days before
and after than with any others. For this reason, high values of β

correspond to long-term variations (LTV), whereas low β values
represent short-term variations (STV), the opposite situation.

We compute the difference data − misfit to have an estimation
of how well-constrained the inversion is. The misfit values are the
differences between all pairs of points of the reconstructed time-
series of velocity changes. To assess the data − misfit, we subtract
each doublet measurement to the corresponding misfit and average
the absolute value of the final result.

In Fig. 1 we compare the standard and the general approach. Even
though the computing cost of the general formulation is higher than
that of the standard approach, this formulation manifests several
advantages. We can manage irregular sampling in time of noise
correlations; therefore, this technique is more efficient when the data
set is complex. Also, long-term or short-term trends are obtained
directly from the inversion process rather than fitting the velocity
changes with polynomial functions, as in the standard approach
(Brenguier et al. 2008b).

In this work, we consider station pairs independently to obtain
single time-series of velocity fluctuations but we can also invert sev-
eral ray paths at the same time to achieve a more homogeneous and
general trend of seismic velocity variations rather than averaging
over different time-series from different station pairs. By concate-
nating doublet measurements from different station pairs for a global
inversion, the robustness of retrieved velocity changes improves as
the effect of missing data is minimized.

In the following, we describe synthetic tests to state the advan-
tages and limits of that novel approach.

3 S Y N T H E T I C T E S T S

We analyse how the stability of noise-correlations influences the
reconstruction of velocity change time-series for different cases:

(1)Seasonal-type trends which produce long-term periodic-type
fluctuations, that is, long-term velocity changes.

(2)Rapid transient changes similar to those produced as a result of
an earthquake or a volcanic eruption. The effect of those changes
in the noise correlations is the retrieval of a sudden velocity drop
(STV), corresponding to a permanent or almost permanent velocity
change.
(3)Transient noise perturbations due to a local source emission,
such as the perturbation induced by an episodic volcanic tremor
(Droznin et al. 2015). The consequence is a sudden velocity drop
and a sudden recovery, producing short- and medium-term velocity
fluctuations.

We use a synthetic test approach by artificially stretching noise
cross-correlations in order to simulate synthetic velocity changes.
We further degrade the quality of the data set of noise cross-
correlations by adding different levels of random noise in order
to simulate unstable to stable noise cross-correlations. We then ap-
ply our novel method for reconstructing velocity changes and finally
compare the ‘expected’ and the ‘reconstructed’ time-series of ve-
locity changes. We also study the improvement of averaging the
reconstructed time-series of velocity changes for different station
pairs.

The Pearson correlation coefficient (coherence) between two syn-
thetic noise cross-correlations is used as a proxy for the quality of
the associated doublet measurement and used to build the Cd matrix
of data weighting. The average of all Pearson correlation coefficients
between all pairs of noise cross-correlations (CCFs) is referred as
the coherence level (coh). This value describes the level of added
random noise by varying from 0 (totally incoherent noise CCFs) to
1 (no random noise added).

We refer to velocity change measurements at a crustal scale using
microseismic noise correlations in the frequency range from 0.1 to
1 Hz. However, this approach can be extended to other frequency
domains and sources of seismic noise.

3.1 Long-term periodic-type fluctuation test

By stretching a single arbitrary CCF with different daily velocity
changes (referred as expected velocity changes henceforth), we
simulate daily synthetic CCFs. Fig. 2, right-hand panel, shows the
expected velocity changes that we apply and the simulated long-term
periodic-type velocity changes to retrieve. The rest of the panels
of Fig. 2 are examples of synthetic CCFs with different levels of
noise. The different panels of synthetic CCFs are associated with
a coherence level (coh), which is a measure of the level of added
random noise. By adding random noise, we are ‘hiding’ the original
time-series of velocity changes that we want to reconstruct after
inversion, that is, the ‘expected’ velocity changes.

We obtain the data vector of velocity changes, d, by applying
an MWCS analysis between all possible pairs of CCFs. For n daily
CCFs, we estimate n(n−1)

2 doublet measurements. We measure dou-
blets in windows of 10 s centred between the direct surface wave
arrival time and a lapse time of 70 s in the coda. Moving windows
are overlapped by 80%. We finally perform the inversion to retrieve
daily velocity changes (vector m). As we are studying LTVs, we use
high β values to retrieve dν/ν series, β = 1000, while α decreases
with coh, from α = 5000 to α = 100, to fit better the expected
velocity change curve.

We compare the reconstructed time-series of velocity changes
obtained from the synthetic CCFs of Fig. 2 with the expected one
(Fig. 3). The more noise we add, the less the coherence level and
the more the reconstructed time-series of velocity changes differs
from the expected velocity changes.
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Figure 1. Workflow diagram showing the main steps of the standard approach and the general one. n is the number of days.

Figure 2. Examples of synthetic stretched CCFs with different levels of random noise. The coherence level (coh) is on top of each figure. On the right, expected
velocity changes (red curve) that are applied to stretch the CCFs.

We test three different levels of expected velocity changes
(Fig. 4a) to achieve the final one. The peak amplitude of the
expected velocity change curve 1 is 0.001%, while expected
velocity change curves 2 and 3 present peak amplitudes of
0.005 % and 0.01%, respectively. For Figs2 and 3, we use
the expected velocity curve 3. By considering higher velocity
change amplitudes (expected velocity change curve 3), we achieve

higher similarity between the reconstructed time-series of veloc-
ity changes and the expected ones, for the same level of noise
(Fig.4b).

To simulate the averaging of inverted time-series of velocity
changes over different station pairs, we compute different station
pairs with synthetic cross-correlation data: we apply the same ve-
locity change stretching procedure but with different random noise
to simulate different synthetic station pairs. We use the expected
velocity change curve 3 and a fixed high level of noise (coh = 0.06)

Downloaded from https://academic.oup.com/gji/article-abstract/214/2/1218/4999900
by CNRS user
on 09 July 2018
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Figure 3. Reconstructed velocity change time-series (blue curves) versus the expected velocity changes (red curve) for different coherence levels. Coherence
levels and correlation coefficients between both curves on top of each figure.

Figure 4. (a) Expected velocity change curves used in the long-term periodic-type fulctuation test. (b) Convergence curves of the coherence levels and the
correlation coefficients between the reconstructed velocity change time-series and the different expected velocity changes.

to simulate up to 50 different synthetic station pairs. After obtain-
ing the 50 reconstructed velocity change curves, we average them
to study the improvement. Nsta is the number of averaged curves of
reconstructed velocity changes.

Even with such a low coh considered (coh = 0.06), we see the
improvement when averaging over different station pairs (Fig. 5a):
from a correlation of 0.22 for Nsta = 1 to 0.87 for Nsta = 50 (correla-
tion increased by a factor of 3.9), whereas for Nsta = 20 we already
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Figure 5. For a coherence level = 0.06 and the expected velocity change curve 3: (a) correlation coefficients between the reconstructed velocity change
time-series and the expected velocity changes 3 as a function of the number of averaged curves of reconstructed velocity changes, Nsta. Associated standard
deviations in blue bars. (b) Reconstructed velocity change time-series for Nsta = 50 (blue) and the expected velocity change curve 3 (red).

reach a correlation coefficient of 0.7. In general, it is thus recom-
mended to average seismic velocity changes over at least 20 station
pairs when the noise cross-correlations are so unstable. Although
the correlation coefficient is 0.22 for Nsta = 1 in Fig. 5(a), we see
a higher correlation coefficient, 0.41, for the same coherence level,
coh= 0.06. This is because we picked one of the best examples
to show. The standard deviation bars for each Nsta of Fig. 5(a) are
the variations associated to the average of different combinations
of station pairs. The maximum number of combinations used is
10 000. The same is applied for the following tests. Fig.5(b) shows
the averaged curve for Nsta = 50 and the expected velocity change
curve 3. The amplitude of the reconstructed time-series of veloc-
ity changes for Nsta = 50 is one magnitude order smaller than the
expected velocity changes, probably due to an edge effect of the
time-series.

3.2 Velocity drop test

To test the reconstruction of an abrupt, rapid change of velocity,
similar to the effect of an earthquake (e.g. Brenguier et al. 2008a),
we add a Heaviside step function with a velocity change of 0.05 %
to the previous expected velocity change curve 3 (Fig.6, red curve),
referred as the drop curve.

As we are interested in recovering the drop, we use another coef-
ficient to study the similarity between the reconstructed time-series
and the drop curve instead of using the Pearson correlation coeffi-
cient. To estimate the quality of the reconstructed drop, we measure
the difference between the mean velocity changes after and before
the drop:

diff =
(

dν

ν

)
after drop

−
(

dν

ν

)
before drop

. (8)

We compute diff for both the reconstructed velocity change curve
and the expected drop curve. We then estimate the quality of the
reconstructed drop with the ratio:

Qdrop = |diff reconstructed velocity change curve

diff drop curve
|. (9)

Here Qdrop is 1 when perfectly reconstructed and <1 otherwise. In
this test, we invert for time-series of velocity changes using a low
β to obtain STV, β = 5, and we avoid a smoothing factor (α ≈ 0),
as we want to study just the effect of the velocity drop.

As the level of noise increases (coh decreases), the drop in the
reconstructed time-series of velocity changes becomes smaller until
it almost disappears (when the coherence level is nearly zero; Fig. 6).
We observe the convergence of Qdrop for different coherence values
of the synthetic cross-correlations in Fig. 7.

We also study the improvement of averaging the reconstructed
velocity change curves over different station pairs. For a fixed co-
herence level of 0.37, we study the convergence of the retrieved
drop by increasing Nsta (Fig. 8a). Interestingly, by averaging more
reconstructed velocity changes, we smooth the sharp STV while the
recovered drop remains the same. We also estimate the increasing
signal-to-noise ratio (SNR) associated with the larger number of
averaged synthetic functions, Nsta, as

SNR = level of recovered drop

rms(averaged dν

ν
curve)

, (10)

with rms(averaged dν

ν
curve) being the root mean square of the ve-

locity change mean curve of each Nsta (Fig. 8a).
A way to increase the coherence between CCFs and, therefore,

to improve the temporal resolution of the velocity change measure-
ments, is the use of denoising methods such as the Curvelet filtering
(Stehly et al. 2015) or the Wiener filtering. We applied a FIR Wiener
filter to our CCFs without obtaining a great improvement in the re-
constructed velocity changes, probably because this technique only
has an effect on the amplitude of the frequency spectrum whereas
the method presented in this paper only uses the phase of the signal.

For a coherence level of 0.37 and Nsta = 50, we obtain a Qdrop of
0.6 and a SNR of 38 (Figs 8a and b). Again, it is interesting to note
that, for highly unstable correlations (e.g. coh = 0.37), averaging
over different station pairs will not improve the value of the level
of the velocity drop that will remain underestimated. Averaging
over different receiver pairs will, however, improve the SNR of the
recovered velocity changes and thus, will allow a better estimate of
the timing of the velocity drop.
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Figure 6. Reconstructed velocity change time-series (blue curves) versus the drop curve (red curve) for different coherence levels. Coherence levels and Qdrop

on top of each figure.

Figure 7. Convergence curve between the coherence levels and Qdrop.

3.3 Transient noise perturbation test

In this test we study the effect of an episodic strong change in the
noise-correlation shape induced by a pronounced variation of a noise
source, for example, a passing storm or an episodic volcanic tremor.
This last situation has been described by Ballmer et al. (2013)
and Droznin et al. (2015) in case of noise-correlations affected by
the occurrence of low-frequency volcanic tremor. We herewith test

the ability of our method to recover robust short- to medium-term
fluctuations.

To compute the synthetic stretched CCFs, we consider two
real normalized CCFs, one corresponding to a non-tremor pe-
riod (C1) and the other to a tremor period (C2). Basically, we
consider C1 as the true GF and C2 as a pure tremor-related
bias. With both, we compute two new averaged correlations:
C3 = 0.8 × C1 + 0.2 × C2 and C4 = 0.8 × C2 + 0.2 × C1,
corresponding to a calm period (C3) and to a tremor period (C4),
respectively. We concatenate N1 correlations C3, N2 correlations
C4 and again N1 correlations C3, N1 and N2 being random num-
bers of daily CCFs. Then, the same way as previous tests, we
stretch the CCFs and add different levels of random noise to these
correlations.

Fig. 9(a) is an example of synthetic stretched CCFs with a certain
level of random noise (coh = 0.54). We see clearly the differences
in the shape of CCFs corresponding to the calm periods, C3 (from
day 1 to 30 and from day 90 to 120 in Fig. 9a), and to the tremor
period, C4 (from day 30 to 90 in Fig. 9a). Fig. 9(b) is the associated
correlation coefficient matrix of Fig. 9(a) that represents all Pearson
correlation coefficients between all pairs of CCFs. We observe the
lower correlation between CCFs of the tremor period comparing
with the calm periods.

Fig. 10 shows some examples of the resulting reconstructed time-
series of velocity changes for the maximum coherence level of 0.85
and for some lower ones, where the coherence level decreases due
to the increased level of random noise in the synthetic CCFs. We
also plot the expected velocity curve for comparison. As we are in-
terested in evaluating the sudden velocity drop and sudden recovery
in the reconstructed time-series of velocity variations, we consider
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Figure 8. For a coherence level = 0.37: (a) Qdrop (blue curve with associated standard deviations in blue bars) and signal-to-noise ratio (SNR; black curve) as
a function of the number of synthetic averaged functions (Nsta). (b) Reconstructed velocity change time-series for Nsta = 50 and drop curve.

Figure 9. (a) Example of normalized synthetic stretched CCFs with a random level of noise (shown for a coherence level between CCFs of 0.54). (b) Correlation
coefficient matrix associated to the doublets. C3 and C4 refer to calm and tremor periods, respectively.

β = 5 and α ≈ 0, as in the previous test. In cases of high coh, we
observe a double velocity drop in the recovered synthetic velocity
change curves (between days 30 and 90) due to the concatenation
of different synthetic CCFs, that is, the first N1 days (calm period),
the next N2 days (tremor period) and the last N1 days (calm period
again) (Fig. 9). We explain this double velocity drop by looking
at the correlation coefficient matrix (Fig. 9b). As the correlation
coefficients of the CCFs between the calm and the tremor period
are very low (Fig. 9b), our method treats these data segments sepa-
rately and, thus, generates this baseline difference between the two
periods. Therefore, these artificial velocity drops are artefacts from
our method. The double velocity drop observed in the reconstructed
time-series is hidden when the level of noise increases.

Even more interesting, when we increase the number of inverted
synthetic time-series of velocity changes for a low coh to study
the improvement associated with averaging over different station
pairs (Fig. 11a), we see clearly the increased similarity between the
inverted curves and the expected one (Fig. 11b). This is because only
C1, the medium, is coherent and the noise source perturbation is not

seen the same way by all receiver pairs. This means that for some
station pairs, the double velocity drop induced by the tremor has,
sometime, opposite sign which, simply, cancels out while summing
over different receiver pairs. We show, as well, the improvement
of the generalized formulation compared to the standard approach
when averaging over different station pairs (Figs 11c and d). For the
same synthetic data and coherence level, the double velocity drop
does not cancel out (Fig. 11d).

3.4 Summary

To conclude, the synthetic tests have shown the behaviour of three
different realistic scenarios that have their imprints in the noise cor-
relations and, therefore, we have to handle them in the reconstructed
velocity changes. The scenarios are (1) long-term periodic-type
fluctuations produced by a seasonal-type trend, (2) sudden velocity
drops as effects of sudden changes in the structure, such as earth-
quakes or volcanic eruptions and (3) transient noise perturbations
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Figure 10. Synthetic velocity change time-series (blue curves) versus the expected velocity changes (red curve) for different coherence levels. Coherence
levels on top of each figure.

due to the effect of a transient local source emission, such as a vol-
canic tremor. In general, we choose the inversion parameters with
respect to the type of velocity changes we are looking for, STV or
LTV, respectively. In Table 1 we summarize the parameters used
in the synthetics. These values respond to our particular tests and
should be changed according to the characteristics of the data set,
but the magnitude orders of Table 1 can be used as a guidance. In
general, it is easier to choose first the value of β, then adjust α,
which works as a smoothing factor. We choose lower β values for
STV, as we have done in the velocity drop and transient noise per-
turbation tests, than for LTV (long-term periodic-type fluctuation
test case). The parameter α is directly proportional to the coh of the
reconstructed time-series of velocity changes (Fig. 3 and Table 1):
higher values of α (α > 1000) are recommended with high coh,
as the higher the α value, the lower the amplitude and smoother
the final time-series of velocity changes. In the case of the veloc-
ity drop and the transient noise perturbation tests, we avoided the
smoothing (α ≈ 0), in order to study just the effect of the sudden
velocity drops (and recoveries in case of the last test), but, to pro-
cess real data to retrieve STV, we can use medium to low values
of α.

We have also investigated the effect of the amplitude of the ex-
pected velocity change curves: time-series of velocity changes are
better reconstructed when the amplitudes of the expected changes
are higher (Figs3 and 4). In case of medium to low coh, the differ-
ence in retrieving the amplitudes of the different expected changes

is considerable (Fig. 4a). According to these results, in case of real
data with a low coh, we can count on reconstructing STV and LTV
with amplitudes of the same magnitude order than the peak-to-
peak amplitude of the reconstructed velocity changes but not much
smaller. We have also explored the improvement of averaging the
reconstructed time-series of velocity changes for different station
pairs even with very low coh (Figs 5, 8 and 11). However, although
there is a substantial increase in the correlation coefficient between
the reconstructed velocity change time-series and the expected ve-
locity changes or in the SNR of the reconstructed velocity changes
(for the velocity drop test), the amplitudes of the final velocity
change time-series (both STV and LTV) are underestimated. This
is a drawback of our method that needs to be further studied. One
reason might be that the covariance matrix associated to the data
vector is, actually, damping the data during the inversion (eq. 6).
Leaving the amplitude aside, these synthetic tests give us an esti-
mation of the number of station pairs of real data that we need to
average in order to retrieve a proper velocity change curve when
coh is low.

Finally, in the situation of strong noise perturbations, we have
observed artificial velocity drops produced by our method, visible
only when the coh of the CCFs is high. There are two approaches
to handle this scenario: in case the coherence level between the
noise CCFs is high, it might be worth correcting for the artificial
baseline difference after the inversion to retrieve proper velocity
changes. Otherwise, when coh is low, the only way to retrieve a
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Figure 11. For a coherence level = 0.54: correlation coefficients between synthetic velocity change curves and the expected velocity change curve as a
function of the number of synthetic averaged functions (Nsta) for (a) the generalized formulation and for (c) the standard method. Reconstructed velocity
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Table 1. Inversion parameters used in the synthetic tests.

Synthetic tests α β

Long-term periodic-type
fluctuation test

high coh � high α; low coh �

low α

1000

Velocity drop test ≈0 5
Transient noise perturbation test ≈0 5

proper velocity change curve is to average over sufficient station
pairs.

4 A P P L I C AT I O N T O R E A L DATA

With synthetic tests, we have established a general framework to
identify and interpret long-term periodic-type velocity changes
from seasonal-type trends, rapid velocity drops (due to transient
changes) and sudden velocity drops and recoveries as an effect of
transient and sudden local source emissions. We have analysed the
effect of the regularization parameters and the averaging over sta-
tion pairs for the three different cases. Now, we apply the method
to a complex data set of noise cross-correlations at Klyuchevskoy
volcanic group (Kamchatka), hampered by loss of data and the
presence of highly non-stationary seismic tremors.

4.1 Klyuchevskoy volcanic group

The Klyuchevskoy volcanic group (KVG), located in Kamchatka,
is one of the most active clusters of subduction-zone volcanoes in
the world, where the annual rate of explosive eruptions is three to
five (Schneider et al. 2000). The KVG has an averaged extension of
70 km and 13 stratovolcanoes. It includes active volcanoes such as
Klyuchevskoy, Krestovsky, Ushkovsky, Bezymianny and Tolbachik.
The Klyuchevskoy volcano, the most outstanding volcano which
is 4750 m high, is associated with the emission of basaltic and
basaltic–andesitic lavas and it has a mean eruptive rate of 1 m3

s−1 over the last 10 kyr (Fedotov et al. 1987). Two other active
volcanoes, Shiveluch and Kizimen, are located only 60 km north
and south of KVG, respectively. This cluster of volcanoes is located
off the edge of a tectonic junction: the Pacific Plate is subducting
down the Aleutian Trench and also moving under the Okhotsk Plate.
The high volcanic activity is also a consequence of the Hawaii–
Emperor Seamount chain that terminates in the Kuril–Kamchatka
Trench. Geodynamic models that have been proposed to explain
the exceptional activity of the KVG include fluid being released
from the thick, highly hydrated Hawaii–Emperor Seamount crust
(Dorendorf et al. 2000), mantle flow around the corner of the Pacific
plate (Yogodzinski et al. 2001) and recent detachment of a portion
of the subducting slab (Levin et al. 2002; Levin et al. 2005).

The volcanic activity of the KVG leads to the generation of strong
volcanic tremors (Gordeev et al. 1990) with sources located very
close to the surface and at depth near the crust mantle boundary
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(Shapiro et al. 2017a). These tremors spoil the ambient noise cross-
correlations. We use the information of Droznin et al. (2015) and
Soubestre et al. (2018) about detection of these signals and about
location of their sources in Klyuchevskoy volcanic group to recover
seismic velocity fluctuations in this region, as we use the same data
set of noise cross-correlations.

The particular tectonic settings surrounding KVG and its strong
eruptions with high seismic activity (e.g. Senyukov et al. 2009;
Zharinov & Demyanchuk 2009; Ozerov et al. 2013) enable many
seismic tomographic surveys (e.g. Slavina et al. 2012; Koulakov
et al. 2013; Lees et al. 2013) and receiver function analysis to study
the internal structure of the KVG (Nikulin et al. 2010).

Tomographic studies on the KVG reveal an extremely high Vp/Vs
ratio (up to 2.2), below 25 km depth. This feature can act as a channel
that brings deep mantle materials to the bottom of the crust. It is
also responsible for all volcanic activity in the KVG (Koulakov et al.
2013).

Our study covers January 2009 to July 2013 when both the
Klyuchevskoy and the Tolbachik volcanoes erupted. Both volca-
noes are characterized by effusive eruptions with basaltic to basal-
andesitic lavas (e.g. Churikova et al. 2013, 2015; Belousov et al.
2015). Two eruptions took place on the Klyuchevskoy volcano. The
first one started in June 2008 and the volcanic activity ceased at the
end of January 2009. The second Klyuchevskoy eruption goes from
July 2009 to 2010 December 7. Spatterings of hot magma started on
2009 August 2. The summit eruption activity was characterized by
weak ash emissions (less than 300 m of height), although in 2010
the ash emissions were stronger (9 km of height). The eruption in-
tensity decreased at the end of 2010. All the recorded Klyuchevskoy
summit eruptions are characterized by a gradual growth of activity
(Senyukov 2013). A detailed analysis of records of volcanic tremors
has been used by Soubestre et al. (2018) to identify two different
stages of the 2009–2010 Klyuchevskoy eruption with the stronger
second stage starting approximately in June 2010.

The last eruption is the fissure eruption of the Tolbachik vol-
cano (2012–2013). The 2012–2013 Tolbachik eruption started on
2012 November 27 corresponding to an eruptive tremor (Fig. 16)
due to a first magma migration (Caudron et al. 2015). The Tol-
bachik regional zone of cinder cones is 900 km2 in size and 70 km
long. Before last eruption (2012–2013), historical eruptions in Tol-
bachik zone occurred in 1740, 1941 and 1975–1976 (Gordeev et al.
2013).

The three eruptions that take place during our study are charac-
terized by the generation of seismic tremors (Gordeev et al. 1990;
Droznin et al. 2015; Shapiro et al. 2017a).

4.2 Data

We use continuous records from a total of 18 three-component seis-
mic stations (Fig. 12) of the seismic network deployed by the Kam-
chatka Branch of the Geophysical Service (KBGS) of the Russian
Academy of Sciences (Chebrov et al. 2013). Each station compo-
nent has a CM-3 short-period sensor. We analyse data recorded
continuously between 2009 January 1 and 2013 July 7.

Records are digitized at 128 samples per second and downsam-
pled to 8 samples per second. Cross-correlations are calculated in
24-hr long segments. We pre-process the continuous records fol-
lowing the method described by Bensen et al. (2007). We choose
a spectral band between 0.08 and 0.7 Hz because, after 0.7 Hz,
the correlations are too much affected by volcanic tremor cor-
relation signals. After whitening, 1-bit normalization suppresses

high-amplitude data, such as earthquake signals, and emphasizes
low-amplitude data, such as ambient seismic vibrations. Even af-
ter reducing persistent signals from localized sources with pre-
processing, volcanic tremors still act as potential biasing signals
perturbing the reconstructed GF. Then, we compute daily CCFs for
all possible station pairs. We work with coda waves of daily CCFs
between the vertical-component records of the station pairs (Rivet
et al. 2014).

For passive monitoring techniques, both the continuity of the
records and the good quality of data are important. For this reason,
we do first a quality check of the daily CCFs for each possible
seismic station pair, 209 pairs in total. We visually inspect all CCFs
of each station pair to rank them in different groups according to
the quality of the recordings. Taking into account the continuity
and regularity over time of the CCFs, where coda waves are clearly
distinguished, we consider three quality groups, from best to worst:
A, B and C. We can apply our method to the CCFs of the station
pairs ranked in groups A and B but not to those of group C.

We work with station pairs ranked in group A, there are 23
in total. Fig. 13 shows an example of daily CCFs computed for
a station pair ranked in group A with its associated correlation
coefficient matrix. The periods with highest correlation coefficients
correspond to the first two-thirds of 2010 and to 2013. While most of
the station pairs of the group A are in the vicinity of Klyuchevskoy
and Tolbachik volcanoes, three station pairs (from stations BDR,
SMK and SRK) are farther away from the rest, in the vicinity
of the Shiveluch volcano (Fig. 12). Because of this, in our study
we separate these three pairs near Shiveluch from the others. We
compute all the doublets for the 23 station pairs with the MWCS
analysis.

Correlation coefficient matrices for each station pair ranked with
A are in Figs 14 and 15. We can see different patterns in correlation
coefficients if we compare the main group of station pairs (Fig. 14)
with the northern group (Fig. 15). All pairs show a strong correlation
in the second half of 2010 and in 2013, matching with the ongoing
Klychevskoy and Tolbachik eruptions [Droznin et al. (2015), fig.
5], respectively. Highest correlation values are observed between
the stations of the main group (Fig. 14).

Daily averaged levels of tremors are shown in Fig. 16, determined
by the KBGS operators. The strongest tremor activities of both vol-
canoes also match with the highest correlation coefficients between
CCFs (Fig. 14), which means that tremors are the main sources.

Before the inversion, we reject the doublets where the as-
sociated correlation coefficients (Figs 14 and 15) are smaller
than 0.3. Thereby, we ensure the recovered temporal velocity
variation curves tend towards zero for days with bad quality
recordings.

4.3 Results

We compute the whole relative velocity changes (STV + LTV) for all
station pairs of the quality group A and then, we average, indepen-
dently, the stations near Shiveluch (three station pairs; Fig. 17) and
the main group of station pairs (20 pairs; Fig. 18) near Klyuchevskoy
because the velocity changes associated with these two volcanoes
can be very different. Both STV and LTV are not independent
measurements but result directly from inversion, applying different
regularization parameters. The choice of the regularization param-
eters for the inversion is based on the conclusions of our synthetic
tests. The parameters used for the whole velocity variations are
α = 100 and β = 5 to highlight STV (Figs 17 and 18, black curves).
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Figure 12. Topographic map of the Klyuchevskoy group of volcanoes in Kamchatka peninsula with positions of seismic stations. Red stars are the eruptive
centres of the 2009–2010 Klyuchevskoy and of the 2012–2013 Tolbachik volcanoes.

However, to converge towards the actual relative velocity changes of
the medium, we need to retrieve a stable trend due to LTV. Thus, we
compute reconstructed velocity change time-series from all consid-
ered station pairs with a high β value (β = 1000) to obtain precise
velocity change curves that avoid STV. The smoothing parameter
is the same than before, α = 100. After obtaining all the individual
LTV, we average them all to get the general trend (Figs 17 and 18,
red curves).

We compute the data − misfit for each individual time-series of
velocity changes retrieved from the different station pairs. Then, we
average all the values obtained for the main group of station pairs

and for the three station pairs near Shiveluch ( data − misfit =
0.074% for both groups).

To establish a relation between the results of the real data and the
synthetics, we need to know the amplitude of the retrieved velocity
changes and the coherence level of the real CCFs. Concerning the
amplitude, the maximum peak-to-peak amplitudes of the retrieved
LTV and the whole relative velocity changes, that is, STV + LTV, are
about 0.02 % and 0.05%, respectively, for 20 station pairs (Fig.18),
which correspond to the magnitude orders of the amplitudes of the
expected velocity change curves used in Sections 3.1 [Fig. 4(a), ex-
pected velocity curve 3], 3.2 and 3.3. On the other hand, the mean
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Figure 13. (a) Daily CCF computed from station pair BZM–KIR. (b) Correlation coeffient matrix associated to the doublets of the station pair BZM–KIR.
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Figure 14. Correlation coefficient matrices between all daily CCFs from January 2009 to July 2013 associated to 20 station pairs of group A located in the
vicinity of Klyuchevskoy and Tolbachik volcanoes.
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Figure 15. Correlation coefficient matrices between all daily CCF from January 2009 to July 2013 associated to the station pairs of group A located in the
vicinity of Shiveluch.
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Figure 16. Normalized tremor amplitudes for Klychevskoy (green) and Tolbachik (blue) volcanoes.

Figure 17. Evolution of relative velocity changes measured from three pairs of stations located near Shiveluch from January 2009 to July 2013. The whole
relative velocity changes (STV+LTV in black) and long-term velocity variations (red curve) are overlaid. Klyuchevskoy and Tolbachik eruptive periods are
shown with green and blue rectangles, respectively.
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Figure 18. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to July 2013 (averaging of time-series of velocity changes
over 20 station pairs). The whole relative velocity changes (STV+LTV in black) and long-term velocity variations (red curve) are overlaid. Klyuchevskoy and
Tolbachik eruptive periods are shown with green and blue rectangles, respectively.

coherence level of the real CCFs, after rejecting correlation coef-
ficients smaller than 0.3 (Figs 14 and 15), is coh = 0.41 for both
groups of station pairs. Then, we can compare the similarity of the
LTV and STV of the real data with the synthetics: for long-term
periodic-type fluctuations the correlation with the expected velocity
change curve is 0.77 (Fig. 4b, coh = 0.41) and, for short-term fluctu-
ations, Qdrop = 0.67 (Fig. 7, coh = 0.41). It is important to note that,
for STV and LTV, averaging over different pairs keeps these changes
underestimated (Figs 5a and 8a), even though the coherence level
of the real CCFs, coh= 0.41, is higher than those coh values consid-
ered in the synthetics. Nevertheless, the SNR increases by a factor
of 1.6 when considering three station pairs instead of only one, and
up to 2.5 with 20 station pairs, in case of short-term fluctuations
(Fig. 8a) and, for long-term periodic-type variations, the correlation
with the expected velocity curves of the reconstructed time-series of
velocity changes goes from 0.22 ± 0.28, in case of only one station
pair considered, to 0.38 ± 0.25, averaging over three station pairs,
and to 0.74 ± 0.10 with 20 station pairs (Fig. 5a). Extrapolating to
our results with real data (coh = 0.41), the correlation is close to 1
when averaging over 20 station pairs. Therefore, we achieve stable
LTV and STV with the averaged time-series of velocity changes
of the main group of 20 station pairs near Klyuchevskoy (Fig. 18)
while the final time-series of velocity changes of the three station
pairs near Shiveluch is still very noisy (Fig. 17). In this case it
would be necessary to average more station pairs in order to ob-
tain cleaner velocity changes. We also improve the ability of our
method to recover velocity changes during the occurrence of low-
frequency volcanic tremors by averaging different synthetic station
pairs (Fig. 11a). Although there are high correlations between daily
CCFs when strong tremor activities take place (around 0.8 during
2010 and 2013 periods in Figs 14 and 16), the high instability of
correlations keeps low the mean coherence level of the final inver-
sion (coh = 0.41). Under these circumstances, we need to average
over enough station pairs. By averaging over 20 station pairs, the
correlation of the reconstructed time-series of velocity changes with
the expected velocity curve increases by a factor between 2.2 and
17.3, with regard to a single station pair (Fig. 11a). However, we
would retrieve more proper short- to medium-term velocity changes
due to episodic volcanic tremors by averaging over more than 40
station pairs, to interpret these velocity drops and retrievals without
ambiguity (Fig. 11a).

4.4 Interpretation of the results

The seismic velocity variations measured near Shiveluch (Fig. 15)
are difficult to interpret because this measurement was done only
with three station pairs and is, therefore, very noisy. Besides,
the measurements made with 20 station pairs surrounding the
Klyuchevskoy group of volcanoes show velocity variations that can
be interpreted in relationship of eruptive history of the two most
active volcanoes of this group: Klyuchevskoy and Tolbachik. The
whole velocity variations (STV+LTV) are controlled by the com-
bination of two main mechanisms: (1) the variations of the media
mechanical properties caused by the magma motion and pressur-
ization within the volcano plumbing systems and (2) the environ-
mental effects. These two mechanisms cannot be simply separated
as STV and LTV computed during the data analysis because the
long-duration eruptions of Klyuchevskoy and Tolbachik have their
imprints on both STV and LTV.

The environmental contribution to the seismic velocity variations
is expected to be controlled by seasonal changes in temperature,
in hydrological loads and in snow cover. These seasonal effects
are particularly strong in Kamchatka and, therefore, we decided to
estimate and remove them from the whole time-series, expecting
that the remaining velocity variations mainly reflect the dynamics
of the volcano plumbing system. To estimate the average long-term
seasonal component from the velocity variation time-series shown
in Fig. 18, we computed median dν

ν
values for every Julian day.

Then, the obtained 1-yr periodic function has been smoothed in
a 3-month long moving window. The resulted seasonal variations
are shown with a thick grey line in Fig. 19(a). The seasonality is
very clear with a very pronounced velocity increase during winter
(between end of December and end of April) and a pronounced
velocity decrease during summer (between end of May and end of
August).

After removing this seasonal trend, the velocity variations ex-
hibit three significant periods with decrease over 0.01 % (Fig19b).
The first of this velocity drops corresponds to the end of the 2008–
2009 Klyuchevskoy eruption. The second drop starts at the end
of May 2010 and terminates simultaneously with the 2009–2010
Klyuchevskoy eruption. The third velocity decrease starts, approx-
imately, simultaneously with the 2012–2013 Tolbachik eruption.
Therefore, all detected decreases in seismic velocity are observed
during eruptions and most likely reflect the inflation-caused dila-
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Figure 19. Evolution of relative velocity changes on Klyuchevskoy volcanic group from January 2009 to July 2013 (averaging of time-series of velocity
changes over 20 station pairs). (a) The whole relative velocity changes (in black) and average seasonal variations (thick grey curve) are overlaid. (b) Velocity
variations after removing the seasonal component. Periods of the Klyuchevskoy and Tolbachik eruptions are shown with green rectangles, respectively. The
vertical red dashed line indicates the onset of the second stage of the 2009–2010 Klychevskoy eruption (Soubestre et al. 2018). (c) Zoom on one-month period
including the beginning of the Tolbachik eruption (blue rectangle). The vertical red dashed line indicates the onset of the main eruption stage.

tion of the shallow crustal layers. Nevertheless, the durations of the
observed velocity drops do not exactly coincide with the known
periods of eruptive activity. A possible explanation for this is that
during the long-duration of Kamchatka volcanoes, the state of the
plumbing system exhibits significant changes.

The detailed source analysis of coeruptive tremors by Soubestre
et al. (2018) has identified two separate stages of activity during the
2009–2010 Klyuchevskoy eruption. The second stage that started
approximately in May 2010 (indicated with vertical dashed line in
Fig. 19b) was more intensive with magma likely moving closer to
the surface. The observed velocity drop coincides in time with the
second stage and confirms that the large-scale magma migration
occurred between the two stages of eruption.

The level of seismic velocity changes also strongly varied during
the 2012–2013 Tolbachik eruption. We observe, in particular, that
the onset of the strong velocity drop does not coincide with the
beginning of the eruption (Fig. 19c) but rather with the beginning
of its main stage, when the outpouring of lava concentrated in a
single vent where the main eruptive Naboko cone started to grow
(Belousov et al. 2015). The later variations in seismic velocities
are consistent with changes in tremor sources identified based on
correlations of continuous seismic records (Shapiro et al. 2017b).

5 C O N C LU S I O N S

A general framework has been established to provide insights
into volcanic unrest using continuous noise-based seismic velocity
change observations. Particular care is required to recover temporal
velocity variations from CCFs where the noise field recordings are
affected by transient tremor signals. The generalized formulation
can also be used to study crustal earthquake relaxations and the ef-
fects of fluid injections in the subsurface, regardless of the seismic
activity. This approach will be useful for improving noise-based

seismic monitoring at all scales in cases where noise sources are
not stable in time and a localization of the changes is not attempted.
To summarize, we classify the principal ideas of this work in three
itemized sections.

5.1 Methodology

A general formulation for retrieving velocity changes is applied
avoiding the definition of an arbitrary reference CCF. The final
time-series of velocity changes is obtained by inversion, using a
classical Bayesian linear least-squares formulation. The role of α

and β, the regularization parameters, is essential and further studied
with the synthetic tests. STV and LTV are sorted after the inversion:
for retrieving LTV, a high β is needed. STV is obtained afterwards,
subtracting the LTV from the whole relative velocity changes, which
are computed with a lower β.

5.2 Synthetic tests

The choice of the inversion parameters depends on the type of
velocity changes to retrieve (STV or LTV) and on the coh of the
CCFs (Table 1). α, the smoothing parameter, and the coh level are
directly proportional.

Artificial velocity drops might appear in the reconstructed veloc-
ity change time-series when the data are affected by strong noise
perturbations and in case of strong differences in the coh of CCFs
between calm and noise-perturbed periods. If the coh is low we have
to average over sufficient station pairs to retrieve a proper velocity
change curve. In general, the number of station pairs needed to
average depends on the coh level of the CCFs. This method pro-
duces an underestimation of the amplitude of the final averaged
time-series of velocity changes that might have a relation with the
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Table 2. Inversion parameters used with real data.

Real data α β

Whole relative velocity changes (STV + LTV) 100 5
LTV 100 1000

covariance matrix of the data vector, which could decrease the dou-
blet measurements. In case of low coh we can retrieve STV and
LTV of a similar magnitude order than the peak-to-peak amplitude
of the reconstructed time-series of velocity changes. Despite the
drawback, averaging over different station pairs still improves the
reconstructed time-series of velocity changes.

5.3 Real data

The method was applied to the Klyuchevskoy volcanic group data
set of noise cross-correlations, interfered with strong and localized
volcanic tremors and the loss of data. Two groups of station pairs
were treated separately because the surrounding volcanoes produce
different behaviours in the CCFs: three station pairs located in the
vicinity of the Shiveluch volcano and 20 station pairs, the main
group of stations, in the KVG area. The parameters used in the
inversion are summarized in Table 2 considering the results of the
synthetics (Table 1). Stable LTV and STV are obtained for the main
group of 20 station pairs. Regarding the three station pairs near
Shiveluch, more pairs to average would be necessary in order to
have cleaner velocity changes. To interpret velocity drops during
the occurrence of volcanic tremors without ambiguity, it would be
necessary to average over, at least, twice the number of station pairs
used (20 receiver pairs).

Long-term eruptions of Klyuchevskoy and Tolbachik are con-
trolled by the fluctuations of the media mechanical properties and
by environmental effects. Therefore, both STV and LTV are affected
by the two mechanisms and cannot be separated. Three velocity de-
crease periods over 0.01 % are observed after removing the seasonal
trend due to the environmental effects to the whole velocity varia-
tions. The decreases are related with the inflation-caused dilation of
the shallow crustal layers. The first decrease occurs at the end of the
2008–2009 Klyuchevskoy eruption, the second corresponds to the
second stage of the 2009–2010 Klyuchevskoy eruption (Soubestre
et al. 2018) and the third coincides with the beginning of the main
stage of the 2012–2013 Tolbachik eruption (Belousov et al. 2015).
The duration of these velocity decrease periods does not exactly co-
incide with the eruptive activity, probably because of the continuous
and significant changes of the plumbing system in the Kamchatka
volcanoes.

A C K N OW L E D G E M E N T S

All the data used in this study were provided by the Kamchatka
Branch of Geophysical Survey of Russian Academy of Sciences
(http://www.emsd.ru). This study was supported by REPSOL CO-
DOS and REPSOL CO-DOS Phase 2 projects, by the European
COST action TIDES (ES1401), by the Russian Ministry of Edu-
cation and Science (grant number 14.W03.31.0033), by the French
projects ‘Labex UnivEarth’ and Université Sorbonne Paris Cité
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