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S U M M A R Y
Modern seismic networks are recording the ground motion continuously at the Earth’s surface,
providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse
these records with statistical array-based approaches to identify coherent time-series as a
function of time and frequency. Using ideas mainly brought from the random matrix theory,
we analyse the spatial coherence of the seismic wavefield from the width of the covariance
matrix eigenvalue distribution. We propose a robust detection method that could be used for
the analysis of weak and emergent signals embedded in background noise, such as the volcanic
or tectonic tremors and local microseismicity, without any prior knowledge about the studied
wavefields. We apply our algorithm to the records of the seismic monitoring network of the
Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers
with an aperture of ∼15 km. This array recorded many teleseismic earthquakes as well as
seismovolcanic events during the year 2010. We show that the analysis of the wavefield at
frequencies smaller than ∼0.1 Hz results in detection of the majority of teleseismic events
from the Global Centroid Moment Tensor database. The seismic activity related to the Piton
de la Fournaise volcano is well detected at frequencies above 1 Hz.

Key words: Time-series analysis; Volcano seismology; Statistical seismology; Volcano
monitoring.

1 I N T RO D U C T I O N

The fast development of large seismic networks deployed world-
wide and providing continuous records of the ground motion at
the Earth’s surface every day has challenged seismologists to de-
velop automatic processes to detect seismic events, such as tectonic
earthquakes, volcanic tremors or surface explosions, in continuous
seismic waveforms. Traditional passive seismological methods are
based on signals generated by earthquakes or explosions, namely,
on sources localized in space and time. Many algorithms for detec-
tion and characterization of such signals exist and are successfully
applied for automatic data processing and analysis. They usually
assume that the studied sources generate wave fronts that can be
characterized by reasonably well-defined changes of signal proper-
ties at individual receivers. Some well-known methods for exploring
these rapid signal changes compare the Short-Term Average with
the Long-Term Average introduced by Allen (1982) or some higher
order statistical functions, such as the kurtosis and the skewness
functions (e.g. Saragiotis et al. 2002). The accuracy of the event
detection can also be improved by combining multiple approaches
(e.g. Baillard et al. 2014).

However, many types of signals produced by some natural seis-
mic sources or by anthropogenic activity have an emergent character
and do not present any clear onset. Among examples of such emer-
gent signals we may mention the volcanic and the tectonic tremors
and the ‘microseismic noise’ generated by storms and waves in
the oceans. Therefore, these signals cannot be efficiently identified
with the aforementioned methods based on detection of the sharp
onset or pulse-like feature in the waveform. The spatial coherence
of emergent signals remains however higher than the ‘incoherent’
seismic noise, and can be thus quantified when records at several
spatial locations are available. In other words, detection of these
types of signals can be done with array-based methods.

The development of array-based methods in seismology was
mainly motivated by the installation of first two large-scale seis-
mic arrays LASA (Frosch & Green 1966) and NORSAR (Bungum
et al. 1971) in mid-1960s in the context of the monitoring of nuclear
explosions. Arrays of sensors provide dense spatial samples of the
wavefield in a small-space region and their 2-D configuration can
be used to access the apparent traveltimes of the seismic waves be-
tween the receivers (apparent because we only access the projection
of the seismic wavefield onto the array plane), hence the apparent
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slowness. The well-known method generally used as first approach
to estimate the apparent slowness and backazimuth of the recorded
waves is the plane-wave beamforming, that assumes plane wave
fronts. A good review of this class of methods can be found in Rost &
Thomas (2002). This technique stands well for far-fields seismic
sources, but fails to correctly estimate slowness and backazimuth
of sources lying within the array. Similarly, the strongly scattered
fields that cannot be simply characterized by the beamforming.

The method here proposed focuses on the array covariance ma-
trix, that contains information on the spatial coherence of the
recorded wavefield. The main idea comes from Bartlett (1954) and
Lawley (1956) who proposed that the number of independent sig-
nals can be deduced from the rank of the covariance matrix with the
largest eigenvalues corresponding to these signals and the smaller
ones to the background noise. Estimating the effective rank of the
covariance matrix from its eigenvalues spectrum in a presence of
noise is not a simple problem, and several approaches were pro-
posed to solve it. Wax & Kailath (1985) proposed to use a criteria
from the information theory by comparing the observed eigenvalues
with the distributions obtained from a signal model that consists in
a sum of an unknown number of independent signals embed in a
background noise (usually considered a white noise). The number
of independent signals was then frequently used to define the coher-
ent and the incoherent subspaces (the spaces formed by the signal-
and the noise-related eigenvectors, respectively). The coherent sub-
space can then be injected into the beamforming analysis to obtain
better slowness and backazimuth estimates (Goldstein & Archuleta
1987; Chiou & Bolt 1993; Wagner & Owens 1996).

The random matrix theory, which also finds application in
telecommunication (Müller 2002; Tulino & Verdú 2004) and in
acoustics (Aubry & Derode 2009a), can help to understand the
eigenvalue distribution of covariance matrices. Marchenko & Pas-
tur (1967) provided a thorough description of the probability of the
eigenvalue distribution of some sets of particular random matrices.
Sengupta & Mitra (1999) and Mestre (2008) applied this descrip-
tion to the particular case of covariance matrices. In underwater
acoustics, Gerstoft et al. (2012) and Menon et al. (2012a) used
these statements to describe the probability of distribution of the
ocean noise covariance matrices, recorded by linear arrays. These
results then have been used in Menon et al. (2012b) to filter di-
rectional sources in order to extract stable Green’s function from
cross-correlation (Roux et al. 2004) of ambient noise between the
receivers.

The purpose of this study is to develop a robust detector of sig-
nals based on their coherence across an array of sensors. The exact
separation between the coherent and the incoherent parts of the
wavefield is not necessary for this goal. Instead, we use a simple
and robust characteristic of the covariance matrix eigenvalue dis-
tribution. An example of such approach is the one by Wagner &
Owens (1996) who used the magnitude of the largest eigenvalue
as a signal detector. We follow this idea, but instead of focusing
on the largest eigenvalue, we calculate the width of the eigenvalue
distribution of the covariance matrix in a sliding time window, at
different frequencies. We apply a time-running normalization and a
spectral whitening to the data as described in Bensen et al. (2007)
in order to discard the signal amplitude information, and to focus
on the spatial coherence. The main advantages of our method are
the simplicity of its implementation and the fact that no a priori
knowledge on the recorded signals is needed.

In this paper, we mainly focus on describing the proposed sig-
nal detection method. We start with explaining basic elements
of the covariance matrix theory. Then, we discuss the practical

implementation of the method to the data recorded by an array of
seismic receivers. We perform a set of tests with synthetic data to
optimize the choice of the method parameters. Finally, we illustrate
our method with an application to the real data from the UnderVolc
broad-band seismic array (Brenguier et al. 2012) deployed around
the Piton de la Fournaise volcano located on the eastern side of
La Réunion Island, in the Indian Ocean (Brenguier et al. 2012).
We show that at relatively long periods (above 10 s) the covariance
matrix analysis of the UnderVolc network records is mainly sen-
sitive to teleseismic earthquakes. At high frequencies (0.5–5 Hz),
the method is sensitive to local seismic sources and in particular to
those related to volcanic activity, such as the pre-eruptive swarms
of seismovolcanic events and the coeruptive volcanic tremors.

2 C OVA R I A N C E M AT R I X : T H E O RY

We define the array data vector at frequency f as

u( f ) =

⎡
⎢⎢⎢⎢⎢⎣

u1( f )

u2( f )

...

uN ( f )

⎤
⎥⎥⎥⎥⎥⎦

, (1)

where ui(f) is the complex Fourier spectra of the record by sensor
i and N is the number of sensors. The covariance matrix is defined
as

�( f ) = E
[
u( f )u†( f )

]
, (2)

where E represents the expected value and † denotes Hermitian
transpose so that the outer product u( f )u†( f ) is an N × N ma-
trix. Following Gerstoft et al. (2012), we consider the data being
composed of three main parts:

u( f ) =
K∑

k=1

αksk( f ) + np( f ) + nn( f ) , (3)

where sk( f ) is the signal produced by the kth coherent source with
complex amplitude αk, K is the number of independent sources,
np( f ) is the propagating seismic noise and nn( f ) is the non-
propagating noise (sensor-self noise, weather perturbation, etc.).
The covariance matrix obtained by injecting eq. (3) in eq. (2) is

�( f ) = �s( f ) + � p( f ) + �n( f ), (4)

where �s( f ) is the covariance matrix of the coherent sources, � p( f )
is the covariance matrix of the incoherent propagating noise and
�n( f ) is the covariance matrix of the non-propagating noise. The
three terms in eq. (3) are not correlated and, therefore, no cross-
terms appear in eq. (4) because their expected values vanish.

We assume the sources to be independent, that mathematically
leads to E[αkαk′ ] = E

[|αk |2
]
δkk′ . To simplify, we consider E[|αk|2]

= 1, so the first term in eq. (4), that is, the covariance matrix of K
independent sources with is given by

�s( f ) =
K∑

k=1

sk( f )s†k( f ) . (5)

One can easily demonstrate that this matrix is of rank K and thus
contains K non-zero eigenvalues, and N − K zero eigenvalues.

We consider the non-propagating noise to be uncorrelated be-
tween the sensors. The third term in (4) can thus be written as

�n( f ) = ν2( f )I , (6)
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where ν2(f) is the spectral density of the non-propagating noise and
I is the N × N identity matrix. Therefore, this term is of rank N, that
is, the eigenvalue distribution is flat, with all eigenvalues equal to
ν2(f).

We know that the ambient seismic noise is dominated by surface
waves (Friedrich et al. 1998). Therefore, we assume the propagating
noise to be 2-D, and for simplicity, to be isotropic. If, in addition,
we consider the media to be homogeneous, we can use at any given
frequency f the analytic solution of Cox (1973) for the propagating
noise covariance matrix :

�
p
i j ( f ) = J0(2π f γ ‖r j − ri‖) , (7)

where γ is the slowness of the waves, ri is the planar coordinates of
the sensor i at the Earth’s surface, such as ‖r j − ri‖ is the distance
between the sensors i and j and J0 represent the Bessel function of
the first kind. An asymptotical form of the eigenvalue distribution
of the 2-D isotropic noise covariance matrix is given for the case of a
linear array by Gerstoft et al. (2012) who shown that the eigenvalue
distribution of this matrix depends on the typical sensor-spacing
d and the wavelength λϕ = cϕ/f (where cϕ is the phase velocity).
Indeed, when 2d/λϕ > 1, the covariance matrix is full rank, and
with the increasing value of this ratio the eigenvalue distribution
becomes flatter. Inversely, 2d/λϕ < 1 implies a rank deficiency,
so that the number of non-zero eigenvalues decreases when this
ratio tends to zero. A simple explanation of this deficiency is that
at low frequencies the array aperture is too small compared to the
wavelength to measure the wavefield oscillations, and the seismic
noise is seen as coherent.

3 M E T H O D : C OVA R I A N C E M AT R I X
E S T I M AT E D F RO M T H E DATA

The different steps of the computation and the analysis of the ar-
ray covariance matrix are presented in Fig. 1. First, the signals
are divided into overlapping time windows (averaging windows) in
which energy normalization is applied (temporal normalization and
spectral whitening). Then, we compute the Fourier transform of the
pre-processed signal within smaller subwindows and calculate the
array cross-spectra matrices in each of the subwindows. The array
covariance matrix is obtained from the average of the cross-spectra
matrices. The covariance matrix is thus computed over a set of M
subwindows within each averaging window. We finally compute the
spectral width of all the obtained covariance matrices, in different
averaging windows as a function of the frequency.

3.1 Array covariance matrix estimation

We estimate the covariance matrix C( f ) from the time average of the
Fourier cross-spectra matrices computed over a set of M overlapping
subwindows (see Fig. 1) of length δt:

C( f ) = 〈
u( f )u†( f )

〉

t

= 1

M

M∑
m=1

um( f )u†
m( f ) , (8)

where um( f ) is the vector of data Fourier spectra in the subwindow
m. The total duration of the window in which the array covariance
matrix is estimated is thus 
t ≈ Mrδt, where r is the overlapping
ratio. Note that the array covariance matrix is inherently Hermitian,
and therefore is, diagonalizable.

Figure 1. Sequence of operations used for estimating the array covariance
matrix from continuous seismic records, and computing the spectral width.
See the text for details.

3.2 Array covariance matrix eigenvalue distribution

We obtain the eigenvalues of the covariance matrix with using al-
gorithms from the Eigen 3.2.6 C++ library. Because we estimate
the covariance matrix from a finite set of subwindows, its eigenvalue
distribution differs from the theoretical one described in Section 2.
Marchenko & Pastur (1967) proposed an description of the eigen-
value probability of distribution of estimated covariance matrices.
These results were applied to underwater acoustics in Gerstoft et al.
(2012) in order to qualify the effect of the estimation on the co-
variance matrix of ocean propagating and non-propagating noises
recorded by a linear array of hydrophones. A main result is that the
non-propagating noise eigenvalue spectrum estimated from a finite
number of subwindows is not anymore constant but decays steadily.
It slowly converges to a flat distribution with an increasing number
of subwindows.

3.3 Array covariance matrix spectral width

The eigenvalues λi of the Hermitian matrix C( f ) are real and posi-
tive numbers. We arrange them in decreasing order. The covariance
matrix spectral width is then computed as a function of frequency
as:

σ ( f ) =
∑N

i=1(i − 1)λi ( f )∑N
i=1 λi ( f )

. (9)

The values of σ estimated within different time windows become
nearly zero when the analysed records are dominated by a single
strong source and they approach some maximal value σ max(f) when
a window containing only non-propagating noise is analysed. The
value of σ max(f) depends on the relative amplitudes of the non-
propagating and the propagating noises and on the wavelength-to-
interstation-distance ratio 2d/λϕ .
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Figure 2. Map of the Piton de la Fournaise volcano. The top right inset shows the location of the Piton de la Fournaise volcano on La Réunion Island and
the bottom right inset shows the location of La Réunion island in the Indian Ocean. The locations of UnderVolc stations are shown with red triangles and the
location of the RER seismic station of the Geoscope seismic network is shown in blue triangle.

4 P I T O N D E L A F O U R NA I S E
S E I S M I C N E T W O R K

We applied our method to the data from the UnderVolc experi-
ment (Brenguier et al. 2012) when an array of 21 broad-band seis-
mographs was installed around the Piton de la Fournaise volcano
on La Réunion island as shown in Fig. 2. The network consists
of 15 Gurlap 30-s CMG-40T broad-band three-component seis-
mometers and of 6 additional Kinemetrics Q330 associated with
Gurlap 3ESPC three-components sensors. This array recorded many
teleseismic earthquakes as well as seismovolcanic events associ-
ated with the volcanic activity. This study focuses on the vertical-
component records. An extension of our method to a full analysis
of three-component seismograms in under way. We analyse seismic
data recorded during 2010 (from January 1 to December 31) when
all 21 stations were recording simultaneously.

5 S Y N T H E T I C T E S T S

We performed synthetic tests to characterize the covariance matrix
spectral width as a function of the wavefield coherence, for propa-
gating signals only. These tests were applied to the geometry of the
UnderVolc network system (Fig. 2) and we ignored the topography.

5.1 Building synthetic data

We built the data as described in Fig. 3: we considered a number
of K vertically polarized plane surface waves propagating isotrop-
ically in the network plane, with the same slowness and frequency
(respectively, γ and f). The expression of the kth plane wave at
coordinate r = (x, y) is given by

�k(r, f ) = exp(−2iπ f γ ek · r − iϕk) , k = 1 . . . K , (10)

where ϕk is the phase, ek = cos(θk)ex + sin(θk)ey is the direction
vector of the wave with θ k homogeneously distributed between 0

Figure 3. Construction of the wavefield used in synthetic tests: a sum of
plane waves recorded by a seismic array. The black triangles show the
location of the seismic stations and the blue arrows represent the incoming
plane waves.

and 2π . The synthetic data vector ũ is then obtained from the sum
of all recorded plane waves at ri , the coordinates of the sensor i:

ũi ( f ) =
K∑

k=1

�k(ri , f ) . (11)

The method requires averaging with time subwindows over a given
duration 
t. Therefore, we generated M different synthetic records
ũm( f ) , m = 1 . . . M corresponding to different time subwindows
in the real data. The seismic noise can be seen as an incoherent
wavefield and we simulate it as a sum of plane waves with ran-
domly varying phase from a given subwindow to another. A coherent
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Figure 4. Effect of the coherence or incoherence nature of the wavefield
on the eigenvalue distribution of covariance matrices computed from syn-
thetic wavefields, for the four cases considered in Section 5. Values of the
covariance matrix spectral width σ are indicated with vertical dashed lines.

wavefield is also simulated as a sum of plane waves. In this case,
however, the phase of each wave does not change in the subwin-
dows. We then built the synthetic covariance matrix using eq. (8)
from M different sets of synthetic signals in order to perform the
ensemble average (combining eqs 10 and 11)

C̃( f ) =
M∑

m=1

ũm( f )ũ†
m( f ) . (12)

5.2 Example of the covariance matrix spectra

We set the frequency to 0.2 Hz and the slowness to 1/2000 s m−1.
These parameters are approximatively those of the Rayleigh wave
propagation within La Réunion crust (Brenguier et al. 2008). We
investigated the effect of the number of sources and the coherence
of these sources within four cases. We used M = 100 generations
of the wavefield to perform the ensemble average, and we com-
pared the results obtained when K = 3 and 100 plane waves, for
the coherent and the incoherent cases (constant and random phases,
respectively). The eigenvalue distributions of the covariance matri-
ces obtained in all four cases are presented in Fig. 4. Not surpris-
ingly, when the plane waves are coherent, the number of non-zero
eigenvalue remains equal to 1 regardless of the number of sources
(Figs 4a and b). However, there are 3 non-zero eigenvalues when
the wavefield contains 3 incoherent plane waves (Fig. 4c), and the
covariance matrix spectrum is wider for a wavefield composed of
100 incoherent plane waves (Fig. 4d).

These simulations illustrate the main idea used in our analysis,
namely that the number of non-zero eigenvalues is related to the
number of independent signals. Fig. 4(b) illustrates that waves gen-
erated by the same source and scattered by the media will produce a
covariance matrix of rank 1, because they remain coherent. This is
in agreement with the theoretical results provided in, for example,
Aubry & Derode (2009b).

5.3 Selecting optimal parameters of the data analysis

Results of application of the proposed method to continuous seis-
mic records depend on the choice of the parameters used in the

Figure 5. Convergence of the covariance matrix spectral width σ (f) as
function of the number of subwindows M (eq. 8). The synthetic wavefield
composed of 100 incoherent plane waves was used for these tests. (a) Direct
results of synthetic tests. (b) Fit obtained with eq. (13). The value 3M0(f)
is shown with the black solid line, and shows the limit where σ (f) reaches
95 per cent of its maximum value.

covariance matrix computation, namely of the number of subwin-
dows M and of their length δt. This leads to a trade-off between a
statistically robust estimation of the covariance matrix, and a good
time resolution.

5.3.1 Length of the subwindows δt

The length of subwindows δt is directly linked to the lowest fre-
quency that can be resolved. In our case, the longest period that
we aim to study is 20 s (0.05 Hz). Therefore, we can use 48s-long
subwindows in order to have at least two oscillations of the signal
in every subwindow.

5.3.2 Number of subwindows M

When M = 1, the estimated covariance matrix is degenerated and its
rank equals 1. With increasing M the estimation of the covariance
matrix becomes more robust and its eigenvalue spectrum becomes
wider. The covariance matrix spectral width σ (f) converges to a
maximum value σ max(f). We used our synthetic signals to test the
speed of this convergence at different frequencies between 0.01
and 10 Hz. We computed the covariance matrix spectral width as
function of frequency and of subwindows number σ (f, M) as shown
in Fig. 5(a). This function can be reasonably fitted as proposed in
Fig. 5(b) with the following expression:

σ̃ ( f, M) = σmax( f )(1 − e−M/M0( f )) . (13)

Eq. (13) can be used to evaluate the maximal value reachable by
the covariance matrix spectral width and, more importantly, to
estimate the number of subwindows required to approach this
maximal value with a certain accuracy. Eq. (13) indicates that
95 per cent of the maximal value of the covariance matrix spec-
tral width is reached after stacking 3M0(f) subwindows. We display
3M0(f) with a black solid line on Fig. 5(b). We can see that with
considered network configuration a minimal number of 100 subwin-
dows are required to reach the 95 per cent threshold at all considered
frequencies.
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Figure 6. Illustration of the pre-processing of seismic records. (a) Raw data. (b) Raw data amplitude Fourier spectra. (c) Whitened spectral amplitude. (d) Real
part of the inverse Fourier transform of the of whitened spectrum. (e) Temporally normalized time-series. (f) Fourier amplitude spectra of (e).

6 A NA LY S I S O F T H E U N D E RV O L C
DATA

6.1 Data preparation

First, all seismograms are bandpassed between 0.01 and 10 Hz and
downsampled from 100 to 20 Hz to accelerate the computations.
Then, we apply the spectral and temporal normalizations to com-
pensate the non-stationarity of seismic signals and to disregard any
amplitude information. Bensen et al. (2007) present several ways
to normalize the data in this way. We apply the spectral whitening
and the temporal normalization as described in Fig. 6, according to
Bensen et al. (2007).

Spectral whitening consists in dividing the signal spectrum by a
smooth version of its amplitude

uW ( f ) = u( f )

〈〈|u( f )|〉〉d f
, (14)

where |u(f)| represents the real absolute value of the spectrum and
〈〈·〉〉df stands for the df-long running average used to smooth the
spectral amplitude. In our case, we used df = 0.33 Hz. The operator
in eq. (14) preserves the phase, and the amplitude of the whitened
spectrum is close to 1 for all frequencies.

We then apply a temporal normalization in the time domain:

uN (t) = uW (t)

〈〈|uW (t)|〉〉dt
(15)

where uW(t) is the real part of the inverse Fourier transform of
uW(f) and 〈〈·〉〉dt is the dt-long running average used to smooth the
temporal normalization. In our case, we use a 1.25 s smoothing
window.

6.2 Difference between the background noise and
an earthquake

We applied our technique to the records of the M ≈ 7.5 Nicobar Is-
land earthquake which occurred around 7:00 p.m. UTC on June, 12.
We analysed the signals over two time periods shown in Fig. 7(a):
a noise window where no significant event occurred and an event
window where the Nicobar Island earthquake is recorded by the

Figure 7. Example of covariance matrix spectra computed from real records
(shown in (a) after bandpassing filtered around 0.07 Hz). Covariance ma-
trices were computed at f = 0.07 Hz. (b) Covariance matrix spectrum for
noise. (c) Covariance matrix spectrum for signal. Values of the covariance
matrix spectral width σ are indicated with vertical dashed lines.

UnderVolc array. We use a hundred of 48s-long 50 per cent overlap-
ping subwindows to compute the two covariance matrices. There-
fore, the full window durations are 
t ≈ 48 × 100/2 = 2400 s.
We compute the covariance matrix eigenvalues at a frequency f =
0.07 Hz.

The covariance matrix spectrum computed from the noise win-
dow shown in Fig. 7(b) contains no null eigenvalues and its width
is large, indicating the low level of the signal coherence. On the
contrary, the signal generated by the Nicobar Island earthquake is
strongly coherent across the network and the corresponding covari-
ance matrix spectrum shown in Fig. 7(c) has a single eigenvalue
that is significantly greater than zero. In this case, the spectral width
σ is very small, as expected.

6.3 Analysis of continuous records in 2010

We apply the method over the whole year 2010. Following the
results of the synthetic tests, we compute covariance matrix on
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Figure 8. Results of analysis of continuous records of the Undervolc seismic network in 2010. (a) Spectral width of covariance matrix σ as function of time
and frequency. (b) Normalized covariance matrix spectral width obtained after dividing the values shown in (a) by the maximal expected width estimated in
Section 5. (c) Amount of working station as a function of time.

2400s-long windows. Each window contains 100 of half overlapping
48s-long subwindows. The spectral width of the covariance matrix
as a function of time and frequency is displayed in Fig. 8(a).

As discussed in Section 5, the covariance matrix spectral width
does not converge to the same value at all frequencies. Therefore, we
normalize the raw result shown in Fig. 8(a) by using the maximal
value σ max(f) obtained in Section 5. The normalized covariance
matrix spectral width shown in Fig. 8(b) exhibits strong variability
in time and frequency. While most of this variability is related to
variations of the level of coherence of the recorded wavefield, some
of the anomalies can be caused by misfunctioning stations. For this
reason, we show in Fig. 8(c) the percentage of working stations as a
function of time and can see that some of the apparent increases of
coherence, in particularly those in April and November, are caused
by missing data.

At frequencies below 0.15 Hz, we observe that the normalized
spectral width of the covariance matrix is higher than 1, highlighting
that the coherence level is much lower than the synthetic results.
This indicates that the noise recorded at these relatively long peri-
ods does not correspond to propagating long-period seismic waves
that would be expected to be coherent across the network. Indeed,
because of the non-perfect condition of temporary installation of
seismic sensors on the Piton de la Fournaise volcano during the

UnderVolc experiment, the long period noise is dominated by local
perturbations likely of meteorological origin.

To estimate the amplitude of this non-propagating noise, we com-
pare in Fig. 9(b) the spectral density of the records provided by the
UnderVolc sensors over one day with the RER seismic station from
the Geoscope seismic network located at la Réunion Island (see
Fig. 2). We see that below 0.1 Hz, the spectral amplitude of the
noise recorded by the UnderVolc stations is high compared to the
one recorded by RER. The two microseismic peaks are clearly visi-
ble in the RER data (at 0.06 and 0.14 Hz) whereas only the secondary
microseismic peak is recorded by the UnderVolc stations. We also
compare the spectra of the Nicobar Island earthquake from record
of UnderVolc and RER stations in Fig. 9(c), and observe that it does
not differ from UnderVolc stations to RER, at frequencies higher
than 0.02 Hz. We thus conclude that earthquake detection is pos-
sible. This additional information is clearly in agreement with the
hypothesis of an non-propagating noise recorded by the UnderVolc
stations, and with the results obtained in Fig. 8.

Around 0.2 Hz, many coherent arrivals are also visible all year
long around 0.2 Hz corresponding to the secondary microseismic
peak. This is in agreement with the standard model considering
that this peak consists of waves emitted by strong sources origi-
nating from the interaction between the oceanic gravity waves and
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Figure 9. Comparison of amplitude spectra from records of the Undervolc
stations and from the broad-band GEOSCOPE station RER. We analyse the
records of July 12, when the Nicobar Island earthquake occurred around
7:00 p.m. The power spectral densities of the noise records (collected from
0:00 to 6:20 p.m.) were computed using Welch’s method (Welch 1967).
The event (signal recorded from 6:20 to 8:20 p.m.) amplitude spectra were
computed using the Fast Fourier Transform.

the seafloor (Longuet-Higgins 1950; Friedrich et al. 1998). Waves
from every individual microseismic sources are coherent across the
network.

Finally, in the frequency range between 0.5 and 10 Hz, the nor-
malized spectral width of the covariance matrix is most of the time
close to 1, indicating that incoherent signals are recorded by the
network. Strongly coherent signals are appearing a few times in
the year in this frequency range and are linked to seismovolcanic
activity of the Piton de la Fournaise volcano as described later in
this paper.

6.4 Example of coherent signals from
teleseismic earthquakes

Strong peaks of coherence are clearly visible on Fig. 8(a), at fre-
quencies below 0.15 Hz. Most of these peaks coincide in time with
expected arrival of surface waves generated by teleseismic earth-
quakes. This indicates that the analysis of the wavefield coherence
could be used for earthquake detection. Therefore, we establish
a simple detection criteria based on our method and compare its
results with the Global Centroid Moment Tensor (GCMT) cata-
logue (Ekström et al. 2012). We use the covariance matrix spectral
width shown in Fig. 8(a), because the normalized results obtained

in Fig. 8(b) are saturated by the non-propagating noise, as discussed
in the previous section.

Observation and detection of teleseismic earthquakes during 8 d
in 2010 June is illustrated in Fig. 10. Signals from strongest events
(such as Nicobar earthquakes occurred on June 12) are clearly seen
on seismograms (Fig. 10d). In addition, the analysis of the covari-
ance matrix width (Figs 10a and b) reveals peaks from weaker
earthquakes not directly observable on seismograms. Fig. 10(b)
shows the covariance matrix width σ̂ (t) averaged between 0.03 and
0.12 Hz (delimited with a black frame in Fig. 10a) that we use in our
simple detection algorithm. First, we identify all intervals when the
averaged spectral width is below the median of σ̂ (t) (shown with
the horizontal dotted line in Fig. 10b). To reduce the influence of
the small noisy peaks, we establish a detection threshold σ th (shown
with the horizontal dashed line in Fig. 10b) and keep only the in-
tervals whose absolute minima are below this threshold. We choose
σ th = 3.3 in this example. The retained intervals are considered as
alarms and are shown with coloured boxes in Figs 10(b)–(d).

Finally, we compare the obtained detections with the GCMT
catalogue. For every earthquake from this catalogue, we compute
the arrival time of Rayleigh waves at the position of the Undervolc
array. An earthquake is considered as detected when its arrival time
at La Réunion Island is within an alarm window (coloured boxes in
Figs 10b–d).

Even after removing the amplitude information with the pre-
processing technique present in Section 6, the spatial coherence
of the recorded signals related to the earthquake and the expected
detection efficiency depend on the signal-to-noise ratio. This ratio
depends in turn on the earthquake magnitude and on the epicentral
distance between the earthquake and La Réunion Island. To simplify
this relationship, we normalize the magnitudes to compensate the
differences in the epicentral distances 
. The corrected magnitudes
Meff correspond to distance of 90 deg (derived from Aki & Richards
2002, app. 2):

Meff = Ms + 1.656 log(
) + 1.656 log(90) . (16)

Corrected times and magnitudes of earthquakes from the GCMT
catalogue are shown with coloured circles in Fig. 10(c). During the
considered period from June 9 to June 17, the GCMT catalogue lists
32 earthquakes with effective magnitude greater than 5. Earthquakes
with arrival times that are not present in a detection window are
considered as undetected, and are shown in red circles. Otherwise,
they are considered as detected, and are shown in blue circles. In
a similar way, time segments of σ̂ (t) that contain no earthquakes
are considered as false alarms and are represented in red colour,
while those that contain one or more earthquakes are considered as
detections and are represented in blue.

6.5 Observation of the teleseismic activity during 2010

We applied the method described in the previous subsection to the
continuous records of 2010. The relative amounts of detections
and false alarms and of detected and undetected events depends
on the choice of the detection threshold σ th and of the minimal
effective magnitude of earthquakes taken into account. We define
two ratios Rreal and Rsucc. The first one, Rreal, is defined as the ratio
between the number of detections and the total number of alarms.
The second one, Rsucc, is the ratio of the detected earthquakes over
the total number of earthquakes listed in the GCMT catalogue. We
vary the detection threshold from 2 to 3.5 and the minimal effective
magnitude from 4 to 7.5, and observe the variation of Rreal and
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Figure 10. Example of earthquake detection around 2010 June 12. Observation of teleseismic earthquakes at frequencies below 0.12 Hz. (a) Raw covariance
matrix spectral width. The black frame indicates the zone where the covariance matrix spectral width is averaged. (b) Covariance matrix spectral width averaged
between 0.03 and 0.12 Hz. Coloured segments indicate time period where a detection is declared. Blue segment are detections that correspond to at least one
event from the GCMT catalogue, red segments are false alarms. (c) Arrival times of earthquakes from the GCMT catalogue as a function of time and effective
magnitude (eq. 16). Blue circles show the detected events and red circles show the undetected ones. (d) Seismic trace recorded by the Undervolc station UV14
as a function of time, bandpass filtered between 0.03 and 0.12 Hz.

Rsucc in Figs 11(a) and (b), respectively. We found that our simple
detection algorithm is ‘optimized’ with the detection threshold of
3.3 and with the minimal effective magnitude of 5.3. With these
parameters, 75 per cent of alarms are successful detections and we
detect 75 per cent of earthquakes (951 detections out of 1246 total
events). The final detection results during the year 2010 are shown
in Fig. 12.

6.6 Observation of the seismovolcanic activity

We use the covariance matrix spectral width at high frequencies
to detect the seismovolcanic activity because the volcanic sources
are close to the network and the high-frequency radiation is not
strongly attenuated as was the case for the teleseismic earthquakes.
We average the normalize covariance matrix spectral width between
1 and 5 Hz (frequency region delimited with a black dashed frame in

Fig. 8b), and present it as a function of time in Fig. 13(a). We see that
the signal is not coherent (the average covariance matrix spectral
width is close to 1) most of the time. A set of coherent events are
detected as minima of spectral width. We compare their occurrences
and durations with the catalogue of Piton de la Fournaise activity
described in Roult et al. (2012). Figs 13(b)–(d) are zoomed in
periods of known volcanic eruptions.

In the three cases presented in Figs 13(b)–(d), the occurrence and
duration of volcanic tremors are well observed. In these three cases,
the yellow windows indicate the durations of the volcanic tremors,
and show great agreement with the periods of increased coherence.
The green windows show the seismic crises recorded before the
eruptions. The eruption of October is particularly visible because it
was the most energetic in 2010. The smaller eruptions of January
and December are also clearly distinguishable.

Numerous minima of the covariance matrix spectral with aver-
aged between 1 and 5 Hz are also observed outside the catalogued
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Figure 11. Analysis of observation of teleseismic earthquakes. (a) Rreal as
function of the detection threshold and the minimal effective magnitude. The
black line indicates points where Rreal = 75 per cent. (b) Rsucc as function
of the detection threshold and the minimal effective magnitude. The solid
black line corresponds to the coordinates where Rreal = 75 per cent. The
maximal value of Rsucc on these coordinates is 74.5 per cent and is reached
when the detection threshold is 3.3 and the minimal effective magnitude is
5.3.

periods of volcanic activity. A few of them correspond to days with
missing data (Fig. 8c). However, the large majority of these minima
correspond to small volcanic earthquakes. In particular, we observe
a long period (∼1.5 months) of increased seismic activity preceding
the eruption in 2010 October. A detailed comparison with seismo-
grams shows that the some small earthquakes are not reflected in
the presented results of the covariance matrix analysis. This is re-
lated to the choice of the duration of the time windows δt and 
t in

eq. (8). In this study, we selected relatively long windows to be able
to analyse the long-period part of the signal, while a more detailed
study of the seismovolcanic activity would require focusing at fre-
quencies above 1 Hz and, therefore, running the covariance matrix
analysis in shorter windows.

7 D I S C U S S I O N A N D C O N C LU S I O N S

We developed an approach that allows to quantify the level of spa-
tial coherence of a wavefield recorded by a network of sensors with
a single parameter that is the spectral width of the covariance ma-
trix. We first tested this method with a set of synthetic signals and
illustrated it with an application to the real data, namely, to one
year of continuous vertical-component records from 21 broad-band
seismographs installed around the Piton de la Fournaise volcano
at La Réunion island. The main result of our analysis is presented
in Fig. 8 and shows that the level of the seismic wavefield coher-
ence varies strongly with respect to the time and frequency, and
that clearly distinguishable coherent events are seen in different
frequency ranges.

We distinguish three frequency bands with different character-
istic behaviour of the wavefield coherence. Between 1 and 5 Hz,
the wavefield is dominated most of the time by the propagating
noise, or diffuse seismic field and the coherent signals are emitted
by sources located very close to the network, mainly related to the
seismovolcanic activity of the Piton de la Fournaise volcano. For
such local sources, the high-frequency radiation is not attenuated.
In the secondary microseismic band around 0.2 Hz, the wavefield
is on average more coherent that at lower and higher frequencies.
A detailed analysis of Fig. 8(b) shows that the microseismic noise
in this frequency range is composed of many separated arrivals

Figure 12. Earthquake detector. Observation of teleseismic earthquakes at frequencies below 0.1 Hz. (a) Normalized covariance matrix spectral width σ

averaged between 0.03 and 0.12 Hz. Blue segments indicate time periods when the averaged value of σ that correspond to at least one event from the GCMT
catalogue and red segments indicate time periods with no matching events from the GCMT catalogue. (b) Earthquakes from the GCMT catalogue as a function
of time and effective magnitude (eq. 16). Blue and red circles show ‘detected’ and ‘undetected’ events, respectively.
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Figure 13. Observation of the seismovolcanic activity at frequencies above 1 Hz. (a) Covariance matrix spectral width σ averaged between 1 and 5 Hz and
shown for the whole year 2010. Blue frames indicate periods corresponding to three eruptive crises occurred in 2010. (b) Zoom between January 1 and January
20. (c) Zoom between August 28 and November 16. (d) Zoom between December 3 and December 14. In each case, green boxes indicate pre-eruptive seismic
crisis and yellow boxes indicate starting and ending dates of eruptions from Roult et al. (2012). Records from the UV05 seismic station filtered between 1 and
5 Hz are presented in each case.
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Figure 14. (a) Covariance matrix spectral width as function of frequency
estimated for a combination of two first terms from eq. (3): with an prop-
agating noise only (σ p) and adding one coherent signal (σ s+p). (b) Similar
to (a) but after adding the third term: the non-propagating noise (whose
spectral intensity ν2

n ( f ) is schematically illustrated with the green line).

characterized by the increased values of the coherence. The dura-
tion of these microseismic coherent arrivals varies between a few
hours and a few tens of hours and they likely correspond to signals
generated by separated storms or swells. At lowest frequencies, be-
low 0.1 Hz, the records are dominated by the non-propagating noise
because of the non-perfect conditions of temporary installation of
seismic sensors on a volcano. The coherent arrivals from the tele-
seismic earthquakes are clearly distinguishable in this frequency in
contrast with the incoherent noise leading to a possibility to detect
them based on the analysis of the covariance matrix spectra.

The presented example clearly shows that the array covariance
matrix is very sensitive to the coherent signals generated by strong
earthquakes and by the volcano. At the same time, the simple ap-
proach discussed in our paper does not aim to outperform more
classical earthquake detection algorithms. The UndeVolc array is
not and well suited for the detection of teleseismic earthquakes.
This temporary seismic network was installed on an active volcano
where most of the sites were affected by strong environmental noise
generated either by volcanic or by meteorological activity. The de-
tection based on the covariance matrix spectral width can strongly
improve the analysis of emergent signals such as, for example, vol-
canic tremors illustrated in Fig. 13. The detection of such signals
could be significantly enhanced with a choice of parameters used
in the covariance matrix computation (the number of subwindows
M and of their length δt) specifically optimized for high frequen-
cies and not for a broad-band analysis presented in this paper. Such
a more detailed study is, however, out of the scope of this initial
paper mainly aimed at presenting the theory and the method of the
covariance matrix analysis.

Fig. 14 illustrates relative contributions of different types of sig-
nals described in eq. (3) within these bands. We see in Fig. 14(a) that
covariance matrix spectral width of the propagating noise (in blue
line) decreases with the decreasing frequency. This indicates that

the spatial coherence of the propagating noise increases when the
corresponding wavelength becomes too wide in comparison with
the interstation spacing and the array aperture. The red line shows
the same propagating noise, with an additional 10 times stronger
coherent source. The detection of this coherent source is therefore
hard to accomplish because the difference between the propagating
noise and the source embedded in propagating noise spectral width
is weak a frequencies below 0.15 Hz. The covariance matrix spec-
tral width of the data shows that the wavefield contains incoherent
signal at frequencies below 0.1 Hz which can be explained by the
presence of non-propagating noise at the sensors, most probably
due to the weather perturbations. The detectability of the seismic
source in the presence of this additional non-propagative noise is
presented in Fig. 14(b). The green line shows the non-propagating
noise spectral amplitude. The noise amplitude is chosen to be the
same as the signal’s one and rapidly decays with the increasing
frequency. The source is now detected, and this model explains the
detection capacity of our method for this data set.

The results of the covariance matrix analysis are not unique and
depend on the choice of the time windows δt and 
t in eq. (8).
In the presented example of the application of the method to the
real data we decided, for simplicity, to use the constant set of these
windows for all frequencies and selected the long windows lengths
that allowed us to analyse the longest periods. As a consequence of
this choice, the results of the analysis of the seismovolcanic activity
shown in Fig. 13 are not optimal, as discussed in the previous
section. This shows that in the future studies the choice of the
windows δt and 
t should be optimized considering the specific
properties of the studied signals and, in particular, their dominant
frequency range.

The analysed seismic records were pre-processed with applying a
spectral whitening and a temporal normalization to compensate for
inhomogeneity of amplitudes, which is a standard practice in many
applications based on correlations of the ambient seismic noise (e.g.
Bensen et al. 2007). Our results show that, while these procedures
compensate for the effect of strongest amplitudes, they are not
sufficient to fully ‘randomize’ the records and that a clear imprint
of different seismic sources remains in the wavefield coherence.
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