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[1] A new three-dimensional seismic model and relocated
regional seismicity are used to illuminate the great
Sumatra-Andaman Islands earthquake of December 26,
2004. The earthquake initiated where the incoming Indian
Plate lithosphere is warmest and the dip of the Wadati-
Benioff zone is least steep along the subduction zone
extending from the Andaman Trench to the Java Trench.
Anomalously high temperatures are observed in the supra-
slab mantle wedge in the Andaman back-arc. The
subducting slab is observed along the entire plate
boundary to a depth of at least 200 km. These factors
contribute to the location of the initiation of rupture, the
strength of seismic coupling, the differential rupture
properties between the northern and southern segments
of the earthquake, and the cause of convergence in the
Andaman segment. Citation: Shapiro, N. M., M. H. Ritzwoller,

and E. R. Engdahl (2008), Structural context of the great Sumatra-

Andaman Islands earthquake, Geophys. Res. Lett., 35, L05301,

doi:10.1029/2008GL033381.

1. Introduction

[2] The 26 December 2004 Sumatra-Andaman earth-
quake was the third largest instrumentally observed seismic
event, with a moment-magnitude of about M = 9.3 [e.g.,
Stein and Okal, 2007]. Numerous studies [e.g., Ammon et
al., 2005; Banerjee et al., 2005; Guilbert et al., 2005; Ishii
et al., 2005; Lay et al., 2005; Ni et al., 2005; Park et al.,
2005; Vigny et al., 2005; Stein and Okal, 2007] have
demonstrated that this earthquake ruptured an area greater
than 18000 km2 along a 1300 km boundary between the
Indian Plate and the Burma Microplate. The earthquake
rupture proceeded along two distinct segments with differ-
ent rupture properties. The southern (Sumatran) segment is
characterized by normal rupture and generated most of
high-frequency seismic radiation. In contrast, the northern
(Andaman-Nicobar) segment of the rupture that released
about two-thirds of the total seismic moment [Stein and
Okal, 2007] had a significant component (>50%) of slow
slip [e.g., Lay et al., 2005]. Another peculiar observation is
that, while all previous large (M > 9) earthquakes have
occurred in regions where subduction is largely perpendic-
ular to the trench, the present-day plate models and tectonic
reconstructions indicate that the oblique incidence of the
Indian and Burma plates (Figure 1a) has occurred west of
the Andaman Sea for at least 20 million years [e.g.,
Replumaz et al., 2004].

[3] The characteristics of this earthquake can be partially
understood in terms of surface features such as the age-
variability of the incoming Indian Plate along its subducting
edge (Figure 1a), the existence of active spreading in the
back-arc beneath the Andaman Sea [e.g., Ortiz and Bilham,
2003; Khan and Chakraborty, 2005], and anomalously
strong strain partitioning [e.g., Socquet et al., 2006] in which
the oblique Sumatra-Andaman subduction is accommodated
by strike-slip motion released along the transform Sumatra
and Andaman faults that run nearly parallel to the trench.
Better understanding of the earthquake and its consequences,
e.g., post-seismic regional stress re-organization [e.g.,
McCloskey et al., 2005; Nalbant et al., 2005] and relaxation,
will come in part from improved models of the thermal and
mechanical structure of the subducting slab and the overrid-
ing plate. To address this issue we have relocated and
reviewed modern and historical seismicity and produced a
new shear velocity model of the uppermost mantle con-
structed using broadband seismic surface waves. These
results help to understand the location of the initiation of
rupture and to illuminate why a great earthquake occurred at a
highly oblique plate boundary and why rupture proceeds
differently in the southern and northern segments of the fault.

2. Data and Methods

[4] To improve knowledge of historical seismicity, we
relocated all instrumentally recorded earthquakes in the
Andaman Islands region that are well constrained by tele-
seismic observations using well established methods [e.g.,
Engdahl et al., 1998; Engdahl and Villasenor, 2002],
giving special attention to focal depth. This earthquake
catalog has been reviewed to be complete to magnitude 6.5
for the historical period (pre-1964) and 5.5 for the modern
period with a relative location accuracy of about 15 km.
Reviewing entails examining the internal consistency of the
arrival time data, particularly the depth phases. Observed
seismicity portrays the spatial distribution of interslab and
intraslab (intermediate-depth) earthquakes in the region and
the relationship of this seismicity to regional structures
(Figures 2a–2c).
[5] We used information about surface wave phase [e.g.,

Trampert and Woodhouse, 1995; Ekström et al., 1997] and
group [e.g., Ritzwoller and Levshin, 1998; Ritzwoller et
al., 2002] speed dispersion across the region at periods
ranging from 15 sec to 150 sec, to estimate a three
dimensional (3-D) tomographic model of shear-wave speed
in the upper mantle on a 1� � 1� grid. The method involves
surface-wave tomography based on finite-frequency sensi-
tivity kernels [Ritzwoller et al., 2002] followed by a
Monte-Carlo inversion method [Shapiro and Ritzwoller,
2002, 2004] to estimate both shear velocity and tempera-
ture in the upper mantle. Plotted here are images of the
middle of the ensemble of acceptable models for each
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variable at each depth. The temperature parameterization
[Shapiro and Ritzwoller, 2004; Ritzwoller et al., 2004]
allows us to estimate the ‘‘apparent thermal age’’ of the
oceanic lithosphere, which is the age at which a conduc-
tively cooling half-space would match the observed litho-
spheric temperature structure.

3. Discussion

[6] Prior to about 40 Ma, India and Australia occupied
different plates separated by a spreading center called the
Wharton Ridge [e.g., Weis and Frey, 1996; Hébert et al.,
1999]. After �40 Ma, Australia rifted from Antarctica,
seafloor spreading along the Wharton Ridge ceased, and
India and Australia began to move in unison as part of the
Australian-Indian Plate. This complex history is apparent in
the variation of lithospheric age along the Andaman, Sunda,
and Java Trenches (Figure 1a), with the youngest oceanic
lithosphere (Wharton Fossil Spreading Ridge) of about
40 Ma currently being subducted beneath northern Sumatra
[Müller et al., 1997]. Significantly older lithosphere is
subducting at both the Andaman and Java trenches. The
seismically inferred thermal structure of the incoming Indian
Plate represents the plate’s tectonic history (Figure 1b). The
young apparent thermal age approximately follows the
Wharton Fossil Ridge with the warmest lithosphere lying
somewhat to its north. The offset of the apparently
youngest (and hence warmest) lithosphere from the Whar-
ton Ridge may be explained by the influence of the

Kerguelen plume [Weis and Frey, 1996] that delayed the
thickening of the oceanic lithosphere under the Ninetyeast
Ridge. The oceanic lithosphere approaching northern
Sumatra (Figure 2b, profile B-B0) is also observed to be
thinner than oceanic lithosphere approaching the Andaman
and Java Trenches (Figures 2a and 2c), and thinner upon
subduction as well.
[7] The location of the thermally warmest and thinnest

incoming lithosphere is at the Sunda Trench, therefore,
which nearly coincides with the initiation of rupture of the
Great Sumatra-Andaman Islands earthquake and with its
southern segment characterized by normal seismic rupture.
This is probably no coincidence, because the warmer
subducting lithosphere near the Wharton Fossil Ridge is
more buoyant and the slab dips less steeply (Figure 2b). The
coupling to the overlying plate, therefore, may be stronger
than beneath the Andaman and Java trenches. Stronger
coupling is also indicated by GPS data in this region
[e.g., Vigny et al., 2005]. In addition, the Benioff-Wadati
zone in northern Sumatra is less steep than in adjacent areas
to the north and south (30� along profile B-B0 compared
with 50� and 40� along profiles A-A0 and C-C0, respec-
tively), consistent with the thermal state of the incoming
lithosphere.
[8] In the northern, subducting Andaman segment, char-

acterized by a significant amount of ‘‘slow slip’’, much
older and less buoyant oceanic lithosphere is subducted at
the Andaman trench. The seismic velocities in the back-arc
are very low in this region. This implies that the upper

Figure 1. (a) Reference map showing the locations of the principal geographical and geological features discussed in the
text. The red star marks the location of the initiation of rupture of the great Sumatra-Andaman earthquake. Brown lines
show active and fossil plate boundaries. Arrows show the relative plate motion [DeMets et al., 1994]. The age of the
incoming oceanic plate [Müller et al., 1997] is shown with colors in millions of years. The black rectangular box indicates
the region shown in Figure 3. According to Lay et al. [2005], the large rapid slip on the southern segment of the Sumatra-
Andaman earthquake (red dashed-line polygon) produced a large part of high-frequency seismic radiation while the
northern segment (blue dashed-line polygon) is characterized by a significant amount of slow slip. (b) Distribution of the
apparent thermal age which results from the seismic inversion using the thermal parameterization [Ritzwoller et al., 2004].
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mantle beneath the Andaman Sea is warm, consistent with
its interpretation as an extensional basin created by rifting
over the past 11 Ma caused by the relative motion of
various lithospheric blocks in response to the collision
between India and Asia [e.g., Tapponnier et al., 1982;
Khan and Chakraborty, 2005]. This combination of the
less buoyant subducting plate and the weak (or rather
absent) back-arc lithosphere may result in weaker seismic
coupling within the Andaman segment than within the
more southerly Sunda segment. This may, therefore, con-
tribute to the differences in rupture properties and seismic
radiation between these two segments of the Great Sumatra
earthquake.

[9] Improved knowledge of seismicity and the thermal
structure of the upper mantle also illuminates why a great
earthquake occurred at a highly oblique plate boundary.
Subducting lithosphere is clearly imaged by surface waves
along the entire plate boundary, from the Andaman Trench
to the Java trench (Figures 2a–2c and 3) down to at least
200 km depth with well defined Wadati-Benioff zones. This
confirms the results from previous regional and global
P-wave tomographic models [e.g., Replumaz et al., 2004;
Widiyantoro and Van der Hilst, 1996; Hafkenscheid et al.,
2001] and of a more recent study by Kennett and Gummins
[2005] showing the trace of subducted oceanic lithosphere
at greater depths. Centroid-moment-tensor solutions show

Figure 2. Results of the inversion using the seismic parameterization [Shapiro and Ritzwoller, 2002]. (a–c) Vertical cross-
sections through the shear velocity model. Colors indicate anomalies in S-wave velocity relative to a regional one-
dimensional profile shown on profile A-A0. The white line on profile C-C0 shows shear-velocity uncertainties determined
during Monte-Carlo inversion [Shapiro and Ritzwoller, 2002]. The depth-dependent values were averaged over the region
of study. Dashed contours indicate areas where positive (blue) or negative (red) Vs anomalies are stronger than 1.7% (i.e.,
average uncertainty for the considered depth range). The location of the trench (T) and the Sumatra (SF) and the Andaman
Faults (AF) are shown with small arrows on top of the cross-sections. Hypocentres of relocated earthquakes within 100 km
of the profile plane are shown by circles. Black dashed lines show the deduced orientation of the Wadati-Benioff zones.
(d and e) Horizontal cross-sections through the shear velocity model at 50 km and 100 km depths, respectively.
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that thrust earthquakes are common along the Nicobar-
Andaman segment of the subduction zone with nearly
east-west compression [e.g., Rajendran and Gupta, 1989].
Large historical (M > 8) thrust earthquakes have occurred
[e.g., Ortiz and Bilham, 2003] along this segment and GPS
data indicate non-negligible east-west convergence [Paul et
al., 2001]. Convergence must, therefore, be occurring and
has occurred well into the past along the entire plate
boundary, even beneath the most oblique Nicobar-Andaman
segment of the plate boundary. This is in striking contrast
with the purely transform motion observed in other very
oblique segments of subduction zones. An example is the
Western Aleutians [Levin et al., 2005] where a ‘‘slab
window’’ is observed beneath the trench along the highly
oblique segment of the plate boundary which is devoid of
both subducting lithosphere and deep seismicity. We spec-
ulate that convergence may be enhanced by the weak
Andaman lithosphere responding to slab roll-back.
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