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[1] We retrieve seismic velocity variations within the Earth’s
crust in the region of L’Aquila (central Italy) by analyzing
cross‐correlations of more than two years of continuous seis-
mic records. The studied period includes the April 6, 2009,
Mw 6.1 L’Aquila earthquake. We observe a decrease of seis-
mic velocities as a result of the earthquake’s main shock.
After performing the analysis in different frequency bands
between 0.1 and 1 Hz, we conclude that the velocity varia-
tions are strongest at relatively high frequencies (0.5–1 Hz)
suggesting that they are mostly related to the damage in the
shallow soft layers resulting from the co‐seismic shaking.
Citation: Zaccarelli, L., N. M. Shapiro, L. Faenza, G. Soldati,
and A. Michelini (2011), Variations of crustal elastic properties
during the 2009 L’Aquila earthquake inferred from cross‐correlations
of ambient seismic noise, Geophys. Res. Lett., 38, L24304,
doi:10.1029/2011GL049750.

1. Introduction

[2] On April 6, 2009 a Mw 6.1 earthquake struck the
central Apennines region near L’Aquila (Italy) causing
severe damage and more than 300 fatalities [Scognamiglio
et al., 2010]. This area had been long recognized as seis-
mically active (see the official seismic hazard map of Italy
[MPS Working Group, 2004]) and an occurrence of a strong
earthquake in the central Apennines could not be considered
as totally unexpected. Before the main shock, an increase in
the rate of seismicity started on September 2008 and many
small size events (about 300 withML ≤ 2.5) occurred beneath
the L’Aquila city area. This foreshock sequence culminated
with a ML = 4.1 earthquakeon March 30, 2009. In the fol-
lowing days, the seismicity decreased until two earthquakes
(ML = 3.9 andML = 3.5) occurred just a few hours before the
L’Aquila main shock. In agreement with the extensional
tectonics of the central Apennines, the focal mechanism of
the L’Aquila earthquake has been determined to be a normal
fault on a South‐West dipping plane with the rupture area of
∼20 × 15 km2 and the dipping angle of about 50 degrees
[Cirella et al., 2009]. The main shock was followed by an
aftershock sequence that included 33 earthquakes greater
than ML = 4.
[3] In this study, we use a recently proposed monitoring

technique based on ambient seismic noise. The idea of this
method is to use signals reconstructed from repeated cross‐

correlations of continuous seismic records as virtual seis-
mograms generated by highly repeatable sources. In case of
well distributed noise, the reconstructed virtual sources are
close to point forces and the cross‐correlations functions can
be considered as Green functions [e.g., Weaver and Lobkis,
2001; Shapiro and Campillo, 2004; Sabra et al., 2005;
Shapiro et al., 2005]. Highly accurate temporal monitoring
can be also performed evenwith inhomogeneous noise sources
distributions when a perfect reconstruction of the Green
function is not achieved [e.g.,Hadziioannou et al., 2009]. The
changes of the travel times measured from the noise cross‐
correlations reflect variations of the elastic properties in the
propagating media, i.e., in the Earth’s crust. This approach
has been recently applied to monitor active volcanoes [e.g.,
Sens‐Schönfelder and Wegler, 2006; Brenguier et al., 2008a;
Duputel et al., 2009; Mordret et al., 2010] and large seis-
mogenic faults [e.g., Wegler and Sens‐Schönfelder, 2007;
Brenguier et al., 2008b; Chen et al., 2010] and to detect
seasonal changes in the Earth’s crust resulting from thermo-
elastic variations [e.g., Meier et al., 2010].
[4] In a seismogram or in a correlation function, the delay

accumulates linearly with the lapse time when the wave speed
changes homogeneously within the medium. As a conse-
quence, a small change can be detected more easily when
considering late arrivals. This makes the use of coda waves
particularly suited to measure temporal variations. This can
be done either by using the so‐called stretching technique
[e.g., Wegler and Sens‐Schönfelder, 2007] or with a method
that was initially developed for repeated earthquakes
(doublets) by Poupinet et al. [1984]. Here, we use this latter
approach that has been specifically adopted to make mea-
surements from the noise cross‐correlations [e.g., Clarke
et al., 2011].We apply this method to two years of continuous
recordings by three seismic stations located in the vicinity of
the L’Aquila main shock fault (Figure 1) to measure varia-
tions of crustal seismic velocities caused by this earthquake.

2. Selecting and Pre‐processing the Data
and Computating Cross‐Correlations

[5] Istituto Nazionale di Geofisica e Vulcanologia (INGV)
operates two large seismological networks: the Italian
National Seismic Network (INSN) and the Mediterranean
Very Broadband Seismographic Network MedNet. The INSN
consists of more than 250 stations with various character-
istics [Amato and Mele, 2008]. MedNet consists of 22 very
broadband stations distributed over the Euro‐Mediterranean
area with 13 of them located in Italy [Mazza et al., 2008].
During period of interest for our study, four broadband sta-
tions operated in continuous mode within a radius of 25 km
from the main shock epicenter. However, records of one of
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these stations contained too many gaps and we finally
decided to use three stations: CAMP and FIAM from INSN
and AQU from MedNet (Figure 1). The longest period of
data availability at these three stations was between March
27, 2008 and April 18, 2010.
[6] We re‐sampled time series recorded at the three sta-

tions in order to get a perfect time synchronization and
filled existing small gaps via a linear interpolation. Then,
we pre‐processed the vertical component seismograms by
whitening their spectra between 0.1 and 1 Hz and by normal-
izing their amplitude through a one‐bit normalization. In this
way, the contributions arising from strong transient phe-
nomena were reduced in both time and frequency domains
[e.g., Bensen et al., 2005; Brenguier et al., 2008b]. Finally,
we computed cross‐correlations between the three pairs of
stations for every hour of the available recordings.

3. Measurement of Seismic Velocity Variations

[7] We adopted the Multi Window Cross‐Spectrum
(MWCS) analysis [e.g., Clarke et al., 2011]. This technique
was first proposed by Poupinet et al. [1984] for retrieving
the relative velocity variation between earthquake doublets.
Brenguier et al. [2008a, 2008b] applied this technique to
the cross‐correlations of the seismic noise. The main idea of
the method is that the noise cross‐correlations computed from
subsequent time windows can be analysed similar to records
from earthquake doublets. When analyzing long time series,
we compare a single reference cross‐correlation with many
subsequent current functions. The reference cross‐correlation
CCR for a particular station pair is obtained from stacking

all available cross‐correlations for this pair and, therefore,
is representative of the background crustal state. The current
cross‐correlations CCC are obtained from stacking a small
sub‐set of cross‐correlations representative of a state of the
crust for a given short period of time. There is a trade‐off
between the length of the stack required to have stable esti-
mates of the CCC and the time resolution for detecting the
variations. To find an optimal stacking duration for the
current function we tested different lengths between 10 and
100 days. For each tested stacking length, we computed all
possible functions CCC by applying moving windows shifted
by two days. Then, we computed the correlation coefficient
r between the reference function CCR and every CCC. The
distribution of r characterizes the similarity between CCR

and CCC for a given stacking length. We represent the overall
degree of similarity by the mean and the standard deviation
of this distribution. Figure 2 shows these parameters for the
three station pairs. We observe that the degree of similarity
increases rapidly for short stacking durations and then it
tends to stabilize. We selected a value of 50 days as stacking
length for computing the current correlation functions.
[8] The MWCS analysis consists of two computational

steps [e.g., Clarke et al., 2011]. In the first step, we estimate
for a station pair k delay times dti

k between CCR and CCC

within a set of time windows centered at ti. In case of uni-
form velocity perturbations, the measured delays dti

k are
expected to be a linear function of time ti with a slope
corresponding to the relative time perturbation:

Dt

t
¼ �Dv

v
ð1Þ

where Dv
v is the relative uniform seismic velocity perturba-

tion that can be estimated in the second step from a single
station pair k via linear fitting of the following equation:

�tki ¼ � Dv

v

� �
k

� ti ð2Þ

In order to obtain one estimates representative of the entire
crustal volume, we merged together the delays dti

k measured
from the three station pairs before proceeding with the
second step of the analysis. We computed the median valuee�ti of the delays dtik for every i‐th window, and we inserted
it into (2) to estimate of Dv

v for the entire region encompassed
by the three stations. When performing this analysis, we
removed the central part of the cross‐correlations containing
direct waves (group velocities faster than 2.5 km/s; see
Table 1) because they may be sensitive to the changing
position of the noise sources [e.g., Froment et al., 2010].
Relative velocity variations were then computed by taking
into account the coda of the cross‐correlation up to a length
of 60 s where the signal decreases to values close to the noise
level.
[9] To estimate uncertainties of our measurements, we

followed the method proposed by Clarke et al. [2011] and
performed a synthetic test on the L’Aquila noise cross‐
correlations. We perturbed the reference cross‐correlation
function by stretching its waveform and simulating different
values of velocity variations (from 0.01% to 0.5%). Then,
we added a random noise with a signal‐to‐noise ratio of 5
(that is the mean value measured from the observed cross‐
correlations). Finally, we applied the MWCS technique to

Figure 1. Map of the central Apennines showing the loca-
tion of the L’Aquila epicenter (black open star) and of the
fault plane projection (black rectangle) from Cirella et al.
[2009]. The gray triangles are the three stations considered
in this study. Black thin lines indicate main tectonic faults
from EMERGEO Working Group [2010]. Light gray lines
show the regional boundaries.
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measure the apparent velocity variations Dv
v between the

perturbed cross‐correlations and the original CCR. The RMS
deviations between the estimated velocity variations and those
introduced through stretching characterize the uncertainties
of our measurements.
[10] To investigate the depth extent of the measured crustal

velocity perturbations, we performed the MWCS analysis
inside three different frequency bands: [0.1–1], [0.1–0.6], and
[0.5–1] Hz. It has been shown both theoretically and obser-
vationally that at these frequencies the coda of seismograms
and correlation functions are mainly composed of surface
waves [e.g., Hennino et al., 2001;Margerin et al., 2009]. We
therefore expect that the sensitivity of the coda waves to a
velocity change at depth depends on their spectral content
with shorter periods sensitive to shallower structures and
longer periods sampling deeper parts of the crust. The mea-
surement results for the three frequency bands are presented
in Figure 3 and show a sudden velocity decrease at the time
of occurrence of the L’Aquila main shock. The amplitude of
this velocity drop is largest at frequencies higher than 0.5 Hz
and decreases at lower frequencies. This indicates that a
large part of the observed variations have their likely origin
within the shallow crustal layers.

4. Discussion

[11] A limited number of available stations (only three)
and the fact that only one of them is located in the immediate

vicinity of the earthquake fault did not allow us to identify
exact regions that produced the observed velocity variations.
Also, the dataset used in this study did not allow us to make
robust measurements with refined time resolution. A denser
network covering the source area would be required to obtain
better space and time resolutions [e.g., Brenguier et al.,
2008a]. Therefore, we interpret here only the most robust
average features.
[12] The results presented in our study show that the

L’Aquila main shock caused a detectable reduction of seis-
mic velocities within the surrounding crust. We observe that
the velocity dropped by 0.3%, which is more than 3 times
larger than the fluctuations observed before the main shock.
Co‐seismic velocity reductions can be attributed to increasing
crack and void densities in the shallow crustal structure and/or

Figure 2. (a) Mean and (b) standard deviation values of the correlation coefficients r between CCC and CCR as a function
of number of days used to construct the current correlation functions CCC. Mean and standard deviations were computed
after a Fisher transformation that returns an almost normally distributed variable [VanDecar and Crosson, 1990]. (c, d, e)
Reference cross‐correlation functions CCR (blue) together with an example of 50 day current function CCC (black) for the
three couples of stations. Only portions of the signal considered in the analysis are plotted (Table 1). Numbers in the bottom
left corners are the respective correlation coefficients r.

Table 1. Parameters of the Three Inter‐stations Paths Used in the
Studya

Stations Distance (km) Rayleigh Arrival (s) Cutoff (s)

AQU_CAMP 20 6.67 ±7.5
AQU_FIAM 26 8.67 ±10
CAMP_FIAM 38 12.67 ±15

aThe Rayleigh wave arrival times are roughly estimated considering a
group velocity of 3 km/s [Chiarabba et al., 2009]. Parts of the correla-
tion functions with group velocities faster than 2.5 km/s we excluded from
the analysis to avoid the influence of the noise source variability in direct
arrivals.
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to reduced compaction of the near‐surface granular material.
The presence and migration of fluids can further contribute to
modification of the seismic properties in the shallow crust.
Our results can be compared with other studies that have
addressed changes of the crustal parameters prior and after
the L’Aquila earthquake. Amoruso and Crescentini [2010]
used strain measurements obtained in the Gran Sasso labo-
ratory during the two years prior to the main shock to infer
that no anomalous signal was observed. They concluded that
the possible earthquake nucleation zone was confined to a
volume less than 100 km3. In contrast, vp/vs anomalies have
been reported by Di Luccio et al. [2010] in the weeks prior
to the main shock with an abrupt variation after the ML =
4.1 foreshock occurred on March 30. Similar results were
obtained by Lucente et al. [2010] who used shear wave
splitting in addition to vp/vs ratios. They attribute the velocity
anomalies occurring in the week prior to the main shock to a
complex sequence of dilatancy‐diffusion processes in which
fluids play a key role. Terakawa et al. [2010] inverted the
stress field obtained from the aftershock sequence focal
mechanisms to determine the fluid pressure and to conclude

that the spatial pattern of the sequence is driven mainly by
fluid migration.
[13] Our results are based on current cross‐correlation

functions stacked over a 50 day period and, therefore, do not
have the time resolution required to identify possible short‐
term precursory variations and to separate them from the
co‐seismic effect. On the other hand, with stacking large
data volumes our estimation of the co‐seismic velocity
reduction is inherently very robust. The observed velocity
reduction is larger at higher frequencies. Therefore, we prefer
the hypothesis the perturbation is mainly due to damaging of
shallow soft sedimentary layers by the co‐seismic strong
ground motion [e.g.,Wu et al., 2009]. This effect may be also
enhanced by the presence of fluids.
[14] We compare the co‐seismic perturbation observed

during the L’Aquila earthquakes with other cases when the
co‐seismic crustal velocity variations were measured from
noise cross‐correlations (Table 2). The co‐seismic velocity
drop measured for the L’Aquila earthquake (∼0.3%) is sig-
nificantly larger than the values measured within a similar
frequency band for the Mw 6.0 Parkfield and the Mw 7.9

Figure 3. Relative velocity variations measured from cross‐correlations of seismic noise recorded at the three stations
(gaps correspond to periods when the stations were not operating simultaneously). Results obtained by analyzing the whole
frequency range [0.1 1] Hz are shown with a gray color. Blue color shows the results from narrower frequency ranges:
(a) [0.1 0.6] Hz and (b) [0.5 1] Hz. Vertical bars indicate the uncertainties of the measurements. The vertical red line
highlights the time of occurrence of the L’Aquila main shock.
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Wenchuan events (Dv/v ∼ 0.08% as reported by Brenguier
et al. [2008a] and Chen et al. [2010], respectively). At the
same time, a stronger variation (∼0.6%) has been observed
with the stretching technique and frequencies higher than
2 Hz during the Mw 6.6 Mid‐Niigata earthquake. The
results of this comparison suggest that the level of measured
co‐seismic velocity variation is not a simple function of the
total moment release during an earthquake but is controlled
by different factors such as local geological conditions and,
possibly, focal mechanism and source depth. Also, the fre-
quency range used in the analysis controls the depth extent
of the measured anomaly. Finally, the aperture of the used
seismic network (i.e., the distance between the station pairs)
can play an important role. So far, the velocity variations
reported in this study were measured over a relatively large
area. Therefore, they may be less sensitive to the processes
occurring in the immediate vicinity of the fault, where
stress‐induced velocity perturbations are expected to be
most important.
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