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Abstract
In this paper, we consider the one-to-one correspondence between a 2-adic integer
and its parity sequence under iteration of the so-called “3x + 1” map. First, we
prove a new formula for the inverse transform. Next, we briefly review what is
known about the induced automorphism and study its dynamics on the 2-adic
integers. We find that it is ergodic on many small odd invariant sets, and that it
has two odd cycles of period 2 in addition to its two odd fixed points. Finally, a
plane embedding is presented, for which we establish a�ne self-similarity by using
functional equations.

1. Introduction

It is an unsolved problem [15, 19] to prove that the repeated iteration of the famous
“3x + 1” map acting on the positive integers and defined by

T (n) =
⇢

3n+1
2 if n is odd,

n
2 otherwise, (1)

always leads to the value 1, whatever the starting integer of the sequence. And it
is not even known whether the orbits (n, T (n), T (T (n)) , . . .) are bounded for all
n, nor is it known if there exists any non-trivial cycle. This problem, whose origin
remains unclear (cf. History and Background section in [19, p. 5]), has received a
great variety of names like the 3x+1 problem, the Collatz conjecture, the Syracuse
problem, Hasse’s algorithm, la conjecture tchèque, etc.

Its intrinsic hardness is frequently attributed to the unpredictability of the suc-
cessive parities of the iterates in most sequences, until 1 is reached [1, 10]. Therefore
it seems relevant to study the relationship between the integers and their parity vec-
tors (see Definition 1), so as to address the question of the existence and nature of
some underlying structure.
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Definition 1. For any two positive integers j and n, we call Vj(n) the parity vector
of n, of length j,

Vj(n) =
�
n, T (n), . . . , T j�1(n)

�
mod 2, (2)

where T k denotes the k-th iterate of T .

This notion was introduced independently by Everett and Terras, and named the
parity vector by Lagarias [17].

It was quite easy to state [13, 28] that any two integers have the same parity
vector of length j if and only if they belong to the same congruence class modulo
2j . From this property, we derive that each function Vj sends with a one-to-one
correspondence any set of 2j consecutive integers to the set of all parity vectors of
length j. There is consequently an infinite class of integers producing exactly any
finite sequence of parities under iteration of T .

2. Two Formulae for the Inverse Transform

In this part, we may freely extend the definition of the functions T and Vj to the
ring Z of rational integers, as in [17].

The transformation of an integer n into its parity vector Vj(n) is straightforward
by applying the map T repeatedly j times. Conversely, one may use the forthcoming
Lemma 1 to obtain all the integers that have any given parity vector. In fact, it
is a well-known expression with various formulations [7, 23, 28] and generalizations
[6, 22], further studied by Matthews in [21].

Definition 2. Let j be a positive integer. We say that a vector S = (s0, . . . , sj�1)
of length j is a finite binary sequence if sk = 0 or 1 for all 0  k  j�1. We further
define the partial sum functions �k applying on S by

�k(S) =
kX

i=0

si for each k  j � 1. (3)

The above functions �k are essentially the same as the functions popk introduced
in [6] and used in a similar way. They frequently appear in various forms within
the literature on the 3x + 1 problem.

Lemma 1. (First formulation of the inverse transform) Let S be a finite binary
sequence (s0, s1, . . . , sj�1) of length j. The set of integers n for which Vj(n) = S is
given by the congruence class

n ⌘ �
j�1X

k=0

sk 2k 3��k(S) (mod 2j). (4)
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Proof. Suppose that Vj(n) = S. Then equation (4) follows from the formula

2j T j(n) = 3�j�1(S)

 

n +
j�1X

k=0

sk 2k 3��k(S)

!

,

which is easy to state by induction on j (see [28]).

Example 1. By Lemma 1, the odd integers n leading to sequences where every
odd term is followed by exactly two even terms on the first j iterations of the map
T are such that

n ⌘ �
b j�1

3 cX

k=0

8k 3�(k+1) ⌘ �1
3

�
8
3

�b j+2
3 c � 1

8
3 � 1

⌘ 1
5

(mod 2j).

For the increasing lengths j = 3, 6, 9, . . ., the smallest positive values of n are
5, 13, 205, . . . respectively.

The discovery of a second formulation of the inverse transform came after study-
ing the particular case of sequences where all terms but one are odd [26] (see also
Example 2). It can be stated in di↵erent ways and we give a very short proof using
a conjugate function. While this function already appears in the literature (e.g.,
[27, p. 26]), the resulting formula in Theorem 1 seems new.

Definition 3. Let us consider the function

U : Z �! Z

n 7�!
⇢

n+1
2 if n is odd,

3n
2 otherwise.

The conjugacy relationship

U(n + 1) = T (n) + 1 (5)

holds for all n. Furthermore, for any binary sequence S = (s0, s1, . . . , sj�1) of length
j and any integer n such that Uk(n) ⌘ sk (mod 2) for each k, one has

n ⌘ �
j�1X

k=0

sk 2k 3�k(S)�k�1 (mod 2j). (6)

The latter congruence is derived from the equation

2j U j(n) = 3j��j�1(S)

 

n +
j�1X

k=0

sk 2k 3�k(S)�k�1

!

,

which may be easily proved by induction on j, exactly as in Lemma 1.
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We are now able to provide a second formulation of the inverse of the functions
Vj , which has little di↵erence with the previous one. It turns out to be practical for
sequences of T iterations that contain many odd terms, because the corresponding
terms in formula (7) vanish.

Theorem 1. (Second formulation of the inverse transform) Let S be a finite binary
sequence (s0, s1, . . . , sj�1). The set of integers n for which Vj(n) = S is given by
the congruence class

n ⌘ �1�
j�1X

k=0

(1� sk) 2k 3��k(S) (mod 2j). (7)

Proof. Let n be such that Vj(n) = S, and consider the binary sequence

SU =
�
Uk(n + 1) mod 2

�j�1

k=0
.

The conjugacy (5) gives Uk(n+1) = T k(n)+1, so that SU = (1� s0, . . . , 1� sj�1)
and �k(SU ) = k + 1� �k(S) for every k.

It su�ces to write the inverse formula (6) applied to n + 1,

n + 1 ⌘ �
j�1X

k=0

(1� sk) 2k 3�k(SU )�k�1 (mod 2j),

to conclude the proof.

Example 2. Let j be a positive integer. Suppose we want to find the integers n
for which the parity vector Vj(n) contains exactly once the value 0. Then we can
write that

n ⌘ �1�
✓

2
3

◆k

(mod 2j)

where k is the only integer lower than j such that T k(n) is even. See [26, §6] for a
brief study of those integers in Z+.

In fact, we obtain from Lemma 1 and Theorem 1 infinitely many formulations
by considering linear combinations of (4) and (7). For example, a simple addition
gives

2n + 1 ⌘ �
j�1X

k=0

2k 3��k(Vj(n)) (mod 2j) for all integers j > 0 and n.

On the other hand, subtracting the second formulation (7) from the first formulation
(4) yields the non-trivial congruence in Corollary 1.
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Corollary 1. Let j be a positive integer. For any finite binary sequence S =
(s0, s1, . . . , sj�1),

j�1X

k=0

(�1)sk 2k 3��k(S) ⌘ �1 (mod 2j). (8)

Proof. Let n be a positive integer such that Vj(n) = S. Subtracting each side of
(7) from the corresponding side of (4) gives the desired result, by writing (�1)sk =
(1� sk)� sk for any k.

This corollary can also be proved directly by induction on j, then leading to an
alternate proof of Theorem 1, which is left to the reader.

3. Ultrametric Extension

3.1. The Space of 2-adic Integers

Following Hasses’s generalization of the 3x+1 problem, it was suggested [21, 22] to
extend the definition of the map T to the ring Z2 of 2-adic integers, that is, numbers
of the form

P1
k=0 ak2k with ak = 0 or 1 for all k. The standard shorthand notation

(. . . a2a1a0)2 from right to left1 may be used for the sake of conciseness, and the
parentheses are most often omitted. A periodic expansion is usually indicated by
an upper bar. For example, one may write

(. . . 010101)2 = 012 =
1X

k=0

22k = �1
3
.

Recall that all rational numbers with an odd denominator have an eventually peri-
odic expansion in Z2.

A metric can be derived from the 2-adic norm
�����

1X

k=0

ak2k

�����
2

= 2�l with l = min {k � 0 : ak 6= 0} , and |0|2 = 0.

The space Z2 is then said to be ultrametric, due to the strong triangle inequality

|x + z|2  max (|x + y|2, |y + z|2)

for all x, y and z. Therefore it is not Euclidean.
When needed, we apply the usual Haar measure on Z2, here noted µ, such that

µ(Z2) = 1, and refer to it as the 2-adic measure.
1Some authors prefer to write the 2-adic “digits” from left to right.
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The function T remains well-defined on Z2, where it is known to be continuous
and measure-preserving [21]. As was observed many times [1, 18, 23], iterating T on
Z2 leads to a much greater variety of behaviors, due to its ergodic [21] and strongly
mixing [17] dynamics, and interesting properties thus arise.

3.2. Parity Sequences

Let first introduce the notion of parity sequence.

Definition 4. For every 2-adic integer x, the infinite binary sequence

V1(x) =
�
x, T (x), T 2(x), . . .

�
mod 2 (9)

is called the parity sequence of x.

It is remarkable, as mentioned in [17], that the V1 function is a one-to-one and
onto transform from Z2 to {0, 1}1. Every infinite binary sequence is the parity
sequence, via T iteration, of exactly one 2-adic integer. As a consequence, there
exist 2-adic cycles of every period. A complete list of the 23 cycles of period at most
6 is given in [18]. Since eventually periodic sequences have density zero in {0, 1}1,
we infer that almost all orbits in Z2 do not contain a cycle.

From Lemma 1 and Theorem 1, one immediately derives two formulae to express
the inverse transform V �1

1 .

Corollary 2. Let S be an infinite binary sequence (s0, s1, s2, . . .). The 2-adic inte-
ger x such that V1(x) = S is given by any of the 2-adically convergent expansions

x = �
1X

k=0

sk 2k 3��k(S) (10)

and

x = �1�
1X

k=0

(1� sk) 2k 3��k(S). (11)

where �k denotes the partial sum function �k(S) =
Pk

i=0 si.

Example 3. Consider the binary sequence S = (s0, s1, s2, . . .) where sk = 1 for all
k. Applying the inverse transform (11), we get V �1

1 (S) = �1 = . . . 1111112.

The question whether the inverse formula (10) leads to a convergent series when
evaluated in the set of real numbers has been investigated in various papers [12, 20,
21]. Note that the sum of the series is negative or zero, when it exists. Interestingly,
both series on the right hand side of (10) and (11) are expected to be divergent
(resp. convergent) for the parity sequences of positive (resp. negative) rational
integers.
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One may also remark that the equation (10) is quite similar to the expression
of the real function ✓ mentioned at the end of Coquet’s paper [9, §7], which is
convergent and turns out to be fractal.

We do not further discuss this issue in the present paper.

3.3. Automorphism

It is convenient to encode every parity sequence as a 2-adic integer, so as to give
it a rational value when it is eventually periodic, as done by Lagarias in [17]. This
yields an automorphism in Z2.

Definition 5. Let Q denote the function

Q : Z2 �! Z2

x 7�!
P1

k=0 sk2k

where (s0, s1, s2, . . .) is the parity sequence of x, as defined by (9).

The function Q is a one-to-one and onto morphism [6, 17]. It is also non-
expanding2 with respect to the 2-adic norm, since it satisfies the 1-Lipschitz condi-
tion

|Q(x)�Q(y)|2  |x� y|2 for all x and y,

or equivalently,

x ⌘ y (mod 2n) implies Q(x) ⌘ Q(y) (mod 2n). (12)

The fact that Q is one-to-one further implies (see [2]) the reciprocal

x ⌘ y (mod 2n) if and only if Q(x) ⌘ Q(y) (mod 2n), (13)

which makes Q a 2-adic isometry [6].
For convenience purposes, we prefer to use the simple notation Q, as in [1], rather

than the original notation Q1. Its inverse Q�1, called the 3x + 1 conjugacy map
and denoted by � in [6, 23], is known [5] to conjugate the map T with the shift
map S whose definition follows. For the sake of clarity, we rephrase all known and
conjectured properties related to � in terms of the function Q.

Definition 6. Let the shift map S denote the function

S : Z2 �! Z2

x 7�!
⇢

x�1
2 for x odd,

x
2 otherwise.

The conjugacy
T = Q�1 � S �Q. (14)

holds.
2In [6], the functions having the property (12) are said to be solenoidal.
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In the context of the original 3x + 1 problem, it is crucial to determine which
values of Q are rational. Indeed, we have the well-known statements holding for all
2-adic integers x:

• the orbit
�
x, T (x), T 2(x), . . .

�
is eventually periodic if and only if Q(x) is

rational [1]. This is an immediate consequence of the conjugacy (14) as noted
by Monks [23];

• if Q(x) is rational, then x is rational [5] (see also [1], Theorem 5).

We know that all the cycles within the dynamics of T on Z2 are rational [18]. La-
garias’ Periodicity Conjecture [17] asserts that the reciprocal of the second statement
above also holds. This would imply that every rational point in Z2 is preperiodic.

Conjecture 1. (Periodicity Conjecture) For any 2-adic integer x, Q(x) is rational
if and only if x is rational.

Furthermore, the function Q allows us to formulate the 3x+1 problem di↵erently
[5, 17].

Conjecture 2. (3x + 1 Problem)

Q
�
Z+

�
⇢ 1

3
Z, or equivalently, Z+ ⇢ Q�1

✓
1
3

Z
◆

.

It asserts that every positive integer has an eventually periodic parity sequence
of period 2, ending with an infinite alternation of 0 and 1 (the case of a fixed
parity is trivially excluded), which only occurs when some iterate reaches the trivial
cycle (1,2). Note that the reverse inclusion in Conjecture 2 does not hold, since
Q�1(1) = �1/3, by formula (10).

3.4. Functional Equations

The semiring N of natural integers is completely generated by all finite compositions
of the functions x 7�! 2x and x 7�! 2x+1 starting from 0, thus reversing the action
of the shift map S. Therefore it is tempting to search for functional equations that
express Q(2x) and Q(2x + 1) from Q(x). Such equations exist for any x in Z2 or in
a subset of Z2, as shown in Theorem 2. It turns out that equation (18) is a sort of 2-
adic extension of previous results by Andaloro [4] and Garner [14]. We also establish
similar equations for the inverse transform Q�1 (see [12] for a generalization).

Theorem 2. The functions Q�1 and Q are solution to the functional equations

Q�1(2x) = 2Q�1(x), (15)

Q�1(2x + 1) =
2Q�1(x)� 1

3
, (16)

Q(2x) = 2Q(x) (17)
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for all 2-adic integers x. Moreover

Q(2x + 1) = 2Q(x)� 2k + 1 (18)

for x ⌘ �1� (�2)k�2 (mod 2k) and k � 2.

Proof of (15) and (16). First, one may rewrite equation (14) as

T �Q�1 = Q�1 � S. (19)

Take a 2-adic integer x. Putting together (19) with the fact that

S(2x + 1) = S(2x) = x

and that
Q�1(y) ⌘ y (mod 2) for all y,

we obtain
Q�1(x) = Q�1 � S(2x) = T �Q�1(2x) =

Q�1(2x)
2

and

Q�1(x) = Q�1 � S(2x + 1) = T �Q�1(2x + 1) =
3Q�1(2x + 1) + 1

2
.

Proof of (17). Replacing x by Q(x) in (15) gives Q�1(2Q(x)) = 2x, leading to
2Q(x) = Q(2x).

Proof of (18). Let k � 2 and let x, y be 2-adic integers such that x = �1�(�2)k�2+
2ky. Starting from x and applying repeatedly the map T , it is easily seen that the
first k � 3 iterates are odd, while the next one is even: T k�2(x) = �1� (�3)k�2 +
3k�2(4y) ⌘ 2 (mod 4). Setting T k�2(x) = 2 + 4z, we get T k�1(x) = 1 + 2z and
T k(x) = 2 + 3z. Since x has the parity vector Vk(x) = (1, 1, . . . , 1, 0, 1), one may
write

Q(x) = 1 + 2 + . . . + 2k�3 + 2k�1 + 2kQ(2 + 3z)

for k � 3. In the case k = 2, the above expression simplifies to Q(x) = 2+4Q(2+3z).
On the other hand, starting from 2x+1 and applying k�1 times the map T , we get

after (k�2) odd iterates the even value T k�1(2x+1) = �1+(�3)k�1 +3k�1(4y) =
3T k�2(x) + 2 = 8 + 12z. The next two iterates are T k(2x + 1) = 4 + 6z and
T k+1(2x + 1) = 2 + 3z. It follows that 2x + 1 has the parity vector Vk+1(2x + 1) =
(1, 1, . . . , 1, 0, 0), so that

Q(2x + 1) = 1 + 2 + . . . + 2k�2 + 2k+1Q(2 + 3z) = 2Q(x)� 2k + 1.
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One may ask whether Theorem 2 provides a general algorithm to calculate in
a finite number of steps the exact value of the function Q applied to an arbitrary
positive integer. Unfortunately, the answer appears to be negative, since equation
(18) only applies to a subset of N of density 2�2 + 2�3 + 2�4 + . . . = 1/2.

The case k = 2 can be restated as

Q(4x + 1) = 4Q(x)� 3 for x ⌘ 1 (mod 2) (20)

by replacing x by 2x in (18) and using (17). One may further combine (18) and
(20) to produce the functional equations

Q(8x + 5) = 4Q(2x + 1)� 3 = 8Q(x)� 2k+2 + 1

for x ⌘ �1� (�2)k�2 (mod 2k) and k � 2.
The function Q satisfies many other functional equations that are not combina-

tions of (17) and (18) like

Q(3x + 1) = Q(x)� 1 for x ⌘ 1 (mod 2). (21)

Such equations are always related to the phenomenon of coalescence within the
dynamics of T . For example, the equation (21) derives directly from the equality
T (3x + 1) = T (x) for x ⌘ 1 (mod 2); see [4, 14] for other examples of generic
coalescences.

3.5. Ergodicity

The ergodic dynamics of the 3x+1 map T on Z2 is quite well understood, and para-
doxically, it does not provide any indication on the validity of the 3x+1 Conjecture,
as is discussed in [1].

Nevertheless, in view of the Periodicity Conjecture, it could be helpful to better
specify the dynamics of Q, which appears to be more complicated.

In what follows, we refer to [2] for the ergodicity of a measure-preserving function
on the 2-adic integers.

Since Q is isometric, it induces in the finite set Z/2nZ a permutation Qn whose
behavior is easier to study.

Definition 7. For all integers n � 0, let Qn denote the function

Qn : Z/2nZ �! Z/2nZ
x 7�! Q(x) mod 2n.

In [17], Lagarias showed that the order of Qn is always a power of 2, and the
following theorem was finally stated in [6].

Theorem 3. (Bernstein, Lagarias) For every positive integer n, the length of any
cycle in Qn is a power of 2. Moreover, Qn is a permutation of order 2n�4 for n � 6.
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When lifting from Z/2nZ to Z/2n+1Z, it is known that any cycle of Qn either
splits into two cycles whose period is unchanged, or undergoes a period-doubling.

Definition 8. Let m � k � 0 and let C = (c1, . . . , c2k) be a cycle of the permutation
Qm of length 2k. We say that C has an ever-doubling period if, for all n � m, the
elements c1, . . . , c2k of C are all included in a single cycle of Qn of length 2n�m+k.

The second part of Theorem 3 is based on the fact that the cycle (5,17) of Q5

has an ever-doubling period (see [6]).
Now we can use this result to study the dynamics of Q and Q�1 on the topological

space Z2. To this aim, we need the notion of 2-adic ball.

Definition 9. For any y 2 Z2 and r � 0, let B(y, r) denote the (closed) ball

B(y, r) = {x 2 Z2 : |x� y|2  r}

with center y and radius r. Equivalently, one has

B(y, 2�k) =
�
x 2 Z2 : x ⌘ y (mod 2k)

 

for every integer k � 0, and its 2-adic measure is given by its radius:

µ
�
B(y, 2�k)

�
= 2�k.

Recall that the function Q is measure-preserving [6, 17] and, unlike the map T ,
is not ergodic on Z2, since it preserves the parity.

One may at first observe that all forward and backward orbits remain close to
the initial point, and that the 2-adic distance is even smaller when the number of
iterations is highly divisible by 2. This fact is illustrated in the table below that
gives some of the iterates of the 2-adic integer 011012 = 1/5.

j Qj
�

1
5

� ��Qj
�

1
5

�
� 1

5

��
2

Q�j
�

1
5

� ��Q�j
�

1
5

�
� 1

5

��
2

1 �1
7 = 0012 2�2 13

21 = 00110012 2�2

2 17
5 = 00111012 2�4 � 1

11 = 00010111012 2�4

3 1863
31 = . . . 10012 2�2 373

781 = . . . 10012 2�2

4 . . . 000011012 2�6 . . . 100011012 2�6

The previous observation is due to the congruences (22) and (23), which follow
from Theorem 3.

Corollary 3. For all 2-adic integers x and all k � 2,

Q2(x) ⌘ x (mod 24), (22)

Q2k

(x) ⌘ x (mod 2k+4), (23)

or equivalently, Q2(x) 2 B(x, 2�4) and Q2k
(x) 2 B(x, 2�k�4).
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Proof. Take an integer k � 2. Theorem 3 implies that the length of every cycle of
Qk+4 divides 2k, from which we infer the congruence (23).

Likewise, the permutation Q4 has ten fixed points and three cycles of length 2,
which are (1,5), (2,10), and (9,13). Hence, the equation (22).

Consequently, whatever the 2-adic integer x, its forward and backward orbits
under iteration of Q have elements arbitrarily close to x.

Corollary 4. For all 2-adic integers x,

lim
k!1

Q2k

(x) = lim
k!1

Q�2k

(x) = x.

Though the dynamics of Q are not truly ergodic on Z2, this may occur on some
invariant subsets.

Let us recall a known criterion for the ergodicity of non-expanding3 functions,
by Anashin (Proposition 4.1 in [2]; see also [3]).

Theorem 4. (Anashin) A non-expanding function F : Z2 ! Z2 is ergodic if and
only if F induces modulo 2n a permutation with a single cycle for all positive integers
n.

The next theorem shows that Q is ergodic in a neighborhood of each cycle of Qm

having an ever-doubling period, for any m � 0.

Theorem 5. Let Qm denote the permutation induced by Q in Z/2mZ. For all
m � k � 0 and all cycles C = (c1, . . . , c2k) of Qm having an ever-doubling period,
the restriction of Q to B(c1, 2�m) [ . . . [B(c2k , 2�m) is ergodic.

Proof. Let n � m. Put K = B(c1, 2�m) [ . . . [B(c2k , 2�m) and Kn = K mod 2n.
Since Q is isometric, the sets K and Kn are left invariant by Q and Qn respectively.

Let Cn be the cycle of the permutation Qn that contains all the elements of C.
Its length is equal to 2n�m+k. Moreover, it is included in Kn whose cardinality is
equal to 2n�m+k. Therefore the restriction of Qn to the set Kn is a permutation
with a single cycle Cn.

From Theorem 4, we deduce that the restriction of Q to the set K is ergodic. For
completeness, it is not di�cult to find a suitable bijection F : Z2 ! K for which
the conjugate function F�1 �Q �F acting on Z2 is non-expanding and ergodic. For
example, one may use the function

F : Z2 �! K
x 7�! ci+1 + 2m�k(x� i), where i = x mod 2k,

which is one-to-one and onto.
3In [2], the term compatible is used instead of non-expanding for the same meaning.
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m k C µ (!(C))
5 1 (5,17) 2�4

6 2 (9, 29, 25, 13) 2�4

6 2 (41, 61, 57, 45) 2�4

8 2 (27, 251, 219, 59) 2�6

8 2 (91, 187, 155, 123) 2�6

Table 1: Odd cycles C of Qm of length 2k and having an ever-doubling period for
0  m� k  6. The last column gives the 2-adic measure, equal to 2k�m, of their
!-limit sets for the function Q.

k Nk Nk ⇥ 2�k

1 0 0.000
2 0 0.000
3 0 0.000
4 3 0.187
5 0 0.000
6 2 0.031
7 10 0.078
8 11 0.042

k Nk Nk ⇥ 2�k

9 11 0.021
10 29 0.028
11 54 0.026
12 91 0.022
13 118 0.014
14 213 0.013
15 282 0.008
16 436 0.006

Table 2: Numbers Nk of odd ergodic sets of 2-adic measure 2�k, k  16.

Definition 10. Whenever Q is ergodic on a (closed) invariant set with positive
measure, we call it an ergodic set. Moreover, we call ergodic domain the union of
all the ergodic sets.

The fact that Q is bijective further implies that Q�1, namely, the 3x+1 conjugacy
map, has the same ergodic domain as Q.

Let us point out that every ergodic set in Theorem 5 is closed, hence it is the
!-limit set in Z2 of any point of the associated cycle C. For convenience, we write
!(C) to refer to this set.

In order to identify the cycles having an ever-doubling period, it is convenient to
use the following criterion (see Theorem 3.1 in [6]) whose original formulation and
vocabulary have been significantly modified.

Theorem 6. (Bernstein, Lagarias) Let m � k � 2 and let C be a cycle of Qm

of length 2k. If C is part of a cycle of Qm+2 of length 2k+2, then C has an ever-
doubling period.

After some straightforward numerical computations, we find, by applying The-
orems 5 and 6 above, that Q is ergodic on the !-limit set of every cycle in Table
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1. Though it is not the case for any other odd set of 2-adic measure at least 2�6,
there are many smaller odd ergodic sets. In Table 2, we provide their respective
numbers when sorted by size (see also Table 2.2 in [6]). We obtain that the total
measure of the odd ergodic sets exceeds 0.48, whereas it is trivially upper bounded
by µ (B(1, 1/2)) = 1/2.

For each odd ergodic set of measure 2�k and each m � 1, we easily get, by
applying the autoconjugacy (17) repeatedly m times, an even ergodic set of measure
2�k�m. It yields that the ergodic domain has a measure greater than 0.96.

Conjecture 3. (Ergodicity Conjecture) The ergodic domain of Q has full 2-adic
measure.

We expect this conjecture to be closely related to the distribution of periodic
orbits, about which little is known.

3.6. Cycles

The search of the periodic points of the function Q is far from trivial due to the
fact that it is nowhere di↵erentiable, as proved by Müller in [25] (see also [5] for a
short proof).

Hereafter, we call Q-cycle (resp. T -cycle) a periodic orbit of the function Q
(resp. T ). Unlike T -cycles, it is not known whether the Q-cycles are all rational.
Note that the set of even Q-cycles may be easily deduced from the odd ones by
using the functional equation (17), and by adding the fixed point 0.

As a consequence of Theorem 3 (§3.5), the period of any Q-cycle is always a
power of 2. In contrast with the cycles having an ever-doubling period introduced
in Definition 8 (§3.5), a Q-cycle corresponds to some cycle of Qn whose period
remains unchanged for all su�ciently large n, and that systematically splits into
two cycles of Qn+1, one of which splits again, and so on as n increases. From a
heuristic point of view, this resembles an infinite branching process that allows one
to estimate the number of short cycles of Qn for large n, as in [6, §6].

One observes in Example 3 (§3.2) that �1 is a fixed point for the function Q, as
for T . In fact, there are infinitely many since �2k and 2k/3 are fixed points for all
k � 0, in addition to the trivial fixed point 0. It is conjectured that �1 and 1/3 are
the only odd ones (Fixed Point Conjecture, in [6]). Numerically, it is easy to verify
that any such point is necessarily very close, if not equal, to �1 or 1/3.

In the same paper, Bernstein and Lagarias also mentioned the existence of the
odd rational cycle (�1/3, 1) of period 2, and conjectured that there are finitely
many odd cycles for any given period 2j (3x+1 Conjugacy Finiteness Conjecture).

Lately, I found that (�1/5, 5/7) is another odd rational cycle of period 2. Indeed,

Q

✓
�1

5

◆
= 00112 =

5
7

and Q

✓
5
7

◆
= 00112 = �1

5
.
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Period Q-cycle T -cycles
1 (�1) =

�
12

�
(�1)�

1
3

�
=
�
0112

�
(1, 2)

2
�
�1

3 , 1
�

=
�
012, 012

�
(0) and (1, 2)�

�1
5 , 5

7

�
=
�
00112, 00112

� �
1
5 , 4

5 , 2
5

�
and

�
5
7 , 11

7 , 20
7 , 10

7

�

Table 3: Odd Q-cycles and corresponding T -cycles.

Next, I conducted a numerical verification up to period 16 on the set of rationals of
the form p/q where p, q are odd coprime integers lower than 1000 in absolute value.
Working modulo 240 was enough to rule out the candidates that are not part of a
known Q-cycle.

In Table 3, we list the known odd Q-cycles, and, for each rational element, the
T -cycle appearing in its orbit of T iterates. So far, no Q-cycle was found having a
prime period strictly greater than 2. This leads one to think that there is none.

Conjecture 4. (Odd Cycles Conjecture) The function Q has exactly two odd fixed
points, �1 and 1

3 , and two odd cycles of prime period 2,
�
�1

3 , 1
�

and
�
�1

5 , 5
7

�
. There

exists no other odd cycle, rational or not.

4. The 3x + 1 Set

4.1. Euclidean Embedding

Overall, the automorphism Q and its inverse remain somewhat mysterious. One
may wish to somehow visualize their action on Z2. Recall that the space Z2 is not
Euclidean and totally disconnected, which makes it di�cult to represent graphically
[8, 11]. It is known to be homeomorphic to the Cantor ternary set, which has
Lebesgue measure 0. We propose to apply a continuous function M that sends
Z2 to the real interval [0, 2]. The map M , as defined below, is very similar to the
Monna4 map [24].

Definition 11. Let M denote the continuous 2-Lipschitz map from Z2 to [0, 2]

M :
1X

k=0

rk2k 7�!
1X

k=0

rk2�k, where rk = 0 or 1.

The action of the map M may seem counter-intuitive, as it does not preserve
the usual order between the rational numbers. For instance, the images of positive
and negative rational numbers are deeply intertwined. But, conveniently, M sends

4The original Monna map sends Z2 to [0, 1].
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2-adic balls with radius 2�k onto real intervals of length 21�k, so that the set of
odd 2-adic integers is entirely mapped on the interval [1, 2]. We call it the “odd”
side, whereas [0, 1] may be regarded as the “even” side.

Let us point out that M is not one-to-one, since

M(1) = 1 =
1X

k=1

2�k = M(�2),

and more generally,

M
�
n + 2k

�
= M

�
n� 2k+1

�
= M(n) + 2�k for 0  n  2k � 1.

As a result, the mapping M is not truly an embedding, although when restricted to
Z2 \ Z it is one-to-one. Further, it is easily seen that the set M(Z) coincides with
the set of dyadic numbers, namely, rationals whose denominator is a power of 2,
from the interval [0, 2].

Definition 12. Letting X = M and Y = M �Q, we call “3x+1” set the parametric
set of the plane R2 denoted by Q3x+1 and defined by

Q3x+1 = (X,Y )(Z2) = {(M(r),M(Q(r))) : r 2 Z2}.

As shown below, each point of Q3x+1 corresponds to a unique parity sequence.
Somehow, the 3x + 1 set “fully” encodes the dynamics of the 3x + 1 map.

Lemma 2. The function (X,Y ) : Z2 ! [0, 2]2 is one-to-one and continuous with
respect to the 2-adic measure on its domain.

Proof. Suppose there exist two distinct 2-adic integers a and b such that X(a) =
X(b) and Y (a) = Y (b). We infer that a, b, Q(a), and Q(b) are all in Z, and Q(a) or
Q(b) is positive. Say Q(a) is a positive integer, so it has a finite binary expansion.
From the inverse formula (10), it follows that a is rational with denominator a
power of 3 strictly greater than 1, and numerator coprime to 3. Since a is a rational
integer, there yields a contradiction. Hence, (X,Y ) is one-to-one.

Moreover, it is also continuous as a composition of continuous functions.

Viewing (X,Y ) as a continuous bijection between the compact sets Z2 and Q3x+1,
then its inverse is known to be continuous. Therefore (X,Y ) is an embedding from
the parameter space Z2 into the Euclidean space R2.

The fact that rationality is always preserved by the map M leads to an immediate
reformulation of the Periodicity Conjecture.

Conjecture 5. (Rational Points Conjecture) All points in Q3x+1 have coordinates
that are either both rational or both irrational.
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(a)

(b)

0 1 20

1

2

0 1 20

1

2

0 1 20

1

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75
0

0.25

0.5

0.75

1

1.25

1.5

1.75

1

9
3

5
7

1
3

7

17

−7

5
−1

3

−3

−1
5

−5

−1

Figure 1: (a) Coverings of Q3x+1 made of 2k squares of side length 21�k for k = 4,
5, and 6, from left to right. (b) The set Q3x+1 with (green) line segments indicating
the rational points from Table 4, along with their respective parameter value.
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r Q(r) X(r) Y (r)

1 �1
3 1 4

3

17 �401
3

17
16

493
384

9 �6377
3

9
8

8941
6144

�7 �5
7

5
4

10
7

5 �13
3

5
4

13
12

�1
3 1 4

3 1

�3 �7 3
2

5
4

r Q(r) X(r) Y (r)

3 �23
3

3
2

37
24

5
7 �1

5
11
7

8
5

�1
5

5
7

8
5

11
7

1
3

1
3

5
3

5
3

�5 �3
7

7
4

12
7

7 �1595
3

7
4

2797
1536

�1 �1 2 2

Table 4: A few rational points in Q3x+1 associated with an odd rational value of
the 2-adic parameter r and sorted by increasing abscissa.

In Table 4, we provide the coordinates of various rational points from the set
Q3x+1. Among them, six points are associated with one of the odd Q-cycles in
Table 3 (§3.6), whose respective parameter values are �1, �1/3, �1/5, 1/3, 5/7,
and 1.

Regardless of the 2-adic parametrization of Q3x+1, one can visualize it by taking
only natural integers. This is due to the density of N in Z2, and to the fact that
both functions M and Q are Lipschitz. Practically, it su�ces to calculate the parity
vectors of length k for every nonnegative integer up to 2k for some k reasonably
large, and apply M on the resulting binary expansions. We took k = 12 in Figure
1b.

The same method has been already used, e.g., by Hashimoto in [16], to represent
the “graph” of the map5 T acting on Z2.

A slightly di↵erent construction of the 3x + 1 set can be achieved by considering
a sequence of nested sets made of finitely many squares (Figure 1a). Although their
respective areas tend to zero as the number of squares increase, we prove in Lemma
3 that they all cover Q3x+1.

Lemma 3. For all positive integers k, we have

Q3x+1 ⇢
2k�1[

n=0

⇥
X(n),X(n) + 21�k

⇤
⇥
⇥
Yk(n), Yk(n) + 21�k

⇤

where Yk(n) = M
�
Q(n) mod 2k

�
.

5Most often, a variant of the map T is considered, leading to a slower or faster dynamics.
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Proof. Let r be a 2-adic integer, and let k � 0. Setting n = r mod 2k, we have

X(r) 2 X
�
B(n, 2�k)

�
=
⇥
X(n),X(n) + 21�k

⇤

and

Y (r) 2 Y
�
B(n, 2�k)

�
= M

�
B(Q(n), 2�k)

�
=
⇥
Yk(n), Yk(n) + 21�k

⇤
.

The inclusion claimed in Lemma 3 follows.

From this result, we infer that

Q3x+1 ⇢
1\

k=0

2k�1[

n=0

⇥
X(n),X(n) + 21�k

⇤
⇥
⇥
Yk(n), Yk(n) + 21�k

⇤
. (24)

In fact, the equality holds, as both sets have exactly the same number of intersec-
tions with every line parallel to the y-axis.

Another corollary of Lemmas 2 and 3 is the presence of infinitely many discon-
tinuities in Q3x+1 for the Euclidean metric, at each point whose abscissa is dyadic,
except the extremal points (0,0) and (2,2).

Let us observe in Figure 1b that it has a rather symmetric aspect with respect to
the diagonal � = {(x, x) : 0  x  2}. This is mainly due to the congruence (22)
in Corollary 3. An underlying question would be to determine how much does the
function Q di↵er from its inverse, about which little is known. From Figure 1a, it
is clear that the symmetry is broken only at a rather small scale. It turns out that
few points are e↵ectively symmetric. Despite the non-injectivity of the map M , it
is most likely that only those points whose parameter values are part of a Q-cycle
of period at most 2, are symmetric. We obtain thereby a symmetric subset that is
expected to contain exactly six points in the upper right quarter of the set Q3x+1,
two of them being on � (see Conjecture 4 in §3.6, and Table 4).

One may further notice a number of a�ne self-similarities, some of which are
made explicit in the next section (§4.2).

4.2. Self-similarity

As a result of the functional equations (17) and (18) satisfied by Q, it is possible
to delimit regions of Q3x+1 that are identical through an a�ne transformation. To
this aim, we first introduce two infinite families of real intervals, which realize a
covering of the half-open interval [0, 2).

Definition 13. For every integer k � 2, let

↵k = �1� (�2)k�2 mod 2k, mk = 2k�2 � 1, nk = 3 · 2k�2 � 1,
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so that ↵k = mk if k is odd, and ↵k = nk otherwise. Then define the real intervals

Ik = [M(mk),M(nk)] =
⇥
2� 23�k, 2� 3 · 21�k

⇤

and
Jk = [M(nk),M(mk+1)] =

⇥
2� 3 · 21�k, 2� 22�k

⇤

of length 21�k. The mapping M sends the 2-adic ball B(↵k, 2�k) onto Ik or Jk

alternatively, according to the parity of k.

The next lemma, along with Corollary 5, will prove useful to delimit in the 3x+1
set all parts corresponding to parametric values in the same congruence class as mk

or nk modulo 2k.

Lemma 4. The integers (mk)k�2 and (nk)k�2 have the properties

Q(mk) ⌘ mk (mod 2k) and Q(nk) ⌘ nk (mod 2k) for k even, (25)
Q(mk) ⌘ nk (mod 2k) and Q(nk) ⌘ mk (mod 2k) for k odd. (26)

Proof. The function Q induces a permutation on Z/2kZ. Thus, we can reason on
Q�1 instead of Q.

Let us write, first, the binary representations

mk = 0011 . . . 12| {z }
k

and nk = 1011 . . . 12| {z }
k

.

Applying formula (11) from Corollary 2, we get

Q�1(mk) ⌘ �1� 2k�232�k � 2k�132�k (mod 2k)
⌘ �1� 2k�231�k (mod 2k)
⌘ �1 + (�2)k�2 (mod 2k)

since 1
3 ⌘ �1 (mod 4), and similarly,

Q�1(nk) ⌘ �1� 2k�232�k (mod 2k)
⌘ �1� (�2)k�2 (mod 2k).

The properties (25) and (26) follow by considering the parity of k.

Corollary 5. For every k � 2,

Y
�
B(↵k, 2�k)

�
= Jk and Y

�
B(2↵k + 1, 2�k�1)

�
= Ik+1,

where Y = M �Q and B(↵k, 2�k) is the closed ball with center ↵k and radius 2�k

in Z2 (see Definitions 9 in §3.5, and 11 in §4.1).
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Proof. From Lemma 4, we have

Q(↵k) ⌘ nk (mod 2k) and Q(2↵k + 1) ⌘ mk+1 (mod 2k+1),

whatever the parity of k. Since Q is an isometry, it yields

Q(B(↵k, 2�k)) = B(nk, 2�k) and Q(B(2↵k + 1, 2�k�1)) = B(mk+1, 2�k�1).

Hence the result.

We now establish the existence of infinitely many a�ne relationships within
Q3x+1 and give their analytic expressions.

Theorem 7. The set Q3x+1 = (X,Y )(Z2) admits the self-a�ne relationships

(X,Y )(2r) =
1
2
(X,Y )(r) (27)

for r 2 Z2, and

(X,Y )(2r + 1) =
1
2
(X,Y )(r) + (1, 1� 2�k) (28)

for r ⌘ ↵k (mod 2k) and k � 2, where X = M and Y = M �Q as in Definition 11
(§4.1).

Proof of (27). For all 2-adic integers r,

M(2r) =
1
2
M(r)

and, by the functional equation (17),

M(Q(2r)) = M(2Q(r)) =
1
2
M(Q(r)).

Proof of (28). Let r ⌘ ↵k (mod 2k). It is easily seen that

M(2r + 1) = 1 +
1
2
M(r).

Now, recall the functional equation (18):

Q(2r + 1) = 2Q(r) + 1� 2k.

Lemma 4 gives Q(r) ⌘ nk (mod 2k), yielding the 2-adic expansion

Q(r) = 1 + 2 + 22 + . . . + 2k�3 + 2k�1 + . . . .

Hence, we obtain

M(Q(2r + 1)) = 1 +
1
2
M(Q(r))� 2�k.
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0.5 0.6 0.7 0.8 0.9 1

k=2

1 1.05 1.1 1.15 1.2 1.25

k=3

1.64 1.66 1.68 1.7 1.72 1.74

k=4

1.76 1.78 1.8

k=5

1.91 1.915 1.92 1.925 1.93 1.935

k=6

1.94 1.945 1.95

k=7

0 0.5 1 1.5 2
0

0.5

1

1.5

0 0.5 1 1.5 2
0

0.5

1

1.5

(a) (b)

(c)

Figure 2: (a-b) Identical parts of Q3x+1 through the a�ne transformations (27)
and (28) in (a) and (b) respectively. (c) Enlarged parts of Q3x+1 delimited by some
of the boxes in (b), namely, J2

k for k even and Ik ⇥ Jk for k odd, with 2  k  7.
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Parity Box 1 Box 2 A�ne transformation

- [0, 2]2 [0, 1]2 (x, y) 7�!
�

x
2 , y

2

�

k even J2
k Jk+1 ⇥ Ik+1 (x, y) 7�!

�
1 + x

2 , 1 + y
2 � 2�k

�

k odd Ik ⇥ Jk I2
k+1 (x, y) 7�!

�
1 + x

2 , 1 + y
2 � 2�k

�

Table 5: Pairs of boxes covering two parts of Q3x+1 that coincide modulo an a�ne
transformation with scaling factor 1

2 . Note that k � 2.

It follows from Theorem 7 together with Corollary 5 that some parts of the 3x+1
set described in Table 5 are identical through the a�ne transformations represented
on Figures 2a and 2b. The first line of Table 5 is linked to the autoconjugacy (17).
The fact that the boxes [0, 2]2 and [0, 1]2 are nested leads to an infinite descent
on the “even” side of Q3x+1 towards the origin. On the other hand, the equation
(28) applies only for odd values of the parameter r, except when k = 2. From the
corresponding pairs of boxes in Table 5, we obtain a covering of the “odd” side of
Q3x+1, which takes the form in Figure 2b of an infinite “cascade” along the diagonal
�.

Other functional equations like (16) and (21) do not imply self-similarity on our
plane representation in Figure 1b, due to the value 3 not being a power of 2.

On Figure 2c, we show enlarged parts of Q3x+1, mainly from the “odd” side,
that are delimited by squares of side-length 21�k for 2  k  7. Putting together
all the a�ne similarities, it yields that the content of the first square J2

2 is made
entirely of small copies of J2

k for even k � 4, and Ik ⇥ Jk for odd k � 3, plus an
extra point at

�
1
2 , 1

2

�
. It is a puzzling question whether every square on Figure 2c is

also made of small pieces taken elsewhere within the odd side of Q3x+1 and outside
J3 ⇥ I3.

Nonetheless, one observes some relative diversity of patterns. Unlike for the
Cantor ternary set, there seems to be no simple geometric scheme able to reproduce
Q3x+1, in the sense that more and more calculations are required for refining the
shape of each pattern.

Finally, the unveiling of self-similarity at all scales raises the question of the
Hausdor↵ dimension, to which the following theorem answers without much di�-
culty.

Theorem 8. The set Q3x+1 has Hausdor↵ dimension 1.

Proof. First, observe that the Hausdor↵ dimension of Q3x+1 is at least 1, as it
contains at least one point for each abscissa taken in the interval [0, 2].

For all k � 0, we obtain from Lemma 3 (§4.1) a covering of Q3x+1 made of
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⌫k = 2k boxes of side-length lk = 21�k. The number of boxes is minimal because
the number of intervals of length lk required to cover [0, 2] is at least 2k.

Therefore the “box-counting” dimension of Q3x+1 is equal to

lim
k!1

log ⌫k

log
⇣

1
lk

⌘ = lim
k!1

k

k � 1
= 1,

which is an upper bound of its Hausdor↵ dimension.

Acknowledgements. I am indebted to the anonymous referee for his valuable
comments that helped to improve the exposition of the 3x + 1 set.
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