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S U M M A R Y
This paper presents an improvement of the particle-in-cell (PIC) method commonly used in
geodynamic modelling for solving pure advection of sharply varying fields. Standard PIC
approaches use particle kernels to transfer the information carried by the Lagrangian particles
to/from the Eulerian grid. These kernels are generally 1-D and non-evolutive, which leads to the
development of under- and oversampling of the spatial domain by the particles. This reduces
the accuracy of the solution, and may require the use of a prohibitive amount of particles in
order to maintain the solution accuracy to an acceptable level. The new proposed approach
relies on the use of deformable kernels that account for the strain history in the vicinity of
particles. It results in a significant improvement of the spatial sampling by the particles, leading
to a much higher accuracy of the numerical solution, for a reasonable computational extra cost.
Various 2-D tests were conducted to compare the performances of the deformable PIC (DPIC)
method with the PIC approach. These consistently show that at comparable accuracy, the DPIC
method was found to be four to six times more efficient than standard PIC approaches. The
method could be adapted to 3-D space and generalized to cases including motionless transport.

Key words: Numerical modelling; Numerical solutions; Dynamics: convection currents, and
mantle plumes; Dynamics of lithosphere and mantle.

1 I N T RO D U C T I O N

The accurate modelling of the advection of compositional hetero-
geneities is a common requirement for computational geodynam-
ics at scales ranging from planet-size (Gerya & Yuen 2007; Lin
et al. 2011), mantle (Hoı̈nk et al. 2005; McNamara & Zhong 2005;
Samuel & Bercovici 2006; Tackley 2008; Maurice et al. 2017), core
(Bouffard et al. 2017), lithospheric scale (Poliakov & Podladchikov
1992; van Hunen et al. 2004; Gerya 2010; and references therein),
down to the scale of magma chambers of just a few tens of metres
thick (Ruprecht et al. 2008).

These experiments rely on the modelling of a purely advective
transport equation written below for a vector quantity C in a flow
field u:
∂C

∂t
+ u · ∇C = 0, (1)

where t is the time. The above equation is relevant to cases where
C represents active or passive compositional fields being advected,
and for which diffusion can be neglected.

In the frame of geodynamic modelling, the flow field u generally
corresponds to the solution of the Navier–Stokes equations. The lat-
ter is generally obtained via the discretization of these equations on
Eulerian grids, which are often coupled to supplementary equations
for the conservation of additional quantities such as internal energy

(e.g. Hoı̈nk et al. 2005; McNamara & Zhong 2005; Tackley 2008;
Bouffard et al. 2017; Maurice et al. 2017).

The presence of Eulerian grids to compute the flow field u and
other quantities makes the use of the ‘particle-in-cell’ (PIC) method
for solving eq. (1) suitable and advantageous in geodynamic mod-
elling. This hybrid approach combines an Eulerian description of
the field C with a network of Lagrangian particles moving through
the grid. In the original version of the method (Harlow 1957,
1964), particles carried a limited amount of information: identity
and mass. The PIC method was later adapted to a broader range
of applications in various fields of research that led to additional
quantities to be carried by the particles (e.g. energy, temperature,
momentum...).

Regardless of its countless evolutions, the PIC method aims at
making use of the best of both worlds: while processes such as dif-
fusion can generally be accurately and straightforwardly computed
on an Eulerian grid, the evaluation of the advective transport term
using a Lagrangian formalism can be advantageous because it does
not involve by itself significant amounts of numerical dissipation
compared to Eulerian approaches (Harlow 1957; Monaghan 1985;
Rider & Kothe 1995; Kothe 1998).

To some extent, the PIC approach can be viewed as an operator
splitting technique where at each time step motionless processes
are updated on the Eulerian grid, and transferred to the particles.
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Then, advection is handled via the Lagrangian particles prior to
the mapping of the advected quantities back onto the Eulerian grid.
Therefore, the method requires particle–mesh and mesh–particle
mappings to be specified. These critical operations constitute a
major source of inaccuracy in the PIC solution (Monaghan 1985;
Deubelbeiss & Kaus 2008; Duretz et al. 2011; Thielmann et al.
2014). Indeed, while the Lagrangian advection alone is not prone
to significant numerical diffusion, particle–mesh mappings can in-
troduce important amounts of dissipation. This is particularly true
when the spatial distribution of particles is not homogeneous, lead-
ing to areas in the vicinity of gridpoints that are not sufficiently
well sampled by particles, and other regions where the domain is
oversampled by particles. This recurrent sampling problem devel-
ops in regions characterized by strong deformation, and concerns
both compressible and incompressible flow (Wang et al. 2015; Pu-
sok et al. 2016). The non-homogeneous sampling has two main
origins. The first one corresponds to inaccuracies in advecting the
Lagrangian particles (Meyer & Jenny 2004). This aspect has drawn
the attention of a few recent studies (Wang et al. 2015; Pusok et al.
2016), which have proposed the use of conservative schemes to
map velocity components from the Eulerian grid to the Lagrangian
particles during their advection. Such schemes have shown to sig-
nificantly improve the accuracy of the interpolation, and result in
a considerably more homogeneous spatial sampling. The second
origin, which has received less attention, is related to the deforming
nature of the flow (e.g. Moresi et al. 2003), and is completely inde-
pendent of the accuracy of the numerical methods for interpolating
the velocities at particles’ locations. In fact, for a given velocity
field, particles should travel along their characteristics, and even in
the case of incompressible flows, the distance between character-
istics can vary in general, and can strongly diverge or converge in
regions characterized by strong deformation. This naturally leads to
the development of a non-homogeneous spatial distribution of the
Lagrangian particles, even if the particles locations are perfectly
known, as we shall see later.

In addition to the use of better interpolation and time-
integration schemes, common remedies to the aforementioned non-
homogeneous spatial sampling are (Poliakov & Podladchikov 1992;
van Keken et al. 1997; Tackley & King 2003; Gerya 2010; Wang
et al. 2015; and references therein) (1) the increase of the number of
Lagrangian particles, which can lead to a prohibitive computational
cost; (2) the redistribution of particles via seeding and deletion of
particles in under- and oversampled regions, respectively. Besides
the extra cost associated with these operations, particle remeshing
introduces significant amounts of numerical diffusion in undersam-
pled regions.

This paper therefore focuses on the resolution of eq. (1) with an
improved version of the PIC method, which yields a better behaviour
in regions characterized by strong deformation. For simplicity, I
consider exclusively the case of purely advective transport in 2-
D Cartesian domains, although PIC methods can be applied when
advective transport is coupled to other processes such as diffusion
(Brackbill et al. 1987; Gerya & Yuen 2003) and generalized to 3-D
geometry.

The new approach I propose for the PIC method is based on
the use of anisotropic particle ‘kernels’ (i.e. the representation of
their spatial domain of influence) that account for the deformation
history in the vicinity of particles. This new method hereafter termed
‘Deformable PIC’ (DPIC), yields a significant improvement of the
domain sampling by particles, without requiring a prohibitive extra
computational cost.

Figure 1. Schematic representation of the particle kernels and grid shape
function S in a domain discretized with square cells of dimensions h × h.
In this example, the grid shape functions take the form of the NGC (eq. 8),
interacting with disc particle kernels of identical radius rp (eq. 11). Focusing
on the central cell located at xc, the grey area corresponds to S(xc) = 1, and
S(xc) = 0 elsewhere. The boundaries of the particle kernels are shown in
black. The common area between each particle kernels and S(xc) are shown
in yellow. Therefore, W(xc) is the sum of areas shown in yellow normalized
by the cell volume, h2 (eqs 6 and 7). See text for further details.

The paper is structured as follows: Section 2 summarizes the
standard implementation of the PIC method and illustrates its limi-
tations. Section 3 presents the new particle kernel used in the DPIC
method. Section 4 describes the implementation details of the DPIC
method. Section 5 illustrates the benefits of the new method. Sec-
tion 6 compares the performances of the standard and the DPIC
methods using kinematic and dynamic flow tests. Section 7 sum-
marizes the conclusions and proposes possible future developments,
and applications of the DPIC formalism.

2 T H E P I C M E T H O D

As in purely Eulerian methods the physical domain, �, is discretized
using a finite number of points/control volumes. For simplicity,
throughout this study we adopt a 2-D Cartesian framework x = (x,
z), where the domain is discretized on a half-staggered grid using
nx × nz square cells of size h2, whose centres are located at xc.
Therefore, C(xc) = C(xc, zc) ≡ C(i, j), where the grid indexes i
and j point to the coordinates xc = h(i − 0.5) and zc = h(j − 0.5).
Velocity components are specified at cell vertices. The choice for
such grid configuration is purely arbitrary and is unlikely to have a
particular effect on the results presented.

To complete the previous Eulerian description, a set of np La-
grangian particles is used to describe the vector field C in eq. (1).
Each particle represents a macroscopic fluid sample/parcel at a
given location xp, which is determined via the integration of the
following ordinary differential equation:

dxp

dt
= up, (2)
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Figure 2. Results of the vortex flow test at t = 0.75 (top) and t = 1.5 (bottom), obtained using the PIC method with initially four particles per cell. The domain
is discretized using 20 × 20 square cells. The cell sampling parameter W is displayed in colour. White and black indicate cells that are unsampled (W = 0) and
strongly oversampled (W > 1.5) by particle kernels, respectively. The contour of particles kernels is shown in black. Left-hand, middle and right-hand panels
correspond to homogeneous and regular initial positions of particles with no remeshing, randomly perturbed initial positions of particles with no remeshing,
randomly perturbed initial positions of particles with particle remeshing applied in under- and oversampled areas, respectively. See text for further details.

where up = u(xp) is obtained by interpolation of the velocity field
at the Eulerian grid points. Eq. (2) may be integrated using a Total
Variation Diminishing–Runge–Kutta (TVD–RK) scheme of second
or third order (Shu & Osher 1988).

Each particle carries information Cp obtained from the inter-
polation of neighbouring Eulerian field values. These Eulerian-
to-Lagrangian interpolations are performed by applying weights
wg(xp) to the nearest grid cell (NGC) to which each particle be-
longs:

Cp =
nNGC∑
g=1

wg(xp) C(xg), (3)

where nNGC = 4 in 2-D and 8 in 3-D.
In this study we will restrict to the use of linear distance weights,

wg, applied to the four NGC surrounding each particle. This avoids

unphysical undershoots and overshoots upon interpolation when
dealing with sharply varying fields (Monaghan 1985).

Similarly, the Eulerian field is expressed using a weighted arith-
metic mean:

C(xc) =
n p∑

p=1

wp Cp, (4)

where the particle weights, wp, are expressed as

wp = w∗ (xc, xp)

W (xc)
. (5)

The area-based weight, w∗, corresponds to a convolution product
(Brackbill 2005):

w∗(xc, xp) = S(xc) ∗ K p(xp)

h2
, (6)
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Figure 3. Results of the vortex flow test obtained using the PIC method with initially four particles per cell. The domain is discretized using 20 × 20 square
cells. (a) Close-up view of the model domain showing the trajectories for two particles, A (green) and B (yellow) initially close to each other. The imposed
streamfunction field, ψ , is shown. The black arrow shows the shortest distance between the trajectories, which is maximum at each corner of the domain, and
becomes larger than a cell diagonal, causing non-homogeneous sampling of the domain upon advection. (b and c) Advection of disc particle kernels in the
vicinity of x = z = 0. Particle C (yellow) and D (green) that belong to the same streamline/trajectory (dotted line) are shown. The pure-shear deformation in this
region results in an exponential separation of C and D. The gap produced is not filled out by other nearby particles, which follow similar parallel trajectories,
leaving cells empty. The velocity vectors are shown by the purple arrows. See text for further details.

where the shape function S defines the region in the vicinity of a
grid cell centre where the value of C can be influenced by particles,
whose domains of influence are expressed by the kernel Kp. There-
fore, w∗(xc, xp) represents the area common to S and Kp normalized
by the grid cell area, as illustrated in Fig. 1. As described in the
following, both S and Kp are also functions of x, but to simplify the
notation this dependence is not explicitly written.

To ensure that the averaging scheme is convex, the particles’
weights are normalized by a cell sampling parameter:

W (xc) =
n p∑

p=1

w∗(xc, xp). (7)

This quantity measures the volume fraction of a given cell sam-
pled by particles. W(xc) > 1 indicates an oversampled cell, while
W(xc) < 1 reflects an undersampled cell. Note that since W ignores
particle kernel overlaps, this sampling parameter should be viewed
as a proxy for the quality of sampling. However, not removing
overlapping areas between particle kernels is preferable as it would
imply a mass/volume loss.

2.1 Grid shape functions

Several possibilities exist for the choice of S. A common form
used in this study and elsewhere (e.g. Samuel & Farnetani 2003;
Tackley & King 2003; Thielmann et al. 2014) is the NGC function,
expressed here in 2-D (x, z) space:

S(xc) = s(h/2, |x − xc|) s(h/2, |z − zc|), (8)

with

s(r, d) =
{

1 if d ≤ r
0 if d > r.

(9)

This results in S = 1 inside a grid cell of size h × h, and S = 0
elsewhere. Alternatively, the grid cell shape function can be set to

S(xc) = s(h, |x − xc|). (10)

In this case, S will be one in a disc of radius |x − xc| cen-
tred on xc, and zero elsewhere (Fig. 1). Smoother versions of S
are also commonly considered by replacing s(h, |x − xc|) in the
above expressions by linear truncated functions (Gerya & Yuen
2003; Tackley & King 2003; Duretz et al. 2011), Gaussian func-
tions (Brackbill 2005) or piecewise high-order polynomials such as
splines (Monaghan 1985, 1992).
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2.2 Particle kernels

Particle kernels can take forms similar to grid cell shape functions:

K p(xp) = s(rp, |x − xp|), (11)

where rp expresses the particle’s spreading. If rp is a constant,
the above kernel corresponds to a disc/sphere of radius rp centred
around the particle (Fig. 1).

A more common form used in geodynamic modelling is the
point-wise kernel: Kp(xp) = δ(|x − xp|) (Gerya & Yuen 2003;
Tackley & King 2003; Deubelbeiss & Kaus 2008), where δ is the
Dirac distribution. On the contrary, disc-shaped particle kernels
(eq. 11, Fig. 1) are rarely used in geodynamic modelling, because
they require surface/volume integration. This is more complicated to
implement, and computationally more expensive to use than point-
wise kernels. However, despite this handicap, I will refer to them in
the first set of experiments presented in this paper, because of their
conceptual simplicity, their generality (i.e. they include point-wise
kernels) and their physical sounding [disc/spheres are intuitively
more easily associated with macroscopic area/volume or fluid than
material points, which is consistent with Harlow’s original proposal
for the PIC method (Harlow 1957, 1964)].

Note that particle kernels do not need to be identical to each other.
In addition, Kp can evolve with time, as is the case for adaptive
particle kernels (see Monaghan 1985 and references therein).

With the exception of point-wise particles, the kernel functions
explicitly involve a characteristic length scale, rp, whose appro-
priate value may be problem-dependent. Nevertheless, since the
quantities carried by the particles result from the interpolation of
the Eulerian grid values, it is desirable to have rp smaller than the
Eulerian grid spacing h, which could yield, to some extent, subgrid
resolution, depending on the smoothness of C (Grigoryev et al.
2002; Brackbill 2005). However, a value of rp too small would in-
volve a prohibitively large number of particles. This remains true
for the case of point-wise kernels, where particles have a statistical
meaning rather than a macroscopic meaning, which still requires a
significant number of particles to yield a representative description.
Another fundamental remark is that the kernel functions commonly
used in the PIC method are 1-D ‘spherically’ symmetric.

Ideally, for computational efficiency and accuracy, one seeks a
configuration that provides the best sampling of the domain � by
the particles at all times, at the lowest computational cost. Namely,
assuming that cell shape functions take the form of eq. (8), one seeks
a set of K(xp) such that, ideally, W (xc) = 1 ∀ xc ∈ �, that is, the vol-
ume fraction sampled by particles present in each computational cell
equals the cell volume. For point-wise particles, the corresponding
requirement would translate into a Voronoi-type statement that the
average distance between nearest particles remains constant. Sets
of particles that are too far away from the above requirement tend
to result in over- or underrepresentations of the field C, which are
computationally inefficient or inaccurate, respectively. Approach-
ing the above requirement implies an infinite number of particles,
or complex irregular kernel functions, both leading to a prohibitive
computational cost. A somewhat looser requirement could there-
fore be that ‘most’ (e.g. ∼75 per cent) of each grid cell volume are
sampled by particles:

W (xc) = 0.75 ∀ xc ∈ �. (12)

While the value of 0.75 was chosen arbitrarily, tests conducted in-
dicate when this empirical requirement is met, the quality of spatial
sampling and the solution accuracy were found to be satisfactory. In
2-D space, this corresponds approximately to n2 identical particles

with tangent disc kernels of radius rp = h/(4n), within a square cell
of volume h2 (see for instance Fig. 5a).

For point-wise kernels, it is more convenient to use a normalized
version of the sampling parameter:

W ∗(xc) = W (xc)/W0, (13)

where W0 corresponds to the average cell sampling value at initial
time. If one assumes that the volume associated with each particle
is identical, the above definition implies that W∗ = npc(xc)/npc0,
where npc0 is the average initial number of particles per grid cell,
and npc(xc) is the number of particles in a given cell whose centre is
xc. Similar to the bulk cell sampling, W, W∗ measures the relative
sampling within a given cell by particles. W∗(xc) > 1 indicates an
oversampled cell, while W∗(xc) < 1 reflects an undersampled cell,
and the requirement stated in eq. (12) would correspond to W∗ = 1.
The normalized sampling parameter is useful to compare samplings
between point-wise and more general (e.g. disc) kernels.

Overall, the values of W or W∗ directly impact the accuracy and
the efficiency of PIC methods, which rely heavily on the choice of
an appropriate kernel function, Kp, that connects the Eulerian grid
with the Lagrangian network formed by the set of particles.

2.3 Basic algorithm for the PIC method

In the frame of pure advection considered here, the PIC method is
implemented as follows: Particle positions are initially regularly dis-
tributed over the domain, by prescribing a fixed number of particles
per grid cell, npc0, leading to a total initial number of particles np0 =
npc0nxnz. In order to reduce the development of sampling problems
by the particles, their initial position may also be randomly assigned
within the domain. The quantities Cp carried by each particle are
either initially explicitly specified, or can be determined from the
interpolation of the neighbouring grid values (eq. 3). Next, the inte-
gration of eq. (1) results in the following algorithm applied at each
time step:

(1) Particles advection: this step is performed by numerically
solving eq. (2) using a TVD–RK scheme of second order (unless
specified otherwise) for each particle, using a Courant–Friedrich–
Lewy based (CFL) time step, namely 0.25h/(max(|ux|) + max(|uz|)).
Note that during this stage, the interpolation of the velocities from
the grid to the particles is performed using the conservative scheme
of Meyer and Jenny (2004).

(2) Particle remeshing: the number of particles present in each
grid cell is evaluated in order to detect and to correct for possible
over- or undersampled areas. If the number of particles present
in a given cell exceeds a threshold fixed at 2 n pc0, particles are
removed. On the other hand, if a grid cell is found to be empty, npc0

new particles are randomly seeded (within the desired cell), and
their associated field values Cp are assigned using mesh–particle
mapping (eq. 3). Other criteria were considered and tested but did
not significantly alter the results shown in this study.

(3) Conversion of Lagrangian to Eulerian grid values, using
particle–mesh mappings (eq. 4).

The particle remeshing stage is optional. In the case where empty
cells develop, it could be replaced by the use of a background
value, or the use of wider cell shape functions upon particle–mesh
mappings (Wang et al. 2015 and references therein). In this work,
the second option will be favoured when using point-wise kernels.
While each of these approaches has its own advantage and incon-
venience, both of them introduce dissipation into the solution.
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Figure 4. Schematic representation of the time-evolving elliptical kernels
for the DPIC method between an initial time t0 and a following instant
t1. At t = t0, the semi-major and semi-minor axis lengths are identical:
σ

+
p = σ

−
p = 1, and the angle between the major semi-axis and the x-axis is

set to 0 (αp = 0). The velocity field, u, known at Eulerian grid locations
is interpolated in order to advance the location of the ellipse centre xp and

to update the values of σ
+
p , σ

−
p and αp. In this example, u is assumed to

generate shear and rotation. See text for further details.

2.4 Evaluation of the spatial sampling for the PIC method

To illustrate the weaknesses of the PIC method described above, I
considered a simple incompressible steady vortex flow field used in
van Keken et al. (1997) (albeit a constant) and similar to the one used
in Rider & Kothe (1995), in which velocity components are derived
from the streamfunction expression: ψ(x, z) = sin (πx)sin (πz)/π .
This leads to

u = (∂zψ, −∂xψ)T = [sin(πx) cos(π z),− cos(πx) sin(π z)]T , (14)

where the exponent T indicates the transpose. Such a velocity
field produces both shearing and rotation within �, with free-slip
boundary conditions along all side walls. The Cartesian domain
[0,1]×[0,1] is discretized using 20×20 square cells. This example
serves only to illustrate the spatial sampling problems that develop
in the case of a simple steady velocity field. Therefore, I strictly
focus on the distribution of the particle positions and their corre-
sponding sampling of the spatial domain, and I do not consider the
evolution of a field C. This is equivalent to considering the trivial
case were the field C = C0 has a constant value and the particles
carry the same identity Cp = C0. I used four particles per grid cell
with simple disc kernels: Kp = s(h/4, |xp − x|) (see eq. 11).

Three configurations were considered for the implementation of
the PIC method: (1) a regular initial distribution of the particles’
positions without remeshing, (2) random initial particle positions
without remeshing and (3) random initial particle positions com-
bined with a remeshing procedure described in the previous section.

Fig. 2 shows the contours of the particle kernels at an early stage
(t = 0.75) and a later stage (t = 1.5), for the three cases men-
tioned above. These snapshots in time also display the values of the
sampling parameter W calculated for each cell centre. For a regu-
lar distribution of the particles’ initial positions, non-homogeneous
particle sampling rapidly develops, as can be observed in Figs 2(a)
and (d) with the presence of unsampled cells (W = 0) coexist-
ing with strongly oversampled cells (W > 1.5). These sampling
problems initially develop in the vicinity of regions characterized
by the largest deformation, which in the present case, correspond
to the four corners of the domain, where the flow generates pure
shear. As mentioned previously, it is not abnormal that high defor-
mation results locally in particle rarefaction and clustering. This
outcome is primarily due to the convergence and the divergence of
streamlines in regions of strong deformation, and even with an error-
free Lagrangian advection, particle rarefaction and clustering would
still naturally develop. As mentioned earlier, particles should travel
along their characteristics, that is, the flow streamlines, which in
the present case, are known exactly. Consider two particles, named
hereafter A and B, that are initially close to each other. Particle A is
initially located at x = xA0 = 0.5 and z = zA0 = 1 − r0. Particle B
is located at xB0 = xA0 and zB0 = zA0 + 2r0 = zA0 − h/2 (Fig. 3a).
These differences in initial positions imply that particles A and
B sample two different streamlines, represented by distinct values
of the streamfunction: ψA = π sin(π zA0 ) and ψB = π sin(π zB0 ).
While particles A and B should ideally remain on their own stream-
lines at all times, they will travel along them at different speeds such
that most of the time they will not align together with the centre of
the domain. However, since they evolve on closed trajectories, their
minimum spacing, dAB is bounded by the shortest distance between
ψ(x, z) = ψA and ψ(x, z) = ψB. The chosen expression for the
streamfunction dictates that dAB is maximum in the vicinity of each
corners of the domain, when xA(t) = zA(t) and xB(t) = zB(t). This
leads to

dABmax =
√

2

π

[
arcsin(

√
πψB) − arcsin(

√
πψA)

]
. (15)

The above relationship yields dABmax≈1.4h, which indicates that
the distance between the trajectories of two initially close particles
can stretch by a distance comparable to the diagonal of one grid
cell, which can cause non-homogeneous sampling of the domain by
the particles, and even the development of empty cells (Fig. 3a).

The phenomenon described above is largely amplified by the fact
that along a given streamline velocity changes, resulting in possibly
large variations in the distances between two consecutive particles.
This aspect can be illustrated with the given flow, in the vicinity
of any of the four corners of the domain. For convenience I chose
the lower left corner (i.e. located at x = z = 0). Consider now two
particles, C and D, initially located at xC0 = 0.25h, zC0 = 0.75h and
xD0 = zC0 , zD0 = xC0 , such that C and D are initially located within
the same corner cell, and belong to the same streamline (Fig. 3c).
While these two particles follow the same trajectory, the velocity
along the corresponding streamline varies strongly (Figs 3b–c) in
this region, and so does lCD, the distance between particles C and
D. One can show that, in the vicinity of each corner, lCD grows
exponentially with time: lCD > h exp (π t)/2 (see Appendix A for the
derivation of this expression). According to the above expression,
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(a)

(d)(c)

(b)

Figure 5. Examples of different initial distributions of Lagrangian particles and their kernels during the initialization stage of the DPIC method. The assignment
of particles identities corresponds to the values of C = 1 outside or C = 2 within the dark grey circle. Particles located within the circle are of type 2 (red),
while the rest of the particles population are of type 1 (blue). See text for further details.

the distance between particles C and D becomes larger than 1.5 grid
cell when t = ln (3)/π ≈ 0.36 or more. During this time window,
particle D has travelled from (xD0 , zD0 ) to (x≈ 2.2h, z ≈ 0.1h).
That is, during the amount of time necessary for particle D to cross
a distance smaller than the size of two grid cells, the spacing be-
tween two disc particles kernels of radius h/4 initially contained
within the same grid cell has grown larger than the size of one cell.
The gap formed between the two particles (and their corresponding
kernels) is not filled out by other particles, because flow trajec-
tories in the vicinity of C and D are similar (i.e. they essentially
follow a translation along the x-direction, see Figs 3b–c). Conse-
quently, the presence of regions with strong deformation results in
the creation of gaps between the particles, which can rapidly cause
cells to be empty or oversampled. It is important to stress that this
occurs even in an incompressible flow, and independently of the
accuracy of particles’ advection. This is a fact that is not always
fully recognized in the literature, where it is sometimes expected
that no particle convergence or divergence should occur in incom-
pressible flows. The above experiments demonstrate that this is not
the case: particle divergence or convergence is generally consistent
with mass conservation in an incompressible flow, except for trivial
cases (solid rotation and translation). While processes leading to

particle convergence or divergence occur through the presence of
specific regions (e.g. stagnation points), such singular points are
ubiquitous in non-trivial velocity fields where deformation occurs.

The undesirable effects described above can be reduced by con-
sidering an initial random distribution of particles within the do-
main. The randomness allows a greater number of distinct stream-
lines/trajectories to be sampled, yielding an observable improve-
ment. However, the benefit remains limited, and both under- and
oversampled regions still develop, as seen in Figs 2(b) and (e). A
further reduction in particles rarefaction and clustering can be ob-
tained by increasing the number of particles. This also corresponds
to an increase in the number of characteristics followed by particles.
However, for cases involving pure shear, the presence of singular
stagnation points would require a prohibitive amount of particles,
even in 2-D. Therefore, a more practical compromise is to perform
particle remeshing in under- and oversampled regions. While this
efficiently removes particles rarefaction and clustering (Figs 2c and
f), these operations lead to a significant (10–20 per cent) computa-
tional extra cost, and introduce numerical diffusion, as will be seen
in the next sections. This is due to the fact that additional mesh–
particle mappings are required in order to determine the values of
the quantities carried by the newly added particles. As mentioned
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Figure 6. Schematic representation of the particle kernel splitting proce-
dure. See text for further details.

previously, such a mapping involves interpolations, thus a poten-
tial loss of information. We note that even in this case the spatial
sampling by particle kernels is not homogeneous with important
fluctuations in W. This also results from both the initial random
position of particles, and the simplicity of the remeshing procedure
used here. While more efficient sampling could be implemented for
the random initialization and the remeshing procedure (e.g. Edwards
& Bridson 2012) such that particle kernels overlap would be fur-
ther reduced, the extra cost involved with such improvement would
rapidly become prohibitive. In addition, remeshing procedures in-
volve interpolations. Even with the use of higher-order interpolation
schemes, sharp variations in the compositional field tracked by the
particles remain problematic and can induce significant amounts of
numerical diffusion, along with unphysical behaviour (e.g. Gerya
& Yuen 2003 and references therein).

Overall, the example described hereabove illustrates the weak-
ness of the PIC method, which mostly results from the fact that the
fixed 1-D particle kernels are not well adapted to deal with con-
vergent and divergent flow streamlines, because standard kernels
do not account for the deformation of fluid parcels in the vicinity
of the particles. Note that these conclusions would be even more
pronounced for point-wise particle kernels more commonly used
in geodynamic modelling. Indeed, for example, one can easily see
in Figs 2(b) and (e) that the number of cells unsampled by particle
kernel centres would be even more important.

prior merging(a)

h

h

h/4

h/4

post merging(b)

Figure 7. Schematic representation of the particle kernel merging proce-
dure. See text for further details.

3 D E F O R M A B L E PA RT I C L E K E R N E L S

As an alternative to the spherically symmetric kernels commonly
used in PIC methods, I propose the use of anisotropic, time-evolving
kernels, whose characteristics are determined based on the La-
grangian strain history induced by the velocity field. The basic
idea behind these kernels is that the latter, which represent a fluid
parcel in the vicinity of particles, should naturally evolve as the re-
sult of the deformation imposed by fluid motion, rather than being
simply translated, as commonly assumed in most PIC calculations.
Such kernels, which will subsequently be referred to as ‘deformable
particle kernels’, constitute the basis of the novel DPIC method pre-
sented in this paper.

To derive a description of these kernels, I follow a standard
procedure (e.g. McKenzie 1979) where I consider a small, initially
spherical fluid parcel of radius r centred at point P located at xp,
and subject to motion in a velocity field u, assumed to vary slowly
with time. The velocity components at a point A in the vicinity of P
such that xa = xp + r can be approximated via a Taylor expansion
truncated to first order:

u(xa) = u(xp + r) ∼= up + (∇u)p r, (16)
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Figure 8. Schematic representation of the numerical integration procedure
for the particle to mesh mapping (eq. 4). This example considers one ellipse
kernel located at xp=(xp, zp) and tilted by an angle αp with respect to the
x-axis. The unrotated ellipse kernel centred at the origin x = z = 0 is first
discretized into rectangular cells, whose local centres of mass are denoted
as xl (displayed in red). Then each of these centres of mass is translated
by a vector xp (represented by the orange and green arrows), and rotated
by an angle αp about the ellipse’s centre. The volume associated with each
centre of mass is added to the corresponding grid cell. Namely, a translation
and rotation operator is applied to each centre of mass associated with
each elementary volume of the discretized particle kernel. This procedure is
applied to all particle kernels present within the domain. See text for further
details.

where the subscript p refers to quantities at point P. The first term
on the right-hand side of the above equation represents a translating
motion that preserves the shape of fluid parcels. The second term,
∇u = J is the velocity gradient tensor that accounts for more com-
plex dynamics, neglected in standard PIC approaches. It can be split
into two contributions:

J = ∇u = R + D, (17)

where R = (J − JT)/2 is the antisymmetric vorticity tensor, and a
symmetric deformation tensor D = (J + JT)/2. While translation
and solid rotation preserve the shape of fluid parcels, shear will
naturally deform the volume associated to each particle. Hence,
along the fluid trajectory, R and D will rotate, stretch or shrink the
vector r from an initial state r(t = 0) = r0 to r(t). To account for
such influence of J on the volume of the fluid parcel, one seeks a
linear transformation operator, M, that relates r(t = 0) = r0 to r(t
> 0):

r = M r0. (18)

A relationship for M can be obtained by subtracting the vectors r
= xa − xp between two instants separated by a small time increment
δt: r(t + δt) − r(t) = xa(t + δt) − xa(t) − [xp(t + δt) − xp(t)]. Dividing
this expression by δt and taking its Lagrangian limit as δt goes to 0
yields

Dr

Dt
= ua − up. (19)

Combining the above relationship with eqs (16) and (18) finally
yields the desired expression for the linear transformation operator

M :
DM

Dt
= J M, (20)

which implies integration along fluid parcels trajectories. For a
given velocity field, all the information about the evolution of a fluid
parcel is contained in M. At t = 0, M corresponds to the identity
matrix I. However, for any velocity field involving rotation and/or
deformation, M will gradually deviate from this initial condition.
Flow field involving shear will lead to the deformation of fluid
parcels along preferential directions, from spheres to ellipsoids,
whose semi-axis lengths correspond to the eigenvalues of M.

The above theory can be directly applied to the PIC method,
where each particle represents a fluid parcel as described by its
kernel. The direct consequence is that when initiating the PIC mod-
elling with spherically symmetric particles volumes, the particle
kernels should naturally evolve towards an asymmetric form. Not
accounting for such a natural evolution (i.e. assuming that M =
I for all t) unavoidably leads to sampling problems displayed in
Figs 2 and 3. Instead, if the particle kernels account for deformation
and rotation described by M, these problems would be considerably
reduced.

The deformable particle kernel accounts for the volume shrink-
ing, stretching and rotation associated with each particle using a de-
formable ellipsoidal kernel obtained from the integration of eq. (20),
with a transformation operator Mp associated with each particle.
The contour of each particle kernel is obtained by replacing the
constant rp in eq. (11) by a function, re

p = rp f (xp, Mp). For 2-D
space in the (x, z) plane, re

p defines the contour of a tilted Lagrangian
strain ellipse centred on xp:

re
p = rp

√
(σ+

p cos θ )2 + ( σ
−
p sin θ )2 − 4σ

+
p σ

−
p cos θ sin θ cos αp sin αp,

(21)

where θ ranges from 0 to π , σ
−
p and σ

+
p are respectively the minor

and major semi-axis lengths and αp is the angle between the x-axis
and the major semi-axis (i.e. the tilt of the ellipse, see Fig. 4). These
quantities vary with time and for each particle because these infor-
mation are derived from the transformation operator Mp associated
with each particle. σ

−
p and σ

+
p are the minimum and maximum

eigenvalues of Mp, and αp is the angle between the eigenvector
corresponding to σ

+
p and the x-axis. In the case of incompressible

flow, the above kernel is simplified since the volume associated to
each particle is preserved, therefore σ

−
p = π/σ

+
p .

While the idea of using deformable ellipses has been proposed
in Legras & Dritschel (1991), their approach was specifically de-
signed to the modelling of vortices using a nested stack of ellipses.
The method I propose here is more general, as it can be used to
describe any scalar or vector field, regardless of its shape and topol-
ogy. Moreover, the concept of time evolving particle kernels has also
been proposed in Coppa et al. (1996); Bateson and Hewett (1998).
However, the corresponding formalisms are less natural/physical
and more complicated than the kernels proposed here, which pre-
vents their widespread applications (Lapenta 2012).

4 I M P L E M E N TAT I O N D E TA I L S O F T H E
D P I C M E T H O D

In the following, I discuss practical implementation details for the
application of the DPIC method. For simplicity, I restrict this dis-
cussion to the case of a domain discretized using square cells of
size h × h. However, the ideas developed below can be adapted to
irregular grids of various dimensions and geometries.



A DPIC method for advective transport in geodynamic modelling 1753

DPIC  

DPIC 

DPIC (splitting) 
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DPIC (splitting & merging) 

DPIC (splitting & merging) 
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Sampling parameter, W
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Elapsed time, t = 0.75 

Elapsed time, t = 1.5 

Figure 9. Results of the vortex flow test at t = 0.75 (top) and t = 1.5 (bottom), with the DPIC method using initially four particles per cell. The domain is
discretized using 20 × 20 square cells. The cell sampling parameter W is displayed in colour. The contours of particle kernels are shown in black. Left-hand,
middle and right-hand panels correspond to no particle splitting or merging, particle splitting but no particle merging is performed, particle splitting and
merging is performed. See text for further details.

The general algorithm for the DPIC method consists of one ini-
tialization stage followed by five successive steps reproduced at
each time step. Some steps are identical or share some similarities
with the PIC method, others are specific to this new approach.

4.1 Initialization

The initiation is very similar to that of the PIC method: a set of La-
grangian particles are regularly distributed over the computational
domain by assigning npc0 particles per grid cell. The total number
of particles (initially nx nz n pc0 ), will evolve with time as a result
of additional processes described next. As for the PIC method im-
plemented in this work, particle kernels are initially identical and
correspond to a disc of radius rp = h/4 = re

p . However, in order
to minimize particle kernel overlaps no random perturbation is ap-
plied to xp (Fig. 5a). Therefore, each particle kernel is tangent to its
four closest neighbours (Fig. 5a). Note that different, possibly more

compact, arrangements could be considered. For example, the al-
ternate horizontal (or vertical) shifting of particles rows/columns of
identical disc kernels by a distance rp/2 would produce an hexagonal
packing (Fig. 5b). This would yield a more compact distribution of
the disc kernels, and would increase the number of tangent points
between particle disc kernels to six instead of four. In addition, any
initial particle kernel arrangement could be supplemented by sets of
smaller particles to fill the gaps without overlaps, leading to values
of W even closer to the ideal value of one (Figs 5c–d). Preliminary
tests seem to indicate that for the same total number of particles,
this does not yield significant improvements compared to simpler
arrangements (Fig. 5a). One could also consider possible particle
overlaps in order to increase W. However, our tests suggest that the
resulting solution accuracy tends to be reduced. Nevertheless, these
alternatives require more extensive and systematic investigations in
the future, in order to find optimum initial arrangements. Contrary
to the PIC method where only one scalar parameter (generally a
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Figure 10. Results of the vortex flow test. Time evolution of the number of particles np (or, npc, the value of average number of particles per cell) for different
grid sizes and different methods.
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(a) PIC (~4 particles/cell) (e) PIC (~4 particles/cell) 
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(c) PIC (~64 particles/cell) (g) PIC (~64 particles/cell) 

(d) DPIC (~4 particles/cell) (h) DPIC (~4 particles/cell)

 51=t  5=t

Figure 11. Results of the vortex flow test: values of the scalar field on the
Eulerian grid, in a domain discretized using 100 × 100 square cells at time
t = 5 (left) and t = 15 (right). The top three panels correspond to the PIC
method with randomly perturbed initial positions of particles and particle
remeshing, and using initially 4, 16 and 64 particles per cell. The bottom
panel corresponds to the DPIC method with initially four particles per cell.

radius, rp) is associated to kernels, each particle is also associated
with a 2×2 matrix (a 3×3 matrix in 3-D space) Mp. As mentioned
in Section 3, Mp is initialized to the identity matrix.

4.2 Particle advection

As in the standard PIC method, particles’ positions are advanced in
time using a TVD-RK scheme, with velocities at particles’ locations
determined via conservative velocity interpolation (Meyer & Jenny
2004; Wang et al. 2015). The time steps satisfy the same CFL-based
time step considered for the PIC method. This procedure is therefore
strictly identical to the one applied for the PIC implemented in this
study.

4.3 Particle kernel computation

The entries of Mp are updated by solving eq. (20). The entries of the
velocity gradient tensor J are computed with the same interpolation
scheme for velocities used during the particle advection step.

From the new values of Mp, one can determine σ
−
p and σ

+
p . In

practice, these are obtained by taking the square roots of the eigen-
values of the symmetric matrix: MT

p Mp , the right Cauchy–Green
strain tensor (Farnetani & Samuel 2003). The angle αp between
σ

+
p and the x-axis is also derived from Mp following the approach

detailed in Fuchs & Schmeling (2013).

4.4 Particle splitting

The formalism on which the DPIC method is based (see Section 3)
assumes that the dimensions of the fluid parcels represented by the
particle kernels are small. However, if one lets evolve deformable
particle kernels in a flow involving shear, the kernel’s semi-major
axis will continuously grow, possibly at an exponential rate, and
will quickly reach values that are significantly larger than the di-
mensions of the grid cells, or even the size of the physical domain
�. To prevent this, a splitting of the largest particle kernels into
smaller kernels may be performed. This leads to a variation in the
total number of particles with time. The splitting procedure is dis-
played in Fig. 6. After experimentation with different criteria, the
procedure is applied to a given particle if the latter meets the fol-
lowing requirements based on the aspect ratio and the maximum
size of its corresponding kernel:

σ
+
p /σ

−
p > 5 or σ

+
p > 2. (22)

When the above criterion is met, the corresponding ‘parent’ par-
ticle characterized by its location xp0 and its corresponding Mp0

is removed and replaced by two new ‘son’ particles. The parent
kernel is split into two identical ellipses corresponding to two new
particles, which will only differ by their locations xp1 and xp2 . The
son particles have the following positions:

xp1 = xp0 + rpσ
+
p0

2
(cos αp0 , sin αp0 )T (23a)

xp2 = xp0 − rpσ
+
p0

2
(cos αp0 , sin αp0 )T, (23b)

and are associated with identical kernel values:

σ+
p1

= σ+
p2

= 1

2
σ+

p0
(24a)

σ−
p1

= σ−
p2

= σ−
p0

(24b)

αp1 = αp2 = αp0 . (24c)

If, upon applying eqs (24a)–(24c), σ
+
p1,2

< σ
−
p1,2

the values of the
semi-axis lengths for the son particles are swapped with each other
and αp1,2 = αp1,2 + π/2.

This simple splitting procedure therefore results in two identical
son ellipsoids with area twice smaller than that of the parent kernel,
and identical tilt (except for the case described just above). This
allows the conservation of the area represented by the parent and
son kernels. Eq. (23) implies that they will be tangent to each
other at the location x = xp0 . Note that this splitting procedure may
result in kernel overlaps between the son particles and the rest of
the particle population. However, tests have confirmed that overlaps
remain statistically limited. Nevertheless, particles for which kernel
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Figure 12. Results of the vortex flow test at t = 10, in a domain discretized using 100 × 100 square cells. Histograms of the cell sampling parameter, W,
corresponding to different initial values of particle number per cell, npc0. (a–c) PIC method with random perturbed initial positions of particles and particle
reseeding and removal with npc0= 4, 16 and 64, respectively. (d) DPIC method with particle splitting and merging with npc0 = 4.

overlaps become important will be merged through a procedure
described in the next section.

With the knowledge of σ
+
p1

= σ
+
p2

= a, σ
−
p1

= σ
−
p2

= b, and αp1 =
αp2 = θ for a pair of son particles, their corresponding orthogonal
eigenvectors are v+

p = a (cos θ, sin θ )T and v−
p = b(− sin θ, cos θ )T.

Then, assuming incompressibility, the matrix entries for the pair of
son particles are deducted from the fact that (Mp − σ

+
p I)v+

p = 0 and

that (Mp − σ
−
p I) v−

p = 0. This leads to a system of four equations
whose solution is

Mp1 = Mp2 = Mp =
[

a cos2 θ + b sin2 θ (a − b) sin θ cos θ

(a − b) sin θ cos θ b cos2 θ + a sin2 θ

]
.

(25)



A DPIC method for advective transport in geodynamic modelling 1757

0.0

0.5

1.0

1.5

2.0

2.5
C

el
l s

am
pl

in
g,

 W
PIC (~4 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

PIC (~16 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

PIC (~64 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

0 5 10 15

time, t

DPIC (~4 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

PIC (~4 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

PIC (~16 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

PIC (~64 particles/cell)

0.0

0.5

1.0

1.5

2.0

2.5

C
el

l s
am

pl
in

g,
 W

0 5 10 15

time, t

DPIC (~4 particles/cell)

PIC (disc kernels & particle reseeding) Min and max range 
PIC (disc kernels & particle reseeding) Standard deviation 
PIC (disc kernels & particle reseeding) RMS value 

DPIC Min and max range
DPIC Standard deviation
DPIC RMS value

Vortex test, 100x100 cells

(a) 

(b) 

(c) 

(d)

Vortex test, 200x200 cells

(d) 

(e) 

(f) 

(g)

Figure 13. Results of the vortex flow test, in a domain discretized using 100 × 100 (left) and 200 × 200 (right) square cells. Time evolution of the cell sampling
parameter, W corresponding to different initial values of particle per cell, npc0. The top three panels correspond to the PIC method with randomly perturbed
initial positions of particles and particle remeshing with npc0= 4, 16 and 64 particles per cell. The bottom panel corresponds to the DPIC method with npc0=4.
The RMS value is represented by the thick curve, the min and max values are displayed by thin black lines and the standard deviation corresponds to the dark
coloured area.

4.5 Particle merging

The splitting procedure described above naturally yields an increase
with time of the number of particles, which can rapidly degener-
ate into a prohibitive associated computational cost. In addition,
this could result in an increase of kernel overlaps between the new
particles and the remaining population, which may yield an over-
representation, thus a source of inaccuracy, together with a waste
of computational resources. These problems can be avoided by
applying a merging procedure in regions where the particle con-
centration is too important, as schematically shown in Fig. 7. The
procedure uses a finer grid, whose corresponding spacing in each

direction is rp, superimposed on the Eulerian grid. Within each
cell of this finer grid, we count the number of particles. Since the
grid considered here is regular this can be performed in a cost-
effective way via a single sweep through the particles’ positions.
If more than two particles per fine grid cell are found, the follow-
ing merging procedure is applied to the particles whose positions
belong to the cell. Particles that meet this criterion for a given
fine grid cell of centroid xf are denoted as E(xf). For these par-
ticles, a local fine-grid cell weight, wl, is calculated. The latter
corresponds to the ratio of the area represented by the particle ker-
nel divided by the total area of the particle kernels that belong
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Figure 14. Results of the vortex flow test. Time evolution of the mass error
for a domain discretized using 100 × 100 square cells.

to E(xf):

wl = σ
+
p σ

−
p∑

p|xp∈E(x f )

σ
+
p σ

−
p

. (26)

The corresponding set of particles will subsequently be deleted
and replaced by a single particle, with a kernel of larger size, whose
centre is determined via arithmetic averaging:

xp(x f ) =
∑

p|xp∈E(x f )

xpwl . (27)

Among the various possibilities to determine the merged ellipse
dimensions, the simplest and most efficient approach was found to
require that the aspect ratio of the merged ellipse is the arithmetic
mean over the corresponding set of merged particle kernels:

σ
+
p (x f )

σ
−
p (x f )

=
∑

p|xp∈E(x f )

σ
+
p

σ
−
p

wl . (28)

Assuming incompressibility, the above requirement simplifies to
the following expression for the semi-major axis of the merged
ellipse:

σ
+
p (x f ) =

√ ∑
p|xp∈E(x f )

(σ +
p )

2
. (29)

In order to preserve the total area delimited by the deleted particle
kernels, the value of the semi-minor axis for the new merged kernel
is set as

σ
−
p (x f ) =

∑
p|xp∈E(x f )

σ
+
p σ

−
p

σ
+
p (x f )

. (30)

The tilt of the merged ellipse, αp(xf), is obtained via weighted
arithmetic averaging:

αp(x f ) =
∑

p|xp∈E(x f )

αpwl . (31)

The transformation operator for the new merged particles is then
evaluated using eq. (25) with a = σ

+
p (x f ), b = σ

−
p (x f ) and θ =

αp(xf). Again, more accurate merging procedures could be imple-
mented, for example, by checking explicitly whether particle kernels
overlap prior to merging, but this would significantly increase the
computational cost. Although there is probably room for further im-
provement, the proposed merging procedure was found to efficiently
maintain approximately constant the total number of particles in the
presence of splitting, while allowing for a good kernel sampling of
the computational domain, as we shall see in the next sections.

The approach described above was implemented via two consec-
utive sweeps through the population of particles. In the frame of
pure advection considered in this paper (eq. 1), and for the non-
trivial case where the field C to advect has more than one distinct
value, several populations of particles are considered (one per dis-
tinct value). The merging procedure described above is applied
separately to particles of different types. If the field to advect was
more smoothly varying, as in the case of the advective and diffusive
transport using a Fluid-Implicit-Particle (FLIP) approach (Brack-
bill et al. 1987; Gerya & Yuen 2003), merging could occur without
restrictions in particle type, but this case is beyond the purpose of
this study.

Note that in order to maintain a balance with the splitting pro-
cedure, merging is not allowed to occur more than twice per fine
grid cell and per time step, with however one exception. To avoid
excessive accumulation of small particle kernels within some cells,
a supplementary merging procedure is only applied to cells charac-
terized by a bulk sampling parameter W larger than 1.5. During this
specific merging procedure, all the kernels sharing the same iden-
tity and whose centre belong to the excessively oversampled cell
are merged all at once. Since this procedure is followed by splitting,
it does not necessarily bound W below 1.5 but it was found to be
sufficiently efficient to prevent any excessive kernel clustering.

Finally, while both merging or splitting alter Mp and xp, the
constant value of rp initially set for each particle remains unaffected
by these procedures. This does not mean that the kernel sizes remain
unchanged since σ−

p and σ+
p are affected by the merging and splitting

procedures as explained above.
Note that the use of particle merging and splitting based on La-

grangian strain has also been proposed in the frame of the PIC
method in order to reduce non-homogeneous sampling of the do-
main by particles (Moresi et al. 2003). However, these procedures
were only associated with point-wise particle kernels, and used a
simplified approach to estimate the Lagrangian strain.

4.6 Conversion from Lagrangian to Eulerian grid values

The implementation of eq. (4) can be performed via two end-
member approaches. A first possibility is to evaluate the particles’
weights w∗ in eq. (6) exactly by analytical integration of the parti-
cles kernels’ areas within a given grid cell bounded by four corners
(see Appendix B for further details).

Despite its machine precision accuracy, this approach requires
the extensive use of conditional statements and calls for costly
square root and trigonometric functions, leading to an important
computational extra cost. In addition, extension of this approach
to 3-D space would be much more complicated. For these reasons,
an alternative approach was considered for evaluating the particles’
weights w∗ via a simple numerical integration of the area span by
a particle elliptical kernel in a given cell. In this case, the ellipse is
rotated by an angle −αp, and discretized into smaller rectangular
cells. The area corresponding to each of these smaller cells is added
to the corresponding grid cell, based on the location of the centre of
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Figure 15. Results of the vortex flow test, in a domain discretized using 100 × 100 (left) and 200 × 200 (right) square cells. Time evolution of the normalized
cell sampling parameter, W∗ corresponding to different initial values of particle numbers. The three top panels correspond to the PIC method using point-wise
kernels, no particle remeshing, with 16, 25 and 64 particles per cell. The bottom panel corresponds to the DPIC method with npc0 = 4. The RMS value is
represented by the thick curve, the min and max values are displayed by thin black lines, and the standard deviation corresponds to the dark coloured area.

mass of these smaller cells within the grid (see Fig. 8). Using three or
four cells per semi-axis length was found to be a good compromise
between accuracy and computational efficiency, with results very
similar to those obtained using the analytic approach. Although
the elliptical deformable kernels are anisotropic, their remaining
degree of symmetry can be exploited to reduce the computational
cost associated with the numerical integration of the area overlap
between particle kernels and grid cells. Only a complete swipe
through one quarter of the elliptical kernel surface (bounded by the
ellipse minor and major semi-axis) is required. Then, many of the
operations can be duplicated at a lower cost in the remaining three
quarters.

Hybrid numerical–analytical approaches are also possible but
have not been tested.

To significantly improve the computational efficiency, it is desir-
able to use additional computational arrays that store once per RK
step the values of cos αp and sin αp for each particle required for a

number of calculations (e.g. eq. 25) rather than calling for intrinsic
trigonometric functions on the fly.

The methods described above remain valid for the case of disc
particle kernels, and are therefore directly applicable for classic
PIC approaches, with however several simplifications (e.g. no ker-
nel rotation is required in this case). However, for PIC cases us-
ing point-wise kernels, particle–mesh mapping was performed us-
ing the same expressions as in Gerya and Yuen (2003), which
are more efficient due to a considerably smaller computational
complexity.

5 S PAT I A L S A M P L I N G F O R T H E D P I C
M E T H O D

I reproduced the experiment considered in Section 2.4 using the
DPIC method. As for the PIC method, four particles per grid cell



1760 H. Samuel

are initially regularly distributed in the 2-D domain discretized us-
ing 20×20 square cells. Three implementations were considered:
(1) splitting and merging procedures are not applied, (2) splitting is
applied but no merging procedure is applied and (3) the full imple-
mentation of the DPIC method: both particle kernel splitting and
merging are applied.

Fig. 9 displays the results at the same early and later stages shown
in Fig. 2. In the absence of particle splitting and merging (Figs 9a
and d), the total number of particles remains constant with time.
However, due to the deformation imposed by the velocity field, the
particles that travel through the regions of most intense deforma-
tion (i.e. the four corners of the domain) experience a strong kernel
stretching with time, while the rest of the particles’ population lo-
cated more inwards remains more isotropic (although no longer
circular). Contrary to the PIC method, the deformable particle ker-
nels remain tangent to each other without much overlap during the
early stage. This results in a homogeneous spatial sampling of the
domain by the particles. However, due to their intense deformation,
particle kernel overlap eventually develops because the σ+

p values
become too large, which violates the assumption of small fluid par-
cel dimensions stated in Section 3. This shows that particle kernel
splitting is required in order to maintain accurate results. When split-
ting alone is accounted for, particle kernel overlaps are removed at
all times (Figs 9c and e). However, accounting for splitting without
merging results in an exponential increase of the number of particles
with time in regions of intense deformation (displayed in Fig. 10a).
This leads to a drastic increase of the computational cost, which
depends primarily on the total number of particles. To maintain the
computational cost at an acceptable level, the splitting can be sup-
plemented by the merging procedure previously described. In this
case, we observe some kernels overlaps. However, the latter remain
moderate and considerably smaller than what was obtained with the
best results of the PIC method (compare Figs 2c and e with Figs 9c
and e). For a similar number of particles, the DPIC method yields
a significantly more homogeneous spatial sampling of the domain
than the PIC method, with much smaller variations in values of the
sampling parameter. The splitting combined with the merging pro-
cedure maintains the number of particles approximately constant
with time, as illustrated in Fig. 10(a).

This feature was observed for all the tests described in this pa-
per, as well as in other experiments not shown, even with larger
amounts of deformation on larger portions of the model domain,
and for various grid resolutions. In general, for flows character-
ized with larger amounts of deformation, more important vari-
ations in the number of particles per cell are observed, but the
spatial sampling of the domain by the particle kernels remains
homogeneous.

6 C O M PA R I S O N O F T H E P I C A N D D P I C
M E T H O D F O R 2 - D S T E A DY A N D
U N S T E A DY F L OW S

The tests performed in the previous section clearly demonstrate the
superiority of the DPIC method over the PIC method for spatial
sampling. However, additional experiments are required to confirm
that such an improvement in spatial sampling translates into an im-
proved accuracy for the DPIC method. For this reason, I consider in
this section four additional tests that consist in following the evo-
lution of a scalar field with two distinct values in steady kinematic,
time-dependent kinematic or fully dynamic flows.

6.1 Steady vortex flow test

For this test, the same velocity field (eq. 14) used in Section 2.4
is considered, in a square domain [0,1]×[0,1] discretized with 100
× 100, or 200 × 200 square cells. Initially, the scalar field has a
value C = 2 within a circular disc of radius 0.15, whose centre is
located at (x = 0.5, z = 0.75), and C = 1 elsewhere. Fig. 11 dis-
plays the results obtained at an early (t = 5) and a later (t = 15)
stage, using 100 × 100 cells with the PIC method with disc kernels
(eq.11, with rp = h/4), and initially npc0 = 4, 16 and 64 particles per
cell, or using the DPIC method with initially four particles per cell.
A reference solution obtained using a high-precision marker chain
front tracking algorithm (Samuel & Bercovici 2006) is also shown.
Since both particle reseeding and removal (for the PIC method) and
splitting and merging (for the DPIC method) are applied, the total
number of particles remains roughly constant with time for each
case considered. This can be seen in Figs 10(b) and (c) for two grid
resolutions. Results obtained with the PIC method using initially
four particles per cell strongly suffer from non-homogeneous sam-
pling with ‘spotty’ features clearly visible, even at the early stage.
With a fourfold increased number of particles the sampling prob-
lems are reduced but remain clearly visible. A further increase in
the number of particles to an average of 64 per cell yields results
that do not appear strongly affected by sampling problems. These
results compare well with those obtained using the DPIC method,
with initially only four particles per cell (4.7 on average for these
cases). This underlines the benefit of using deformable particle ker-
nels. Fig. 12 shows histograms of the sampling parameter at t =
10 for the same cases displayed in Fig. 11. It confirms that if the
number of particles is too small, the PIC method suffers from large
variations in spatial sampling by the particles, as seen with the
large width of the histograms for 4 and 16 particles per cell. When
64 particles per cell are used, the sampling for the PIC method is
closer (but remains of lower quality) than sampling obtained us-
ing the DPIC method with much fewer particles (Figs 12c and d).
This comparison holds for all times and for different values of the
grid resolution, as shown in Fig. 13. The latter displays the time
evolution of the sampling parameter: Root Mean Squared (RMS)
value, and its variability (standard deviation, min and max values)
corresponding to the cases depicted in Figs 11 and 12, for a domain
discretized using either 100 × 100 or 200 × 200 square cells. For
all cases shown in Fig. 13, standard deviation, min and max values
for W quickly reach a statistically constant values. However, the
standard deviation values for W are significantly larger for the PIC
method using too few particles (4 or 16 per cell initially), which
reflects the development of spatial sampling problems. In addition,
both the maximum amplitude variation, and standard deviation for
W at all times and for both grid resolutions, decrease with increas-
ing the number of particles. As seen previously, all cell sampling
statistics shown in Fig. 13 compare well for the PIC method using
64 particles per cell and the DPIC method using only four particles
per cell.

Fig. 11 suggests that the accuracy of the DPIC method is better
than that of the PIC method using the same amount or even a greater
number of particles.

To measure the amount of numerical dissipation introduced
within each method, I computed the mass error at time t for each
case:

emass = | ∫
�

C(x, t)d� − ∫
�

C(x, t0)d�|∫
�

C(x, t0)d�
. (32)
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Figure 16. Results of the chaotic flow test: values of the scalar field on the Eulerian grid, composed of 200 × 100 square cells at time t = 13.66 (left) and t =
27.42 (right). The three top panels correspond to the PIC method with randomly perturbed initial positions of particles and particle remeshing with initially 4,
16 and 64 particles per cell. The bottom panel corresponds to the DPIC method with initially 4 particles per cell.

Fig. 14 displays the time evolution of the mass error for the
cases considered in Fig. 13 corresponding to domains discretized
using 100 × 100 square cells. It confirms that the improved spatial
sampling of the DPIC method results in a smaller error than the PIC
solution using the same (or even a larger) amount of particles, as also

seen in Fig. 11. The mass error for the PIC method using initially 4
or 16 particles per cell shows a significant and continuous increase
with time, up to values around 0.1 per cent (with 16 particles per
cell), and about 0.5 per cent (for four particles per cell) at final time
t = 15. On the contrary, both the value of emass and its increase with
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Figure 17. Results of the chaotic flow test, in a domain discretized using 100 × 50 (left) and 200 × 100 (right) square cells. Time evolution of the cell sampling
parameter, W corresponding to different initial values of particle numbers np0. The three top panels correspond to the PIC method with random perturbed initial
positions of particles and particle remeshing with initially 4, 16 and 64 particles per cell. The bottom panel corresponds to the DPIC method with initially
four particles per cell. The RMS value is represented by the thick curve, the min and max values are displayed by thin black lines and the standard deviation
corresponds to the dark coloured area.

time are much smaller for the DPIC method using four particles
per cell. In order to reach comparable accuracy, the PIC method
requires more than 64 particles per cell.

A set of PIC experiments with point-wise kernels commonly used
in geodynamic modelling was also performed. In these experiments,
no particle reseeding or removal is applied. In the case where empty
cells develop, one linearly interpolates from the closest particles
in order to obtain a value of the compositional field in the empty
cell. As systematically done in this study, conservative velocity
interpolation is used upon particle advection. Cases using 16, 25
and 64 particles per cell were considered.

Fig. 15 displays the time evolution of the normalized cell sam-
pling, W∗, for all cases, including the DPIC already shown in

Fig. 13(d). Cases using 16 particles per cell result in the devel-
opment of empty cells (W∗ = 0), on both coarse and finer grids
(Figs 15a and e). Similar to what is observed in Fig. 13, the PIC and
DPIC results become comparable when the number of particles is
16 times greater than that of the DPIC method. In fact, PIC cases
using 64 particles per cell still yield a less homogeneous sampling
(smaller min values, and larger standard deviation of the normal-
ized cell sampling values, W∗) than the DPIC method using four
particles per cell (compare Figs 15c and d & Figs 15g and h). It
seems that the PIC method using disc kernels and particle reseeding
yields slightly better results, at the cost, however, of considerably
heavier computations.
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Figure 18. Results of the chaotic flow test. Time evolution of the mass error
for a domain discretized using 100 × 50 square cells.

6.2 Time-dependent chaotic flow test

To extend the previous test to time-dependent velocity fields I con-
sidered the following double-gyre chaotic flow field in a 2-D domain
[0,2]×[0,1] (Brunton & Rowley 2010):

u =
(

− π

10
sin(π fg) cos(π z),

π

10
cos(π fg) sin(π z)

d fg

dx

)T

, (33)

where fg is a function of the x coordinate and a periodic function of
time:

fg(x, t) = 1

4
sin

(
2π

10
t

)
x2 + x − 1

2
sin

(
2π

10
t

)
x . (34)

Within the domain, we track the evolution of a scalar field C
whose initial value is set to 2 inside a disc of radius 0.15 and of centre
(x = 0.2, z = 0.5), and 1 elsewhere. Fig. 16 displays the results of the
experiment at two elapsed times for a domain discretized using 200
× 100 square cells. The solution obtained using the DPIC method
with initially four particles per cell, and the results obtained using
the PIC method with 4, 16 and 64 particles per cell are shown. A
reference solution calculated using a very accurate front tracking
marker chain algorithm delineates the interface between the two
scalar values of C. The prescribed chaotic flow reduces the size of
the disc into long thin filaments stretching at an exponential rate. As
for the vortex flow test (Section 6.1), experiments performed using
the PIC method with too few particles (Figs 16a and e) yield visibly
inaccurate ‘spotty’ results. While solutions obtained using the PIC
method with 16 particles per cell instead of four are visibly more
accurate (Figs 16a and b & Figs 16e and f), the overall accuracy
remains poor compared to that of the DPIC method using only
four particles per cell, as illustrated by the time evolution of the
mass error for this experiment (Fig. 18). The improved accuracy of
the DPIC method results again from a more homogeneous spatial
sampling of the domain by the particles, as seen in Fig. 17. As also
observed for the steady vortex flow test, this figure shows the same
improvement in spatial sampling for the DPIC compared to that for
the PIC method. Here, also 64 particles per cell are necessary for
the PIC method to improve the sampling, and to reduce the error to
the same level than that of the DPIC method with four particles per
cell (Fig. 18).

As in the previous test, I performed a set of PIC experiments with
point-wise kernels and no particle reseeding or removal, and either

16, 25 or 64 particles per cell. In addition, I considered a case using
16 particles per cell for which velocity interpolation to advect the
particles was replaced by the use of the exact analytical expression
for the velocity field. This allows the impact of velocity interpolation
on the spatial sampling of the PIC method to be evaluated. Fig. 19
displays the time evolution of the normalized cell sampling, W∗, for
all cases, including the DPIC already shown in Fig. 17(d). Similar
to what was observed for the vortex test, cases using 16 particles
per cell result in the development of empty cells (W∗ = 0), on both
coarse and finer grids (Figs 19a and b & Figs 19f and g). No notable
differences are found between the cases using the exact expression
of velocity for particles advection, and those using conservative
velocity interpolation (compare Figs 19a and b & Figs 19f and g).
The persistence of sampling problems for cases that are not prone
to significant inaccuracies in particles advection confirms that non-
homogeneous sampling originates from a different cause than the
quality of particles advection only. In fact, it is due to the fact that
point-wise kernels cannot account for deformation in the vicinity
of each particle contrary to the DPIC method. Similar to what is
observed in Fig. 17, the PIC and DPIC results become comparable
when the number of particles is 16 times greater than that of the
DPIC method. However, here again PIC cases using 64 particles
per cell yield a less homogeneous sampling than that of the DPIC
method using four particles per cell (compare Figs 19d and e &
Figs 19i and j).

Overall, the vortex and chaotic kinematic experiments detailed
above show that the DPIC method yields a far better spatial sam-
pling than the PIC method, leading to a significant improvement in
solution accuracy (2–3 orders of magnitude mass error reduction)
compared with the PIC method using comparable or even larger
amounts of particles, regardless of the grid resolution. The DPIC
method with only four particles per cell yields results of comparable
accuracy than the PIC method using 64 particles per cell.

6.3 SolCx flow test

I have considered the benchmark test based on the so-called SolCx
analytical solution of the Stokes flow in presence of strong viscosity
contrasts (Zhong 1996) and used in a number of studies (Duretz
et al. 2011; Thielmann et al. 2014; Wang et al. 2015; Pusok et al.
2016). The setup is identical to that in Wang et al. (2015) and Pusok
et al. (2016). The square unit domain is decomposed into 32 × 32
identical square cells, and the SolCx solution [as implemented in
the ‘Underworld’ package (Moresi et al. (2007)] is imposed on the
nodal gridpoints. The left half of the domain is characterized with a
viscosity of 1, while the remaining half has a viscosity of 104. Fig. 20
shows the normalized sampling after 5000 time steps obtained with
the PIC method using point-wise kernels and different amounts of
particles. As seen in Wang et al. (2015), the use of the conservative
interpolation scheme of Meyer and Jenny (2004) prevents strong
particle clustering or rarefaction. In addition, the values of W∗ are
visibly more homogeneous when the number of particles increases.
The results obtained with the DPIC method using four particles
per cell on average are also displayed and show a generally more
homogeneous sampling than the PIC method using less than 64
particles per cell on average. However, one can note the presence
of a few cells near the viscosity jump with both relatively large
or small values of W∗. These were also observed for the same
settings in experiments using the PIC method and conservative
velocity interpolation schemes (Pusok et al. 2016), depending on
the interpolation scheme used. In our case, the oversampled cells
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Figure 19. Results of the chaotic flow test, in a domain discretized using 100 × 50 (left) and 200 × 100 (right) square cells. Time evolution of the normalized
cell sampling parameter, W∗ corresponding to different initial values of particle numbers. The three top panels correspond to the PIC method using point-wise
kernels, no particle remeshing, with 16, 25 and 64 particles per cell. The bottom panel corresponds to the DPIC method with initially four particles per cell.
The RMS value is represented by the thick curve, the min and max values are displayed by thin black lines and the standard deviation corresponds to the dark
coloured area.

mostly result from the splitting procedure, which tends to generate
an artificial displacement of particles in some areas. Indeed, when
a particle kernel is split into two smaller particles (see Fig. 6), the
newly created kernels have their centres of mass distinct from that
of the parent kernel. This shift in centre of mass can be seen as an
artificial instantaneous displacement of the particles. Possible way

to fix/minimize this would be to consider a different type of splitting,
generating for instance three new particles instead of two: a central,
larger one surrounded by two smaller kernels. The centre of mass of
the largest kernel would remain identical to that of the parent kernel,
thereby limiting the observed shift upon splitting. Nevertheless, the
clustering induced in this experiment remains bounded, thanks to
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Figure 20. Results of the SolCx test after 2000 time steps. Normalized cell sampling obtained for three PIC cases using point-wise kernels and different
amounts of particles (a–c). Results obtained using the DPIC method with about four particles per cell. Black cells represents W∗ > 1.4.

the merging procedure. This can be seen in Fig. 21 where the peak
in sampling values is periodically removed upon application of the
merging procedure in oversampled areas. Even for much longer
time periods, maximum values for bulk cell sampling for the DPIC
method remain essentially below 2.0. The other metrics displayed in
Fig. 21 also confirm that the DPIC method with only four particles
per cells generates a sampling of comparable quality than the PIC
method with 16 times more particles (e.g. compare the standard
deviation for W∗ for both cases).

6.4 Dripping instability test

The previous experiments and benchmarks presented above are all
based on kinematic flows where the velocity field at grid locations
is known exactly, and the compositional field associated with the
particles, is purely passive (i.e. it does not influence the flow). To
complete the set of tests, I have therefore considered a purely dy-
namic experiment where the velocity is computed as the solution
of the Stokes equations represented by the following set of dimen-
sionless equations for the conservation of mass and momentum,
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Figure 21. Results of the SolCx test. Time evolution of the normalized cell
sampling parameter, W∗ corresponding to different initial values of particle
numbers. The three top panels correspond to the PIC method using point-
wise kernels, no particle remeshing, with initially 16, 25 and 64 particles
per cell. The bottom panel corresponds to the DPIC method with initially
four particles per cell. The RMS value is represented by the thick curve,
the min and max values are displayed by thin black lines, and the standard
deviation corresponds to the dark coloured area.

respectively:

∇ · u = 0, (35)

− ∇ p + ∇ · η(∇u + ∇T u) + Rb Cez = 0. (36)

In the above equations, p is the dynamic pressure, η the dynamic
viscosity, ez is a vertical unit vector pointing upward and Rb is
compositional Rayleigh number set to one. These equations are
actively coupled to eq. (1) via the buoyancy term Rb Cez present in
the conservation of momentum.

Several dynamic benchmarks for PIC methods in geodynamics
have been proposed in past studies (van Keken et al. 1997; Gerya

Figure 22. Schematic representation of the dripping instability test. See text
for further details.

& Yuen 2003; Wang et al. 2015; Pusok et al. 2016). However,
they require either complex rheologies and/or setting (e.g. Wang
et al. 2015; Pusok et al. 2016) or they were found to be insuf-
ficiently demanding to reveal differences between PIC and DPIC
methods. Instead, I considered a simple setting that was found to
be sufficiently demanding for both PIC and DPIC methods. The ex-
periment is sketched in Fig. 22 and consists in the Rayleigh–Taylor
destabilization of a dense material of rectangular shape, located at
the top of the domain. Viscosity is set to one in the upper half of the
domain and increases abruptly to 200 in the lower half. Horizontal
surfaces are rigid, while free-slip boundary conditions are applied
on vertical side walls. The [0,1] × [0,2] domain was discretized
using either 50×100 or 100×200 square cells, in which eqs (35)
and (36) where recast using a pure streamfunction formulation and
solved using the finite-volume code ‘StreamV’ (Samuel & Evonuk
2010; Samuel 2012b) benchmarked against various analytical and
numerical solutions (Samuel 2012a; Tosi et al. 2015). Calculations
were performed until reaching the dimensionless time t = 1.4 105,
corresponding roughly to 1600 time steps, depending on the cases.
This setup is particularly demanding because the rigid horizontal
boundaries combined with a rheological boundary at mid-depth
triggers the presence of stagnation points and the associated pure
shear, which tend to generate sampling problems in PIC methods,
as discussed in Section 2.4. I performed experiments using the PIC
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method with 16, 25 and 64 particles per cell, and point-wise ker-
nels, and two experiments using the DPIC method with either four
particles per cell or about three particles per cell with a more com-
pact arrangement (Fig. 5b). Fig. 23 shows three snapshots in time
obtained on a 100×200 grid using the PIC method with 16 parti-
cles per cell and the DPIC method with four particles per cell. The
less homogeneous spatial sampling of the PIC method yields a less
continuous/more ‘spotty’ compositional field with a pronounced
asymmetry towards the end of the evolution (Fig. 23c). This asym-
metry results from the combination of random initial position of
particles, amplified by the development of under and oversampled
areas. Indeed, one can see in Fig. 23(d) the presence of an empty
cell located at the boundary between the dense and the regular ma-
terial, where most of the deformation takes place. On the contrary,
the DPIC method with four times less particles yields a much more
continuous and symmetric compositional field (Figs 23e–g). The
deformable kernels allow a better spatial sampling, as can be seen
in Fig. 23(h), which represents the same region shown in Fig. 23(d),
at a comparable sinking distance of the dense material. One can
note that even the cell characterized by the smallest sampling hosts
the centre of mass of 10 particles, not mentioning the contribu-
tion of kernels whose centre of mass are located elsewhere. This
multiplication of particles in regions characterized with strong de-
formation results from the splitting procedure. This considerably
reduces the chances of the development of empty cells. Fig. 24
shows the time-evolution of the spatial sampling for all cases. On
the coarse grid, the PIC method with less than 64 particles per cell
yields the development of both empty and strongly oversampled
cells. The DPIC method performs similarly or better than the best
results of the PIC method, but using 16–20 times less particles. On
the finer grid, the sampling problems of the PIC method are reduced
(e.g. no empty cells develop for the case using about 25 particles
per cell). However, here again, 16–20 times more particles are nec-
essary to yield a spatial sampling comparable to that of the DPIC
method (Figs 24f–i).

This fully dynamic test illustrates the superiority of the DPIC
method over the PIC method, as observed in the kinematic
tests discussed earlier. Despite its simplicity, the setup consid-
ered here can be relevant to a number of geodynamic scenarios
such as, subduction, delamination of an eclogitic root, differen-
tiation within a magma chamber or core formation in terrestrial
bodies.

Overall, for all the tests presented in this study, the DPIC method
with an average of two to five particles per cell always yields a
spatial sampling greater than 0 at all times. However, this does not
necessarily guarantee that in some extreme situations, involving
the combination of low grid resolution, small number of particles
and strong localized deformation, the development of empty cells
can be avoided with this method. However, when this happens the
occurrence of empty cell remains considerably more limited than
that of the PIC method using a greater amount of particles (64 or
more).

7 C O M P U TAT I O NA L C O S T

While the PIC and the DPIC methods share common operations
(particles advection, particle–mesh mappings), they also use dif-
ferent procedures, which can lead to a distinct computational
cost. In this section I compare the performances and the dis-
tribution of the computational load for the PIC and the DPIC
methods.

For a given number of particles, the additional procedures of the
DPIC method (splitting, merging, kernel update and elliptic kernels-
to-grid mappings) yield a computational extra cost increasing the
execution time by a factor 3–4 relative to PIC method.

The computational cost for both methods is almost directly pro-
portional to the total number of particles. This quasi-linear depen-
dence is shown in Fig. 25 that displays the elapsed time correspond-
ing to the scalar execution of the dripping instability test using 100
× 200 grid cells for 1400 time steps. Note that the differences in
timing performances between the PIC and the DPIC methods would
remain comparable if I had considered other tests. Despite the fact
that some procedures (e.g. kernel merging or spitting) are applied
only at the end of each RK cycle, no significant differences were
found between second- or third-order RK time integration.

The distribution of the computational load among the main pro-
cedures for the DPIC and the PIC methods are displayed in Tables 1
and 2, respectively. While the kernels-to-grid mapping represents
the most time-consuming procedure of the DPIC algorithm, it may
be more difficult to further optimize it significantly. However, kernel
merging, splitting and update, which altogether represent 42 per cent
of the time spent can certainly be further optimized, for instance,
by using more efficient particle sorting techniques and ordering,
such as linked cell approaches (Welling & Germano 2011). Note
that contrary to the DPIC method, the particle-to-grid mapping in
the PIC method is the least consuming part of the algorithm. This
is due to the fact that the use of point-wise kernels prevents from
the area integration of the particle kernels.

Despite the extra cost associated with the use of deformable ker-
nels relative to the use of point-wise kernels, the improved sampling
in the DPIC method with only three to four particles per cell yields
results that are comparable or better than the PIC method with
64 particles per cell. Therefore, at comparable accuracy, the DPIC
method is four to six times more efficient than the PIC method using
point-wise kernels, commonly used for geodynamic modelling. In
addition, the tests conducted in the previous sections all indicate that
a minimum of 25 particles per cell for the PIC method is required
to avoid spurious sampling problems such as the development of
empty cells. As seen in Fig. 25, the DPIC method already becomes
more efficient than the PIC method when the number of particles
per cell becomes larger than 16. Therefore, even with this minimum
requirement, the use of the DPIC method is preferable, given the
fact that particle operations often represent the most consuming part
of geodynamic calculations (Tackley 2008).

8 C O N C LU S I O N S

I have presented a new evolution of the PIC method based on the
use of elliptical deformable kernels that account for the Lagrangian
strain history in the vicinity of the particles. Such deformable ker-
nels are directly related to the original idea proposed in Harlow
(1957) as macroscopic fractions of fluid/material surrounding each
particle, which is physically sound. These deforming kernels allow
for a much more homogeneous spatial sampling of the domain by
particles, compared to standard 1-D fixed-shape kernels. The latter
leads to spatial over- and undersampling that degrade the accuracy
of the numerical solution with time, or require a prohibitive amount
of particles in order to get acceptable results. The use of deformable
particle kernels comes with an extra computational cost. However,
such extra cost is acceptable, considering the gain in accuracy of
the DPIC method compared to that of the PIC method, regardless
of the type of kernel (disc or point-wise) used. The DPIC method
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Figure 23. Results of the dripping instability test on a domain discretized using 100×200 cells. Snapshots in time of the compositional field obtained with the
PIC method using 16 particles per cell (a–c) or with the DPIC method using four particles per cell (e–g). Closed up views of the area delimited by the black
rectangles in panels (c) and (g) are shown in panels (d) and (h), respectively. These show the particle kernels. The green squares indicate the location of the
cell the least sampled by particle kernels.

yields a dynamically evolving number of particles through the use
of merging and splitting procedures. These procedures allow main-
taining the number of particles approximately constant. In addition,
despite the changes in particle number, merging and splitting pro-
cedures do not involve interpolation of the quantities carried by
the particles, contrary to particles remeshing used in PIC methods.
This contributes to the smaller numerical dissipation of the DPIC
method.

While the DPIC method presented here focused on the case of
pure advection of discontinuous quantities in 2-D domains, this
new approach could be generalized to 3-D space where the com-
putational gain could be even more substantial. Indeed, 2-D tests
have shown that the accuracy of the DPIC method using two par-
ticles per dimension is comparable with that of the PIC method
using four times more particles per dimension. If we extrapolate
this rule-of-thumb to 3-D space, comparable accuracy could be
obtained between the DPIC method using eight particles per cell
instead of 512 particles per cell for the PIC method. On the other

hand, extensions of the operations associated with the DPIC method
from 2-D to 3-D space would likely lead to an increase in computa-
tional cost (in particular for operations associated with kernel update
and kernel-to-grid mappings) possibly by a factor 2–4 per particle.
Overall, at comparable precision and taking everything into con-
sideration, the estimated computational savings in using the DPIC
method in 3-D geometry relative to the PIC method would be com-
parable or greater to that observed in 2-D. In addition, the DPIC
method could be adapted to cases where non-advective transport
is present, by combining the approach used in the FLIP method
(Brackbill et al. 1987) with the use of elliptical/ellipsoidal kernels.
Finally, the DPIC method could be implemented in the frame of
variable grid spacing, a common situation in geodynamic mod-
elling, by using smaller particle kernels in finer portions of the grid
(e.g. Fig. 5), and accounting for variable grid spacings during the
splitting and merging procedures. This would allow the number of
particles per cell to be comparable to that for the case of constant grid
spacing.
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Figure 24. Results of the dripping instability test. Time evolution of the normalized cell sampling parameter, W∗ corresponding to different initial values of
particle numbers. The three top panels correspond to the PIC method using point-wise kernels, no particle remeshing, with 16, 25 and 64 particles per cell.
The bottom panels correspond to the DPIC method with initially four particles per cell or three particles per cell using an initially more compact arrangement
of the particle kernel (see Fig. 5d). The RMS value is represented by the thick curve, the min and max values are displayed by thin black lines and the standard
deviation corresponds to the dark coloured area.

While it involves additional procedures, the DPIC method re-
mains straightforward to implement. Further reduction of the com-
putational cost and increase in accuracy can be expected by con-
ducting a systematic investigation of the parameters considered for
the DPIC (reduction of the calls to intrinsic functions, improvement
of the spatial sampling thanks to the use of kernels of different size,
optimization of the merging procedure...). These generalizations

and improvements of the DPIC method will be the focus of future
research.

However, even at this early stage, the DPIC method proves to be
a very good alternative to standard PIC approaches: at comparable
accuracy, the DPIC method can be four to six times more efficient
than the PIC method.
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Table 1. Distribution of the computational load for the different proce-
dures involved in the DPIC method for the dripping instability test on a
100×200 grid. The procedure named ‘kernel arrays’ refers to various array
assignments during RK time integration stages. ‘Kernel update’ refers to
kernel time integration (eq. 20) together with other associated operations
(computation of eigenvalues and eigenvector angles).

Procedure
Load (per

cent)

Kernel to grid 35
Kernel merge 20
Kernel update 14
Particle advection 12
Kernel arrays 11
Kernel split 8

Table 2. Distribution of the computational load for the different procedures
involved in the PIC method for the dripping instability test on a 100×200
grid. The procedure named ‘kernel arrays’ refers to various array assign-
ments during RK time integration stages.

Procedure
Load (per

cent)

Particle advection 54
Kernel arrays 33
Kernel to grid 13
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Figure 25. Performances of the PIC and DPIC methods. Execution time
of the PIC method normalized to the execution time for the DPIC method
performed using approximately four particles per cell. These correspond
exclusively to the time associated with the resolution of eq. (1) for the
dripping instability test over the first 1400 CFL time steps in a domain
discretized using 100×200 square cells. Different amounts of particles are
considered. Blue curves and symbols refer to the results obtained using a
second-order TVD–RK time integration scheme. Red curves and symbols
refer to the results obtained using a third-order TVD–RK time integration
scheme.
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Figure 26. Illustration of the application of the transformation fa (eq. B1)
for the calculation of A, the area common to a particle kernel (blue ellipse
in the top panel) and the corresponding cell of size h2 to which the particle
belongs (yellow square in the top panel). In this example rp = h/4, h =
0.05, σ+

p = 1.5, σ−
p = 0.75, xp = 0.41, zp = 0.32 and αp = π /6. Upon

application of fa, A, B, C and D become A′, B′, C′ and D′ and the ellipse
kernel is transformed into a unit circle, whose centre is located at x

′ = z
′ =

0 (bottom panel). A′, B′, C′ and D′ do not correspond to a square anymore
but can be decomposed into two triangles. The sum of the common areas
to the triangles A′B′C′ and A′C′D′, and the unit circle, that is, A′

1 and A′
2

can be calculated analytically by considering the number of triangle vertex
belonging to the unit circle and the number of edges crossing or contained
within the unit circle (Fig. 27), and by decomposing each common area into
disc segments and triangles. See text for further details.
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Figure 27. Possible overlapping configurations between the triangles resulting from the application of the transformation fa (eq. B1, see Fig. 26), and the unit
circle corresponding to the transformed particle kernel. The different cases depend on the number of triangle vertices present within the unit circle, and the
number of triangle edges that partially or entirely belong to the unit circle. For each case, the overlapping area between the triangle and the unit circle can be
decomposed into triangles and/or disc segments, whose surfaces can be computed analytically. See text for further details.

figures but Figs 1, 4–8, 22 and 27 were drawn with the Generic
Mapping Tools (Wessel & Smith 1995). This is IPGP contribution
number 3952.
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A P P E N D I X A : A NA LY T I C A L
E X P R E S S I O N S F O R T H E PA RT I A L
S A M P L I N G F O R T H E P I C M E T H O D F O R
T H E V O RT E X T E S T

Here I derive the analytical expression for the distance between
‘corner’ particles, located in the vicinity of x = z = 0 (see Fig. 3c)
advected in the case of a vortex flow (eq. 14). The unit square
domain is discretized using n × n square cells of size h = 1/n. The
particles are initially regularly spaced within the domain. Taylor
expansion of the velocity field around x = z = 0 yields

u(x = 0, z = 0) ∼= (πx,−π z)T . (A1)

Namely, the flow in this region corresponds essentially to a stag-
nation point associated with pure shear. Consider the two particles, C
and D, initially located at xC0 = 0.25h, zC0 = 0.75h and xD0 = zC0 ,
zD0 = xC0 , such that C and D are initially close to each other, and
they belong to the same streamline. While these two particles follow
the same trajectory, the velocity along the corresponding streamline
varies strongly in this region, and so does lCD, the distance between
particles C and D. Indeed, integrating eq. (2) with up = u(x = 0, z
= 0) and using eq. (A1) yields the approximate location of particles
in the vicinity of (x = 0, z = 0):

xp
∼= (x0 exp(π t), z0 exp(−π t)). (A2)

Using the above equation, one can express the distance between
particles C and D:

lCD
∼= 0.5h

√
exp(2π t) + exp(−2π t)). (A3)

Recognizing that the second term with the decreasing exponential
is bounded between 0 and 1, and will not significantly contribute to
lCD, we have

lCD > h exp(π t)/2. (A4)

http://dx.doi.org/10.1016/j.pepi.2007.04.015
http://dx.doi.org/10.1145/320868.320871
http://dx.doi.org/10.1016/j.pepi.2005.03.014
http://dx.doi.org/10.1016/j.jcp.2011.03.035
http://dx.doi.org/10.1016/j.icarus.2011.02.021
http://dx.doi.org/10.1111/j.1365-246X.1979.tb04803.x
http://dx.doi.org/10.1038/nature04066
http://dx.doi.org/10.1002/pamm.200410214
http://dx.doi.org/10.1016/0167-7977(85)90010-3
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://dx.doi.org/10.1016/S0021-9991(02)00031-1
http://dx.doi.org/10.1016/j.pepi.2007.06.009
http://dx.doi.org/10.1111/j.1365-246X.1992.tb00117.x
http://dx.doi.org/doi:10.1029/2008GC002022
http://dx.doi.org/10.1016/j.epsl.2011.11.001
http://dx.doi.org/10.1016/j.epsl.2006.04.037
http://dx.doi.org/10.1029/2010GC003081
http://dx.doi.org/10.1016/S0012-821X(02)01125-1
http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1016/j.pepi.2008.08.005
http://dx.doi.org/doi:10.1029/2001GC000214
http://dx.doi.org/10.1002/2015GC005807
http://dx.doi.org/10.1016/j.pepi.2003.07.027
http://dx.doi.org/10.1029/97JB01353
http://dx.doi.org/10.1016/j.cpc.2010.11.002
http://dx.doi.org/10.1111/j.1365-246X.1996.tb06349.x


A DPIC method for advective transport in geodynamic modelling 1773

A P P E N D I X B : A NA LY T I C A L
C O M P U TAT I O N O F T H E PA RT I C L E ’ S
W E I G H T S F O R T H E D P I C M E T H O D

The elliptical kernels in the DPIC method do not allow a direct
analytical computation of their overlapping areas with grid cells.
For this reason, a transformation, fa, is first applied to each of the
four cell corners a particle belongs to. This mapping consists of
a translation, a rotation and shrinking/expansion that converts the
elliptic kernel of a given particle into a disc of unit radius centred
on the particle’s position xp:

fa(x) = R(x − xp)D, (B1)

where R is a rotation matrix

R =
(

cos αp sin αp

− sin αp cos αp

)
, (B2)

and D is a deformation matrix given by

D =
(

1/(rpσ
+
p ) 0

0 1/(rp σ
−
p )

)
. (B3)

The mapping applied to the four cell corners A, B, C and D
results in two triangles A′B′C′ and A′C′D′ (see Fig. 26). The area
overlap between the unit disc and each of these two triangles are
A′

1 and A′
2. These areas can be evaluated exactly by distinguishing

between the nine possible cases depending on the number of triangle
vertices present within the unit circle, and the number of triangle
edges that partially or entirely belong to the unit circle (Fig. 27).
For each case, the overlapping area between A′B′C′ and A′C′D′

and the unit circle is then decomposed into triangles and/or disc
segments, whose surfaces are computed analytically. Finally, with
the knowledge of A′

1 and A′
2, the overlapping area between the

ellipse and the cell is deduced by applying the inverse fa mapping,
yielding (A′

1 + A′
2)r 2

p σ
+
p σ

−
p .


