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Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is
important to understand the processes that generate differential rotation in rotating bodies. In a rotating
density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or con-
tracting with respect to the background density stratification. The convergence of this vorticity forms
zonal flow structures as a function of the radius and the slope of the background density profile. While this
effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density
stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the den-
sity change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to
determine the parameter regime where local vorticity generation plays a significant role in organizing the
fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation,
a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential
rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the den-
sity contrast across the equatorial plane, providing a simple way to determine in which regime a given body
lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's
outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core,
where the density contrast is small, vorticity contributions via fluid movement through the density stratifica-
tionmay be non-negligible.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic field generation and maintenance in planetary cores is
an area of active research (Anufriev and Cupal, 2001; Aubert and
Wicht, 2004; Glatzmaier and Roberts, 1996; Guervilly et al.; Olson
and Christensen, 2006; Olson et al., 2010; Sarson and Jones, 1999;
Schaeffer and Cardin, 2006; Stanley and Glatzmaier, 2010; Stanley
et al., 2005). There are several ingredients that are thought to be
key to maintaining a magnetic dynamo, rotation, a highly turbulent,
three-dimensional helical flow, an electrically conducting fluid, and
differential rotation. Dipole dominated magnetic fields, such as
those seen on the Earth and Jupiter, occur in rotationally dominated
fluid flows with strong differential rotation, whereas more inertial
flows produce weaker fields with higher multi-pole components
(Christensen and Aubert, 2006; Sreenivasan and Jones, 2006).

Deep shell differential rotation in rotating fluids has been simula-
ted in 3D (Aurnou and Olson, 2001; Christensen, 2001, 2002;
Glatzmaier, 2005; Heimpel et al., 2005; Jones and Kuzanyan, 2009;
Kaspi et al., 2009), in the 2D meridional plane (Jones et al., 2003;
. Evonuk).
/Home.html (M. Evonuk).

l rights reserved.
Rotvig and Jones, 2006), and in the 2D equatorial plane (Evonuk,
2008). Mechanisms that can lead to differential flow in a rotating
body are vortex stretching via Busse rolls and conservation of poten-
tial vorticity, or local generation of vorticity as fluid parcels move
through a density stratification, hereafter referred to as the LVDS
mechanism. Vortex stretching is a global mechanism which occurs
regardless of density change, while LVDS is a local mechanism that
occurs only in density-stratified fluids. Arguments have been pre-
sented indicating that a global mechanism is likely to become
harder to maintain as a fluid becomes more turbulent (Glatzmaier
et al., 2009) therefore favoring LVDS vorticity generation in extreme
parameter regimes. Recent simulations in 3D compare the fluid
behavior and heat flux in anelastic and Boussinesq models and
find that anelastic simulations have significant baroclinic shear,
disrupting the pure Taylor columns seen in Boussinesq simulations
and that additional high latitude jets can form in the anelastic
cases (Jones and Kuzanyan, 2009; Kaspi et al., 2009). This paper
seeks to focus only on the effect of changing density as opposed
to looking at both density and geometry simultaneously. Two-
dimensional simulations in the equatorial plane, without additional
terms to add the effect of curvature of the boundaries in the northern
and southern hemispheres, eliminate any contribution to the vorticity
from Busse rolls. Therefore, any zonal jet structures formed will result
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from vorticity generated by local interaction of the rotation with the
density stratification, LVDS. For a detailed discussion on how these
two mechanisms work see: Busse (1976), Glatzmaier and Evonuk
(2006), Glatzmaier et al. (2009) and Evonuk (2008).

Previous simulations in the 2D equatorial plane explored the rela-
tionship between Rayleigh number and Ekman number for a fluid
with a large density stratification (density at the center of the simula-
tions 56 times greater than the density at outer edge) (Evonuk, 2008).
Evonuk (2008) found that decreasing the driving (decreasing Ray-
leigh number) and/or increasing the rotation rate (decreasing
Ekman number) from a mid-case with two jets led to a larger num-
bers of jets with radius, that is, further into a differential flow regime,
while the opposite (increasing Rayleigh and Ekman numbers) led to a
dipolar flow regime, where the fluid did not feel the effect of rotation
and the dominant fluid flow was directly through the center of the
equatorial plane forming two cells. While Evonuk (2008) demon-
strated that LVDS vorticity generation was likely important for Jovian
planets, which have large density contrasts, this study did not estab-
lish how the strength of the LVDS effect depends on the total contrast
in the background density profile.

In order to make the results of Evonuk (2008) more general, and
scalable to other density contrasts and therefore to arbitrary bodies,
this study is expanded to explore in addition to the effects of Rayleigh
number and Ekman number, the effects of the density contrast and
the Prandtl number. A quantity C is then calculated from the Ekman
number, Rayleigh number, Prandtl number and density contrast,
which is seen to correlate to the flow regime of the fluid. High values
of titC are indicative of dipolar flow (rotation and/or density stratifi-
cation not important) while low C values correspond to differential
flow (rotationally dominated, where LVDS vorticity generation is
important). The predicted value of xtitC for the Earth's liquid core,
in spite of its small change of density, lies in the regime of differen-
tial flow, indicating LVDS may play an important role in generating
differential rotation in the Earth's outer core, and therefore in generat-
ing and maintaining the Earth's geomagnetic field.

Again, simulations are restricted to two dimensions, not only to
explore parameter regimes difficult or impossible to reach in 3D,
but to focus on the LVDS mechanism and to allow a systematic explo-
ration of the parameter space.

2. Numerics

The thermal-convection simulations are performed using a modi-
fied version of the Evonuk–Glatzmaier finite-volume code on a Carte-
sian grid in 2D (Evonuk and Glatzmaier, 2006). The basic anelastic
equations solved are non-dimensional versions of the momentum
(1), conservation of mass (2), and energy (3) equations:

∂
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�ρuð Þ ¼ −∇⋅ �ρuiuj þ pδij−2Pr�ρ eij−
1
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∂S
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� �
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where t is the non-dimensional time, �ρ is the background density pro-
file, u is the velocity vector, p is the pressure, δij is the Kronecker delta,
eij is the viscous stress tensor, r̂ is the unit vector in the radial direc-
tion, Ω is a unit vector in the direction of the rotation axis (perpendic-
ular to the equatorial plane), S is the entropy perturbation, �T is the
background temperature profile, and Qs is the heating function. The
energy Eq. (3) is written here in the form of an entropy equation
using entropy diffusion. The units of length, time, pressure,
temperature and entropy used to express the above equations in
their non-dimensional form are D, D2/κ, κ2ρo/D2, 1/α and ΔS, where
D is the radius of the disk, κ is the thermal diffusivity, ρo is the density
at the center of the equatorial plane, α is the thermal expansion coef-
ficient, and ΔS is the change in entropy across the disk.

The equations are characterized by several dimensionless num-
bers. The Rayleigh number,

Ra ¼ goΔSD
3

Cpνκ
; ð4Þ

is the ratio of the buoyancy terms to the diffusive terms, with go being
the gravity at the outer edge of the equatorial plane, Cp the specific
heat capacity, and ν the kinematic viscous diffusion. As the simula-
tions do not include an inner core, and the total change in entropy,
ΔS, is calculated from the output of the simulation. Higher Rayleigh
numbers generally indicate higher driving and therefore more turbu-
lent flows. The Rayleigh number is varied between several thousand
to close to 109 and is calculated with a time averaged ΔS after the
simulation has reached a statistical steady state. The Ekman number,

Ek ¼ ν
2ΩD2 ; ð5Þ

compares the viscous terms to the Coriolis term, hereΩ is the rotation
rate. Smaller Ekman numbers correspond to higher rotation rates or
cases where the rotation more dominantly determines fluid behavior.
The Ekman number is varied between 10−3 and 10−6. The Prandtl
number,

Pr ¼ ν
κ
; ð6Þ

is the a ratio of the viscous to the thermal diffusivity. In all of the sim-
ulations the diffusivities were prescribed to be constant with radius.
The Prandtl number is varied between 0.01 and 10 for a select num-
ber of cases, while the majority are runwith Pr=1.0. The compress-
ibility number of the fluid is

K ¼ goαD
Cpγ

; ð7Þ

where γ is the Grüneisen parameter. Simulations are run with K=0.2
and γ=0.5, a value of the Grüneisen parameter appropriate for Sat-
urn. The appropriate value of the compressibility for the Earth is
also K=0.2 (Anufriev et al., 2005), but with γ=1.5 (Vočadlo et al.,
2003). The Grüneisen parameter, γ, is also used to determine the
background temperature profile, �T ¼ �ρ γ .

The background gravity, is based on the integration of the back-
ground density profile, �g rð Þ ¼ 4πG

r ∫r
0
�ρ rð Þrdr, where G is the gravita-

tional constant and �ρ is of the form �ρ ¼ ρo−C1r2 þ C2r4 with
constants C1 and C2 determined by specifying the slope of the density
profile at the origin and the outer boundary, both here taken to be
zero. The density profile retains the shape used for the cases with
larger density contrast and no core in Evonuk (2008), with density
changing slowly near the center of the equatorial plane and more
quickly near the outer edge. The density contrast in the background
profile is quantified by χρ=ρo/ρt, where and ρt is the density at the
outer edge of the equatorial plane. The density contrast, χρ, is varied
from 1.22 (appropriate for the Earth's outer core) to 7.39.

Simulations are viewed from the north, with eastward, prograde
flow in the counterclockwise direction. All models are performed
with a regular Cartesian grid resolution of 400×400 points. Boundary
conditions are free-slip (via large source terms in the momentum
solver) with the entropy perturbation set to zero on the outer edge
of the equatorial plane. The heating function represents heat sources
such as residual heat of formation or radioactive heating and in these
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simulations spans the inner 35% of the disk and takes the form of a co-
sine function with peak values occurring at the origin and tapering to
zero by 35% of the radius. An alternate constant heating function with
radius, across the entire disk (not just in the inner 35%), is used for
five cases with χρ=1.22 to better approximate the heating distribu-
tion for the Earth's core and to determine if the heating function plays
a role in the fluid flow patterns seen. Peak values of Qs are 300 in both
cases. All simulations are run without inner cores allowing fluid flow
directly through the origin of the equatorial plane. Simulations are
continued until their kinetic energies have reached a statistical steady
state.

3. Results

Three basic regimes are noted for the simulation results. At one
extreme is dipolar flow, where the fluid flows directly through the
center of the equatorial plane, seemingly little influenced by the
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Fig. 1. Snap shots of the tangential fluid flow for six cases, red indicates prograde fluid
flow (in the direction of rotation) and blue indicates retrograde fluid flow. Cases a and
b demonstrate the flow pattern for two dipolar cases. Case a shows a very clear dipole,
while case b shows additional small scale behavior near the outer rim of the disk due to
the increase in the density contrast and the Rayleigh number. Cases c and d are transi-
tional flows, case c being a more typical transitional flow with a central jet oscillating
about the origin, while case d shows a transitional case which is almost a two jet struc-
ture. Cases e and f are in the differential flow regime with two and three jet zonal flows.
rotation (Fig. 1a, b). For comparison, Fig. 2 shows the tangential
flow for two Boussinesq cases, where χ=1.0 and therefore rotation
is unable to play a role in the 2D simulation. One can see, even at
higher Rayleigh number where the flow becomes more turbulent,
the bulk flow is still dipolar in nature. The dipolar flows tended to
have ratios of azimuthal to radial kinetic energies on the order of
one, though there were cases with ratios as high as three or four. At
the other extreme is differential flow, where the fluid is strongly
influenced by rotation and organizes into differential rotation with
two or more jets forming a zonal flow structure with radius (Fig. 1e,
f). The cases with differential flows tended to have ratios of tangential
to radial kinetic energy on the order of tens, though some cases had
ratios as small as five. An intermediary, transitional flow is also
seen, where the fluid is influenced by the rotation but not strongly
enough to form steady jets. In this regime the fluid often oscillates be-
tween dipolar flow structures and single jets centered on the origin
ringed by smaller vortices or even quasi-two jet structures, where
the outer jet does not fully encircle the inner jet (examples in
Fig. 1c, d). The transitional flows were highly time dependent thus
distinguishing themselves from the dipolar and differential flows.
Likewise, also time dependent, were their ratios of tangential and ra-
dial kinetic energies ranging from values close to one to values in ex-
cess of several tens. Example (d) in Fig. 1 shows an extreme
transitional case where the fluid is almost organized into a two-jet
structure, while example (c) shows a more typical case with a jet at
the origin, sometimes appearing dipolar and sometimes flanked by
multiple smaller vortices. As expected from the results of Evonuk
(2008) the basic trend of smaller Rayleigh numbers and smaller
Ekman numbers corresponding to more rotationally dominated flow
is seen for all values of the density contrast, χρ. As an example, the re-
sults for χρ=3.00 are plotted as a function of Rayleigh number versus
Ekman number in Fig. 3. The transition between the regimes is well fit
by a curve of Ek∝Ra−1/2 for all χρ (shown in the dashed lines in
Fig. 3).

Additional cases run at χρ=1.22 with uniform heating show no
significant change in behavior with cases falling in flow regimes as
expected for their Ekman and Rayleigh numbers. An expanded
graph, Fig. 4, shows the Earth-like density contrast, χρ=1.22, includ-
ing the results of uniform heating (open symbols) and the approxi-
mate locations of several terrestrial bodies (large open circles).
Estimates for the Rayleigh number and Ekman number are based on
the values of the convective depth and buoyancy fluxes from Olson
and Christensen (2006) and on the assumption that the viscous and
thermal diffusivities are similar in these bodies, which is likely not
the case, especially not for Ganymede. While this density contrast is
appropriate, or nearly so for Venus, Mars and the Earth, smaller
values of χρ in Mercury, the Moon, and Ganymede would result in a
Ra = 1.3x105

Boussinesq Simulations, χ = 1.0

a b

Ra = 2.5x108

Fig. 2. Snap shots of the tangential fluid flow for two Boussinesq cases where χ=1.0,
red indicates prograde fluid flow (in the direction of rotation) and blue indicates retro-
grade fluid flow as in Fig. 1. Both cases, low and high Rayleigh number, show a bulk
flow that is clearly dipolar with flow directly through the origin forming two large
cells. This is the pattern seen also in cases a and b of Fig. 1.
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relative shift to the right for these bodies with respect to the transi-
tion to differential flow. That is, larger χρ transitions to differential
flow at larger Ra and larger Ek than smaller χρ. To quantify this, the
results of cases at different χρ need to be seen on one graph.
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Fig. 4. Log–log plot of the Rayleigh number versus the Ekman number for a density
contrast of 1.22 with Pr=1.0 expanded to include the parameter regime of the terres-
trial planets. Symbols are as defined in Fig. 3 with small open symbols indicating cases
with uniform heating and large circular labeled symbols representing the planets.
Dashed lines again mark the transition between the flow regimes with the relationship
Ek∝Ra−1/2. We see that the planets are far from the regime modeled, however the
trends indicate that most planets lie in the differential to transitional regimes.
In order to compare the results of all the simulations with their
varying density contrasts and Prandtl numbers, the Rayleigh number,
Ekman number, and Prandtl number are combined into a convective
Rossby number, Roc ¼ Ek

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
(Gilman, 1977). Generally it is as-

sumed that a convective Rossby number less than one is where the ef-
fects of rotation become important, since in the time a fluid element
is driven across a layer by buoyancy it can execute more than one in-
ertial rotation (Brummell et al., 1998). This appears to be the case in
3D Boussinesq simulations in a free-slip box (Julien et al., 2001) and
in 3D turbulent compressible simulations in a local f-plane model
(Brummell et al., 1998), though the scaling changes in Boussinesq
simulations with no-slip boundary conditions as the boundary layers
become important (Stellmach and Hansen, 2010). Others have found
it may be that the crossover occurs nearer the value of two (Schmitz
and Tilgner, 2009), or in the case of boundary-layer-controlled transi-
tion scaling it occurs at values less than Roc (King et al., 2009). Re-
gardless of the exact cutoff, smaller values of convective Rossby
number indicate a greater influence of rotation on the fluid dynamics
while larger values indicate that buoyancy is dominant. The transition
from dipolar flow to differential flow occurs at convective Rossby
numbers much smaller than one for most of the simulations shown
here (χρ=1.22−7.39), though the boundary between dipolar and
transitional cases for χρ=7.39 does occur close to Roc=1, which
can be seen in Fig. 5.

The results plotted as the density contrast versus the convective
Rossby number show a clear trend between dipolar flow, transitional
flow and differential flow (Fig. 5), dashed lines here (and in Fig. 7)
have a best fit for Roc∝χρ

3/2. It is noted that higher Prandtl numbers
act to push the flow towards more rotationally dominated behavior.
This is expected as higher Prandtl numbers correspond to weakening
inertia. Cases with Prandtl number not equal to one, as well as the
corresponding case with Pr=1.0, are noted in Fig. 5. As the fluid be-
havior in these cases with Pr≠1 continue to follow the previous pat-
tern with convective Rossby number, it seems likely that Roc and χρ

are good criteria for noting this transition between flow patterns.
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As the Rayleigh number increases, so do the mean velocities, as
higher Rayleigh numbers correspond to larger driving forces. The
majority of the simulations in this study had only two jets and on
average the mean zonal velocities for the cases with only two jets
appear to scale as approximately Ra2/3χ2, shown in (Fig. 6), where
the exponents are a best fit to the simulation results. There is one
obvious outlier, the case with uniform heating which implies that
the heating distribution is a contributing factor in the strength the
mean zonal flow. This trend merits further study as the number of
data points is small. This is especially true for the cases with larger
numbers of jets of which there are only two representative cases,
which prevents any scaling for the number of jets to be determined.
Larger numbers of jets are likely in more extreme parameter regimes
and with larger density contrasts and therefore will require higher
resolutions and longer run times than used in these simulations.

4. Discussion

Expanding Fig. 5, to include the results from Evonuk (2008) and
the estimated values for several planetary cores, appears to support
the previously noted trend (Roc∝χρ

3/2) in spite of slightly different
boundary conditions used in the simulations of Evonuk (2008) (the
inclusion of a thin subadiabatic region at the outer edge of the disk)
(Fig. 7). Note that the five transitional cases at χρ=56were previous-
ly recorded in Evonuk (2008) as either dipolar or two-jet structured
based on their time-averaged behavior, here they are classified as
transitional due to their time-dependence. Additionally the two-jet
and three-jet cases of Evonuk (2008) are both plotted as differential
flows. Table 1 shows the estimated values of the convective Rossby
number and density contrast for planetary cores plotted in Fig. 7
(and Fig. 8).

Estimates for the convective Rossby number are based on the
buoyancy flux-based Rayleigh numbers from Olson and Christensen
(2006), estimates for the density contrasts in the giant planets are
based on taking an upper limit of the convective zone at 109 Pa
(entirely arbitrary, taking a smaller upper bound in pressure will
result in a larger density contrasts, i.e. an upper boundary of 108

Pa for Jupiter would result in a density contrast of over 200),
while estimates for the density contrasts for the rocky/icy planets
are obtained from multiple sources (Gudkova and Zharkov, 2002;
Rivoldini et al., 2009; Sohl et al., 2001; Zharkov and Gudkova, 2000).
Cases with differential flow
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Fig. 6. Log–log plot of the mean tangential velocity (zonal velocity) versus Ra2/3χ2 for
the differential cases. The density contrast, χ, of each case is indicated in the key. Ob-
vious outliers of this trend include the χ=1.22 case with uniform heating and cases
with more than two jets.
These estimates of course fail to account for any stably-stratified
regimes that may exist in the convective regions of these planets,
for example as hypothesized for Venus.

Notice also that there is a large gap between the largest density
contrast modeled in this paper, 7.39, and that of Evonuk (2008), 56.
Unfortunately, 7.39 was the largest density contrast that could be
modeled at the resolution 400×400 and it was too computationally
expensive to run additional cases at higher resolution (simulations
of Evonuk (2008) were run with resolutions up to 1600×1600).
Table 1
Parameter regimes of various planetary cores.

Planet Roc
(Convective Rossby number)

χρ

(Density contrast)
C
value

Venus 8.08×10−2 1.22 5.99×10−2

Mercury 3.21×10−2 1.1 2.79×10−2

Earth 2.21×10−5 1.22 1.64×10−5

Mars 5.71×10−5 1.2 4.34×10−5

Jupiter 3.17×10−7 >96 b3.37×10−10

Saturn 6.58×10−7 >67 b1.20×10−9

Uranus 3.54×10−7 >20 b3.96×10−9

Neptune 3.22×10−7 >20 b3.60×10−9

Moon 4.04×10−3 ∼1 4.04×10−3

Ganymede 3.61×10−5 1.03 3.45×10−5
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C∼6×10−2 and C∼7×10−3, the approximate transitions between the three regimes.
Gray shaded areas bracketing these lines show regions of overlap in the flow behavior.
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A constant can be calculated to mark the transition between the
three flow regimes, C=Roc/χρ

1.5 (where again the exponents are a
best fit to the simulation data); the density contrast versus the
value of C is plotted for the simulations and the planetary cores
(Fig. 8). The estimated C values for the planetary cores are also
included in Table 1. Values of C greater than ∼6×10−2 correspond
to fluid behavior in the dipolar flow regime, while values of C less
than ∼7×10−3 correspond to fluid behavior in the differential
flow regime. These are approximate values and there can be some
overlap between the three regions. This can be seen best for
χρ=1.22, for which the largest number of cases was run, overlap
in flow behavior is seen on both sides of the transitional flow regime.
This overlap is highlighted by the gray shaded areas in Fig. 8 showing
that the changeover from one type of flow behavior to another is more
gradual than distinct.

Jupiter and the other giant planets, as predicted by Evonuk (2008),
lie firmly in the differential flow regime. The surprising result
however, is that of the Earth's outer core, which also appears to
lie in the region of differential flow, a result that was unexpected
for such a small change in the density. These initial results point
towards the Earth's outer core being in a parameter regime where
LVDS vorticity generation can play an important role in generating
differential rotation. Ganymede and Mars also lie in the differential
flow regime, while Mercury lies in the transitional flow regime.
Venus is located on the boundary between the transitional and dipolar
regions indicating LVDS vorticity formation is likely to be negligible
there. The Moon, if it has a density contrast of one, strictly speaking
should not feel any effects from LVDS vorticity generation, however
if the density changes at all with radius, the Moon would fall near
the boundary of the differential and transitional regimes.

It is important to note that this scaling law, while convenient, rep-
resents a jump through several orders of magnitude for most plane-
tary bodies (see Figs. 4, 7 and 8). While Venus, Mercury and the
Moon lie approximately in the simulated convective Rossby regime
(though not in the simulated Ek and Ra regime), simulations are far
from the regimes of the other planets. These simulations however
help to develop a physical intuition for the nature of the fluid flow
in rotating systems, while recognizing that more extreme cases (in
turbulence, rotation rate, and density contrast) may experience
somewhat different dynamic rules and possibly regimes. As Figs. 4,
7 and 8 (and Table 1) demonstrate, the actual parameter regimes of
these bodies still lie beyond the reach of even 2D simulations, let
alone 3D simulations. Therefore results should be recognized to be
extrapolated out to these highly turbulent bodies. While there may
be additional flow regimes possible between the simulated results
and the parameter regime of the bulk of the planets, there is no rea-
son to assume the role of LVDS vorticity generation will decrease
again as C continues to decrease, therefore it is safe to assume that
vorticity generation via movement through a density stratification
will continue to increase in importance as the C value decreases.

5. Conclusions

A power law relationship exists between the convective Rossby
number and the density contrast such that a value C can be used to
determine the behavior of a rotating convective fluid in the two-
dimensional equatorial plane. As the value of C decreases, the local
generation of vorticity as fluid parcels move with respect to the back-
ground density stratification in the rotating disk (LVDS), becomes
increasingly dominant in determining the fluid flow pattern. High
values of C correspond to dipolar flow patterns, while low values
of C correspond to differential flow patterns. This correlation holds
for simulations with central heating or uniform heating, and for
simulations with varying Prandtl number.

Keeping in mind that this is an extrapolation, a body's value of C
can be calculated based on estimates of its parameters to determine
if the density stratification needs to be included in simulations.
Giant planets are seen to lie in the region of differential flow (there-
fore including the density stratification is likely very important),
while surprisingly the Earth's outer core also appears to lie in the dif-
ferential flow region. This indicates that LVDS vorticity generation
could be playing a role in forming differential rotation in the Earth's
outer core and therefore in the production and maintenance of the
geomagnetic field. Likewise, LVDS may be important in Ganymede
and could play some role in Mercury, but is likely not to play an
important role in Venus.

It is also important to note that these simulations were done
without a non-convecting inner core. While this may be the case
in the early histories of some planets, and currently for others (i.e.
some extrasolar planets), most planets currently simulated do possess
a core of some size. While a core would hamper the formation of a
dipolar flow structure, the diagnostic used here, it is likely not to ef-
fect when LVDS, a local form of vorticity generation, becomes im-
portant, therefore the C value should still provide a good estimate
for this transition in planets with cores.

LVDS vorticity generation is not the only source of vorticity in a
rotating body, Busse rolls (Busse, 1976) are capable of generating
vorticity via vortex stretching in constant density or in density-
stratified fluids. Using the results here as guidelines, simulations
are being conducted to compare the strength of the two mecha-
nisms in three dimensions to determine how relatively important
vorticity generation via the density stratification, LVDS, is relative
to vortex stretching. These comparisons will naturally be restricted
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to less turbulent flows which may well exaggerate the importance
of vortex stretching in highly turbulent bodies, nevertheless they
will provide a first step towards quantifying the relative importance
of these two effects.
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