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a b s t r a c t

Dauphas and Pourmand [2011. Hf–W–Th evidence for rapid growth of Mars and its status as a

planetary embryo. Nature 473, 489–492] estimated the accretion timescale of Mars to be 1:8þ0:9
�1:0 Myr

from the W isotopes of Martian meteorites. This timescale was derived assuming perfect metal–silicate

equilibration between the impactor and the target’s mantle. However, in the case of a small impactor

of the impactor’s core equilibrates in the case of a giant impact. We examined the effects of imperfect

equilibration using results of high-resolution N-body simulations for the oligarchic growth stage.

These effects were found to be small as long as a planetary embryo has a deep liquid magma ocean

during its accretion. The effect due to partial involvement of the target’s mantle in equilibration is small

due to the low metal–silicate partition coefficient for W suggested from the low Hf/W ratio of the

Martian mantle. The effect due to partial involvement of the impactor’s core is also small because a

large fraction of the embryo mass is delivered from small planetesimals, which are likely to fully

equilibrate in the deep magma ocean on the embryo. The accretion timescale of Mars estimated by the

Hf–W chronology is shorter than that expected for the minimum mass solar nebula model as long as

more than 10% of each impactor’s core re-equilibrates with the Martian mantle and the final stages of

accretion are prolonged. This probably indicates that accretion of Mars rapidly proceeded due to solid

and gas surface densities significantly larger than those for the minimum mass solar nebula or due to

accretion of small fragments or pebbles.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The theory of planet formation suggests that tens of Mars-
sized embryos form from planetesimals in the inner solar system
during the runaway and oligarchic growth stages, which last for
� 0:1210 Myr (Kokubo and Ida, 1998; Wetherill and Stewart,
1993). In the subsequent, much longer (� 100 Myr) giant-impact
stage, mutual collisions between embryos occur (Morishima et al.,
2010; O’Brien et al., 2006). Mars is considered likely to be a
remnant embryo because its mass is close to the theoretically
predicted final mass of an oligarchic embryo, commonly referred
to as the isolation mass (Lissauer, 1987), and its accretion time-
scale suggested from the Hf–W chronology (Dauphas and
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Pourmand, 2011; Nimmo and Kleine, 2007) is much shorter than
that for the Earth–Moon system (König et al., 2011; Touboul et al.,
2007). The giant impact stage is rather stochastic, because the
timing of the final large impact has a large dispersion in N-body
simulations starting with similar initial conditions (Morishima
et al., 2010; O’Brien et al., 2006). However, the oligarchic growth
stage is deterministic and the mass evolution of an embryo can
even be expressed as a simple analytic solution if a uniform size
of planetesimals is adopted (Chambers, 2006). Therefore, if the
accretion timescale of Mars is precisely determined by the Hf–W
chronology, several important quantities which determine the
accretion timescale may be retrieved, such as the gas and solid
surface densities of the protosolar disk, and the planetesimal size.

Dauphas and Pourmand (2011) estimated the accretion
timescale of Mars, most precisely to date, to be 1:8þ0:9

�1:0 Myr.
This timescale was derived using the isotopic evolution model
of Jacobsen (2005) which assumes perfect metal–silicate equili-
bration between the impactor and the target’s mantle during an
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impact (the more massive body is designated to be the target,
while the less massive one is the impactor). However, two
possible types of imperfect equilibration are conceivable; both
of them result in a longer accretion timescale.

The first one is that only a part of the metallic core of the
impactor is involved in equilibration. Mezger et al. (2013) showed
that if � 40% of each impactor’s core re-equilibrates with the
Martian mantle, the estimated accretion timescale of Mars
becomes a few times longer than in the case of perfect equilibra-
tion. Nimmo et al. (2010) investigated tungsten isotopic evolution
of terrestrial planets using outputs of N-body simulations of
O’Brien et al. (2006) and found that in order to produce the
terrestrial tungsten anomaly, the degree of equilibration is
required to be 30–80%. Rudge et al. (2010) adopted various
growth curves of the Earth and found that both perfect equili-
brium and partial equilibrium models can reproduce the terres-
trial tungsten anomaly and the abundances of siderophile
elements. They also constrained the degree of equilibration to
be at least 36%.

Perfect equilibration requires emulsification of the impactor’s
core down to cm-scale droplets in the target’s mantle (Rubie et al.,
2003) because core formation is likely to occur even for a small
impactor (down to � 10 km) due to heating by radiogenic decay
of 26Al and 60Fe (Moskovitz and Gaidos, 2011; Neumann et al.,
2012). Whether sufficient emulsification occurs when a metallic
core sinks in a liquid magma ocean was investigated using
different types of hydrodynamical models (Dahl and Stevenson,
2010; Deguen et al., 2011; Ichikawa et al., 2010; Samuel, 2012).
Except for Dahl and Stevenson (2010), these studies consistently
show that deformation and breakup of the iron core (neglected in
Dahl and Stevenson’s analytic model) is the main mechanism that
leads to very efficient emulsification and metal–silicate equilibra-
tion, as long as the core size is smaller than the depth of the
magma ocean on the target. Kendall and Melosh (2012) showed
that significant emulsification of the impactor’s core already
occurs during a high-velocity impact (they adopted an impact
speed of 11.5 km/s).

The second one, which has been paid less attention than the
first one, is that only a part of the target’s mantle is involved in
equilibration. This is likely to occur if the impactor size is much
smaller than the target size; such a situation is common during
the oligarchic growth stage. Even if the impactor size is large, an
upper metal-rich layer and a lower metal-poor layer may over-
turn due to the Rayleigh–Taylor instability, which may reduce the
volume fraction of the target’s mantle involved in equilibration
(Sasaki and Abe, 2007).

As discussed above, the impactor-to-target mass ratio is likely
to be the important parameter for metal–silicate equilibration.
The mass distribution of impactors during the oligarchic growth
stage is not clearly known. During the former runaway growth
stage, the mass distribution can be described by a power-law with
the exponent of ��2:5 (Kokubo and Ida, 2000; Ormel et al.,
2010). During the oligarchic growth stage, large embryos separate
from the continuous size distribution. In addition, mutual colli-
sions between oligarchic bodies are expected. Chambers (2006)
estimated that one-third of the mass of an oligarchic embryo is
delivered by embryo–embryo collisions, provided that the mutual
separation normalized by the Hill radius is fixed. This needs to be
examined by direct N-body simulations.

In the present paper, we investigate accretion timescales of
embryos and mass distribution of impactors, by conducting high
resolution N-body simulations of the oligarchic growth stage.
Some basics of the oligarchic growth stage are reviewed in
Section 2. In Section 3, methods and results of two N-body
simulations are shown; one case with nebular gas and another
case without gas. In Section 4, using the results of N-body
simulations, we model the isotopic evolution of the Hf–W system
and examine the effects of possible imperfect metal–silicate
equilibration. Discussion and summary are given in Sections
5 and 6.
2. Expected time evolution of the mass of an oligarchic body

Before discussing the results of N-body simulations, some
basics of the oligarchic growth stage are briefly reviewed.
Consider planetary embryos surrounded by small planetesimals.
An embryo gravitationally influences planetesimals in an annulus
around the embryo’s orbit and these nearby planetesimals collide
with the embryo. This annulus is called the feeding zone and its
radial width is roughly equivalent to the orbital separation
between neighboring embryos and is known to become berH as
a result of orbital repulsion between embryos (Kokubo and Ida,
1998), where be � 10 is the scaling factor and rH is the Hill radius
of the embryo given by

rH ¼ a
2me

3M�

� �1=3

¼ 21=3ah, ð1Þ

where a is the semimajor axis of the embryo, me is the mass of the
embryo, M� is the solar mass, and h is the reduced Hill radius
used below.

Defining the mass fraction of an embryo to the total solid mass
in its feeding zone to be f e, the mass of the embryo me is given by

me ¼ 2pf eaberHSsolid ¼ ð2pf ebeSsolidÞ
3=2a3 2

3M�

� �1=2

¼ 1:8
f e

1

� �3=2 be

10

� �3=2 Ssolid

5:0 g cm�2

� �3=2 a

1:5 AU

� �3=2

mMars, ð2Þ

Ssolid is the solid surface density and mMars is the mass of Mars
(6.4185 �1026 g). When an embryo sweeps up all solid material in
its feeding zone (f e ¼ 1), the embryo mass is called the isolation
mass (Lissauer, 1987):

miso ¼meðf e ¼ 1Þ: ð3Þ

The time evolution of f e is given by (Chambers, 2006)

df e

dt
¼ Af 1=2

e ð1�f eÞ, ð4Þ

where A is

A¼
31:7C

b1=2
c
~e2

S1=2
solid

Pr1=3M1=6
�

 !
, ð5Þ

where bc ¼ 21=3be, ~e is the orbital eccentricity of planetesimals
normalized by h, P is the orbital period, r is the density of nebular
gas. The factor C in Eq. (5) represents acceleration of growth due
to embryo–embryo collisions and we set C¼1.5 as estimated in
Chambers (2006). If viscous stirring of embryos and gas drag are
in equilibrium and the radius r of planetesimals is uniform, ~e is
written as

~e ¼ 2:7
rr

bcCDargas

 !1=5

, ð6Þ

where CD is the drag coefficient assumed to be unity and rgas is
the gas density. Eqs. (5) and (6) mean that planetesimals fre-
quently collide with an embryo, if ~e is low due to a large rgas or a
small r or simply if Ssolid is large.

The solution of Eq. (4) is

f eðtÞ
1=2
¼ tanh

Z t

0

Aðt0Þ

2
dt0 þatanhðf eð0Þ

1=2
Þ

� �
, ð7Þ
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and the time evolution of the embryo’s mass is given as

meðtÞ ¼misof eðtÞ
3=2: ð8Þ

If A is independent of time and f eð0Þ is negligible, Eq. (8) reduces
to

meðtÞ ¼miso tanh3 t

tgrow

� �
, ð9Þ

where

tgrow ¼
2

A
: ð10Þ

Eq. (9) shows that the embryo gains 44%, 90%, and 99% of its
final mass during timescales 1tgrow, 2tgrow, and 3tgrow. The time-
scale tgrow for Mars was estimated by Dauphas and Pourmand
(2011) as 1:8þ0:9

�1:0 Myr by setting miso to be the mass of Mars.
The parameter A is usually time-dependent because gas dissipates
with time. Even in such a case, an analytic expression can be
obtained as long as A is analytically integrable with respect to
time; for example, in the case where gas dissipates exponentially
with time.

To estimate f eð0Þ, the embryo’s mass at the transition from the
runaway growth stage to the oligarchic growth stage is discussed.
If the mass distribution is given by dn¼ kmq dm (where n is the
cumulative number of bodies inside the feeding zone of the
embryo and k is a constant), q is C�2:5 at this transition
(Kokubo and Ida, 2000; Ormel et al., 2010). The total mass inside
the feeding zone is given by

mT ¼

Z me

m0

m dn¼
qþ1

qþ2

m0

me

� �qþ2

�1

" #
me, ð11Þ

where m0 is the mass of the smallest planetesimal. In Eq. (11),
we removed k using the definition of the largest body (embryo)
given byZ 1

me

dn¼�
kmqþ1

e

qþ1
¼ 1: ð12Þ

With mebm0 and q¼�2:5, the mass fraction of the embryo
relative to the total mass is

f tr ¼
me

mT
¼

1

3

m0

me

� �1=2

: ð13Þ

Inserting Eq. (13) into Eq. (2), the transition mass is given by

mtr ¼meðf e ¼ f trÞ ¼

�
1

3

�6=7

m4=7
iso m3=7

0 : ð14Þ

This mass coincides within a factor of two with the transition
mass derived from the numerical simulations of Ormel et al.
(2010) (their Eq. (13)). We adopt f eð0Þ ¼ ðmtr=misoÞ

2=3 from Eq. (8).
3. N-body simulations

3.1. Methods

Two N-body simulations were performed for systems in annuli
around the current location of Mars, 1.5 AU; one with nebular gas
(Sim. A) and the second one without gas (Sim. B). All input
parameters are the same for both simulations except those for
nebular gas. Each impact between two bodies is assumed to result
in perfect merging. To keep the total surface density of solid
bodies in a simulation annulus constant, the body supply bound-
ary condition (Kokubo and Ida, 2000) is adopted; if the semimajor
axis a of a planetesimal is larger than the outer boundary, aout,
this planetesimal is sent to the inner boundary, ain, without
changing its orbital eccentricity e and inclination i. With this
boundary condition, planetesimals near the boundaries tend to
confine embryos inside the annulus, mimicking viscous stirring of
embryos outside the boundaries (Kokubo and Ida, 2000).

The total mass Md of planetesimals in the annulus is 2:0�
1027 g (C3mMars). The initial surface density of planetesimals is
set to

SsolidðaÞ ¼
a

1:5 AU

� ��3=2

Ssolidð1:5 AUÞ, ð15Þ

where Ssolidð1:5 AUÞ is adopted to be 5.0 g cm�2. This is higher
than that for the Minimum Mass Solar Nebula (MMSN; Hayashi,
1981) by 30%. The width of the simulation annulus Da derived
using the above Md and Ssolid is 0.1896 AU. The boundary radii
are then given as ain ¼ 1:5 AU�Da=2 and aout ¼ 1:5 AUþDa=2.
The initial number of planetesimals is 5000 and the physical
density r is 3.95 g cm�3 for all bodies. The initial mass distribu-
tion of planetesimals is given by a single power-law with
q¼�2:5. The initial mass ratio between the largest and the
smallest bodies is set to be 20. This gives the mass of the smallest
planetesimal m0 ¼ 1:7� 1023 g.

For the simulation with gas, the gas-to-solid ratio averaged
over the annulus is set to be 240 at the beginning, as for the
MMSN. The gas temperature is given as T ¼ 220ðr=1:5 AUÞ�1=2 K.
The surface density of gas, Sgas, is assumed to decay exponentially
with a timescale of 2 Myr:

Sgasða,tÞ ¼
a

1:5 AU

� �7=4

exp �
t

2:0 Myr

� �
Sgasð1:5 AU,0Þ, ð16Þ

where Sgasð1:5 AU,0Þ ¼ 1,196 g cm�2. The adopted decay time of
the gas disk is consistent with observations (Fedele et al., 2010).
In Eq. (16), the radial gradient of Sgas is chosen so that the
rotation velocity of the gas is exactly the local Kepler velocity at
the midplane. Thus, there is no radial drift due to gas drag if
e¼ i¼ 0. Aerodynamic gas drag and damping due to tidal inter-
actions with the gas disk are taken into account following the
approach of Morishima et al. (2010), whereas Type I migration
(Goldreich and Tremaine, 1980) is neglected. A model of plane-
tesimal formation in turbulence (Chambers, 2010) suggests a
planetesimal mass even smaller than m0 at 1.5 AU. To mimic
smaller sizes of planetesimals in the gaseous disk, the drag force
on the smallest planetesimal is enhanced by a factor of
ðm0=mGIÞ

2=3, where mGI is the actual planetesimal mass of interest,
and the enhancement factor smoothly decreases with increasing
mass from m0 to 10m0 (see Morishima et al., 2010). We set mGI to
be 1021 g, which is close to that at 1.5 AU suggested by Chambers
(2010).

For this study, the N-body code developed by Morishima et al.
(2010) is used. In this code, the mutual gravity of all bodies is
calculated with a parallel-tree method, and the orbital integration
is calculated with a mixed-variable symplectic integrator. Since
this code can handle a large number of particles and take a
large time step, it is applicable to any stage of planetary accretion.
The opening parameter for the tree method is 0.5 and the time
step is 11.6 days. Each simulation was performed for a total
duration of � 14 Myr and took roughly two months using a single
node with an eight-core processor on a supercomputer.

3.2. Results

Figs. 1–3 show results for the simulation with nebular gas
(Sim. A). Snapshots on the a–e plane are shown in Fig. 1. The large
embryos are displayed as red filled circles with horizontal
branches with a length of 5rH on each side. We define an embryo
as a body more massive than 1025 g (Cmtr (Eq. (14)) for be ¼ 10),
but bodies less massive than one-tenth of the most massive
body’s mass are excluded, as such a small body behaves like a



Fig. 1. Snapshots in the a–e plane for the N-body simulation with nebular gas

(simulation A). The circles are proportional to the radii of planetesimals and

embryos. Embryos are displayed as red filled circles with horizontal branches with

a side length corresponding to 5rH. The total numbers of bodies are 3397, 2721,

2012, and 954 from the top panel to the bottom. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 2. Cumulative number and orbital eccentricity as a function of mass for

simulation A. The distributions at the four times from Fig. 1 are plotted.

The dashed and dotted lines in the upper panel are slopes with q¼�2:0 and

�2.5. The dashed lines in the lower panel show the analytically estimated values

for the smallest planetesimal.

R. Morishima et al. / Earth and Planetary Science Letters 366 (2013) 6–16 9
planetesimal under gravitational stirring by massive embryos. As
embryos grow with time, the number of planetesimals decreases
and their eccentricities increase. At t¼1 Myr, many orbital over-
laps of embryos can be observed. Through collisions between
embryos, two large embryos form. Their orbital separation is
roughly 10rH as found in Kokubo and Ida (1998, 2000). At the end,
their masses reach 80–85% of the mass of Mars.

The cumulative number of bodies and the velocity distribution
as a function of mass are shown in Fig. 2. While the power-law
index for the mass distribution is initially �2.5, it gradually
evolves to ��2 as a result of embryo growth. The large embryos
have low e due to tidal interactions with gas and dynamical
friction of surrounding planetesimals. For small planetesimals, e

decreases with decreasing m due to gas drag. The analytic
estimates of the velocity dispersion (Eq. (6)) of the smallest
bodies are shown on the left side as dotted lines and coincide
well with those of the N-body simulation.

The masses of the two surviving embryos as a function of time
are shown in the top panel of Fig. 3. In the same panel, the
impactor-to-embryo mass ratios (r1) are shown as diamonds for
embryo–embryo collisions. The total mass gained by embryo–
embryo collisions, f e2e, relative to the mass of the embryo is
shown in the middle panel of Fig. 3 for each embryo. The number
of embryos Ne and the mean separation normalized by the Hill
radius be are shown in the bottom panel of Fig. 3. Initially, Ne

increases and be decreases with time. After be reduces to � 5
around 1 Myr, embryo–embryo collisions start to occur frequently
and Ne decreases while be increases. As a result, surviving
embryos gain roughly half of their masses by embryo–embryo
collisions. These fractions decrease with time near the end of the
simulation because all other embryos are swept up at 6 Myr and
thereafter only small planetesimals collide with the embryos. The
fractions extrapolated to the end state where all planetesimals are
completely swept up are 0.1–0.2.

On the top panel of Fig. 3, we also plot the theoretically
expected mass evolution (Eq. (8)). The velocity dispersion calcu-
lated from Eq. (6) increases with time and its upper limit is fixed
to be the escape velocity of embryos in Eq. (8). We adopt be ¼ 9:1
in Eq. (8) so that miso ¼Md=2¼ 1027 g; this is the expected final
mass of the two surviving embryos. These conditions give
tgrow ¼ 3:06 Myr in the beginning of the simulation. The N-body
simulation shows a good agreement with the analytic estimate up
to � 3 Myr. Good agreement with the analytic model adopting a
bimodal size distribution is reasonable as a large mass fraction is
in smallest planetesimals in the simulation.

However, after � 3 Myr the simulation shows that the
embryos grow by a factor of three slower than the analytic
estimate. There are several plausible reasons reducing the growth
rate in the simulation. First, embryo–embryo collisions cease
around 3 Myr while they are assumed to occur constantly in the



Fig. 3. (Top) Time evolution of the masses of the two surviving embryos relative

to the isolation mass (1027 g) for simulation A. Diamonds indicate the impactor-

to-embryo mass ratios (r1) for embryo–embryo collisions. The dotted curve is

the embryo mass derived from the analytic model. The vertical dotted line

indicates the time at the end of simulation. In the top and middle panels, the

red (blue) color is used for the inner (outer) surviving embryo, and the

extrapolated curves until the end of compete sweep up of planetesimals are

shown by dashed curves. (Middle) Mass fractions of the embryos obtained by

embryo–embryo collisions. (Bottom) Number of embryos Ne (black line) and the

mean separation be (blue line) of neighboring embryos normalized by the mutual

Hill radius. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 4. Same as Fig. 1, but for the simulation without gas (simulation B). There is only

one surviving embryo in this case. The total numbers of bodies are 3415, 2874, 2333,

and 1392 from the top panel to the bottom.
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analytical estimation (C is fixed to be 1.5 in Eq. (5)). Cease of
embryo–embryo collisions in the middle of planetary accretion is
also seen in N-body simulations without the periodic boundary
condition (Morishima et al., 2008). Second, the surface densities
in the feeding zones of embryos are reduced relative to those near
the boundaries of the annulus, due to strong scattering by
embryos. A non-uniform spatial distribution of planetesimals is
seen even without gas (Ida and Makino, 1993) but non-uniformity
is enhanced with gas drag (Tanaka and Ida, 1997). This effect is
already seen at t¼2 Myr in Fig. 1 and also seen in simulations of
Kokubo and Ida (2000). Third, the width of the feeding zone of an
embryo increases with orbital eccentricities of planetesimals.
Thus, during the late stage, a non-negligible part of the feeding
zone lies outside the simulated annulus. This effect is likely to be
relatively unimportant compared to the first and second effects.
Overall, the analytic model is likely to underestimate the time-
scale of sweeping up of remnant planetesimals during the late
oligarchic growth stage.

Figs. 4 and 5 show the same as Figs. 1 and 3 but for the
simulation without nebular gas (Sim. B). Overall evolution of Sim. B
is similar to Sim. A. Due to a higher velocity dispersion in the
absence of gas, however, embryo growth is significantly slower
than in Sim. A. The velocity dispersion is found to be roughly half of
the escape velocity of the largest embryo throughout the simula-
tion. The final number of embryos is only one in Sim. B in contrast
to two in Sim. A. This is because orbits of embryos become more
unstable without damping due to tidal interactions with the gas
disk (Iwasaki et al., 2002; Kominami and Ida, 2002). It is expected
that the embryo–embryo spacing becomes much larger without
gas than with gas in the late stage if the simulation annulus is
much wider. Related to this, the peak number of embryos for Sim.
B (Fig. 5) is only half of that for Sim. A. Despite these differences,
the mass fraction of the largest embryo obtained by embryo–
embryo collisions in Sim. B is similar to those in Sim. A. The mass
growth curve roughly coincides with the analytic estimation
assuming that the velocity dispersion is half of the escape velocity
of the largest embryo (Fig. 5) and miso ¼Md ¼ 2� 1027 g (be ¼ 14:4
and tgrow ¼ 15:63 Myr). The growth rate in the late stage of the
simulation is likely to be lower than the analytic estimate for the
same reasons mentioned for Sim. A.
4. Evolution of Hf–W isotopes

The Hf–W chronology provides strong constraints on core
formation timing in planetary bodies (Jacobsen, 2005; Kleine



Fig. 5. Same as Fig. 3, but for simulation B. The isolation mass is set to be

2� 1027 g. For the calculation of the analytic growth curve (dotted curve) in the

top panel, the velocity dispersion is assumed to be half the escape velocity of the

largest embryo.
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et al., 2009). 182Hf decays to 182W with a half-life of 8.970.1 Myr.
Hf and W are both refractory elements and their relative abun-
dances in bulk planetary bodies should be chondritic. During core
formation, lithophile Hf entirely remains in a silicate mantle
whereas siderophile W is preferentially partitioned into a
metallic core.

The evolution of Hf–W isotopes is investigated using the
results of the N-body simulations. Since the N-body simulations
were halted before complete sweep up of planetesimals, we
extrapolate the growth curves of the embryos (dashed curves in
Figs. 3 and 5) using Eq. (4); the growth timescale 2=A of an
embryo is derived using the masses of the embryo at t¼10 Myr
and at the end of the simulation (t� 14 Myr) assuming A is
constant during this period. As an extreme comparison, we also
calculate the evolution of the Hf–W isotopes for a case without
subsequent accretion after the end of the simulation assuming
that remaining planetesimals are suddenly dispersed.
4.1. Formulation

We make the following assumptions:
1.
 The abundances of Hf and W in all bulk bodies are chondritic.

2.
 The metal–silicate partition coefficient for W, DW, is indepen-

dent of time and space. The silicate fraction y and the com-
plementary metal fraction 1�y are also constant for all bodies.
3.
 All bodies experience core formation at the beginning of the
solar system due to 26Al radiogenic heating and their cores and
mantles are fully equilibrated at this time (the timing of the
core–mantle differentiation is found to have little effect).
4.
 During a collision, the core of the target (the more massive
body) is not involved in metal–silicate equilibration. The
target’s mantle and the impactor’s core are partially involved
in equilibration and the fractions of involved masses are
defined to be ktm and kic, respectively.
5.
 After equilibration, the impactor’s core merges with the target’s
core. The target’s mantle is well mixed and homogenized
immediately after the core merging, as well as the core, but
there is no material exchange between the core and the mantle.

The W isotope ratio 182W/183W for a sample relative to that for
the CHondritic Uniform Reservoir (CHUR) is defined as

DEðtÞ ¼ ð
182W=183WÞðtÞ

ð
182W=183WÞCHURðtÞ�1

 !
� 104, ð17Þ

where t is the time measured from the beginning of the solar
system (4568 Myr ago; Kleine et al., 2009). The value
for the present-day Mars is estimated from Shergottites to be
DE¼ 2:6870:26 (Dauphas and Pourmand, 2011).

The radiogenic change of DE during a time interval between
two collisions (the first and the second collisions occurring at t1
and t2) is given by (Jacobsen, 2005).

DEðt2Þ�DEðt1Þ ¼ CWðe
�lt1�e�lt2Þ, ð18Þ

where l is the decay constant of 182Hf. The coefficient CW is given as

CW ¼ qW

182Hf
180Hf

 !t ¼ 0

CHUR

f Hf=W, ð19Þ

where

qW ¼ 104
180Hf
182W

 !t ¼ 0

CHUR

ð20Þ

and

f Hf=W
¼

ð
180Hf=180WÞ

ð
180Hf=180WÞCHUR�1

 !
: ð21Þ

Strictly speaking, qW should be the value at time t but can be
well approximated as a constant for the Hf–W system. The values
from Dauphas and Pourmand (2011); and references therein,

are used: qW ¼ 1:07� 104
ð
182Hf=180Hf Þt ¼ 0

CHUR ¼ 9:72� 10�5,

f Hf=W
¼ 3:3870:56, and l¼ 0:0779 Myr�1. Only the uncertainty in

f Hf=W is taken into account, as it has the largest effect on the

estimated accretion timescale. With assumptions 2 and 3, f Hf=W is
time-independent for all bodies. Additionally using assumption 1,

f Hf=W is given as (Jacobsen, 2005)

f Hf=W
¼
ð1�yÞDW

y
: ð22Þ

A change in DE due to a collision, ignoring radiogenic decay
during the collision, is

DE1 ¼ f tDE0þ f iDEi, ð23Þ

where DE0 and DE1 are DE of the target before and after the
collision and DEi is DE of the impactor. The reduction factor f t

represents how much 182W in the target’s mantle is transported
to the target’s core by the impactor’s core while f i represents how
much the super chondritic impactor’s mantle is added to the
target’s mantle. These factors are given as (see Appendix)

f t ¼
ðktmþgÞþð1�ktmÞkicf Hf=Wg

ðktmþgþkicf Hf=WgÞð1þgÞ
ð24Þ



R. Morishima et al. / Earth and Planetary Science Letters 366 (2013) 6–1612
and

f i ¼
ð1�kicÞðktmþgÞg

ðktmþgþkicf Hf=WgÞð1þgÞ
, ð25Þ

where gðr1Þ is the mass ratio of the impactor to the target. In the
case of kic ¼ 1, f i will become zero. Thus, a change in DE does not
depend on the isotopic fractionation history of the impactor. For
kic ¼ ktm ¼ 1, Eq. (24) is reduced to Eq. (A.6) of Kleine et al. (2009).
This case is called the mantle equilibration scenario in Nimmo
and Agnor (2006). The core-merging scenario of Nimmo and
Agnor (2006) corresponds to a case with kic ¼ 0 and ktm ¼ 1.

Time evolution of DE of an embryo is calculated using Eqs. (18)
and (23). After the end of an N-body simulation, impacts to the
embryo are assumed to occur every Dt and the impactor mass is
given by meðtÞ�meðt�DtÞ. We adopt a somewhat large Dtð ¼ 106 yr)
to represent remaining medium-sized impactors (g � 0:01). For
kico1, DE’s of all bodies are calculated while we assume that
DEi ¼DE0 after the end of the simulation.

4.2. Results

We first show the isotopic evolution for the case of perfect
equilibration (ktm ¼ kic ¼ 1). Next, the effect of partial equilibra-
tion of the target’s mantle is examined (ktmr1). Third, the effect
of partial equilibration of the impactor’s core is studied (kicr1).
Finally, partial equilibration of both the target’s mantle and the
impactor’s core is taken into account.

4.2.1. Perfect equilibration

Fig. 6 shows the time evolution of DE for the case of perfect
equilibration (ktm ¼ kic ¼ 1). Results for two embryos from Sim.
A (red and blue solid curves) and for one embryo from Sim. B
(black curve) are shown. The dashed curves show a case without
accretion after the end of the N-body simulation. With increasing
time, DE increases due to radiogenic decay of 182Hf to 182W, while
impacts reduce DE as 182W is transported from the mantle to the
core. The larger the impactor-to-target ratio g, the larger the
decrease in DE. After � 20 Myr, DE starts to decrease because
decrease due to impacts exceeds increase due to radiogenic decay.
Fig. 6. Time evolution of DE for the surviving embryos for the case of perfect

equilibration between the target’s mantle and impactors (ktm ¼ kic ¼ 1). The red

and blue curves are for the inner and outer embryos from simulation A whereas

the black curve is for the embryo from simulation B. The solid curves are cases

where the growth curves of the embryos are extrapolated to complete sweep up of

planetesimals while the dashed curves are cases where accretion is stopped at the

end of N-body simulations (t � 14 Myr). The error bar at the upper right represents

DE for present-day Mars. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
The present-day values of DE become less than 0.3 for all cases
and are much lower than the Martian value. If accretion is halted
at the end of the N-body simulations, the present-day values of DE
become much larger but still lower than the Martian value.

4.2.2. Partial equilibration of the target’s mantle

If the impactor size is much smaller than the target size, the
entire target’s mantle may not be involved in the metal–silicate
equilibration. This effect is modeled by assuming that the volume
of a portion of the target’s mantle interacting with the impactor’s
core is proportional to the impactor’s volume:

ktm ¼min½ctmg,1:0�: ð26Þ

where ctm is the proportionality coefficient (ignoring a factor of y).
A similar form is also used in Sasaki and Abe (2007). If the
target has a liquid magma ocean on the surface, the volume of the
interacting portion is probably given by the product of the crater
area and the magma ocean depth. In this case, ctm is likely to be
much larger than unity particularly for small impactors. On
the other hand, if the target surface temperature is lower than
the solidus temperature of the rocks composing the mantle, the
impact-induced melt in the target’s mantle may be taken as the
interacting portion. The volume of the impact-induced melt
primarily depends on impact velocity, and if the impact velocity
is about the escape velocity of Mars, only the isobaric core, whose
volume is a few times of the impactor volume (ctm � 3), results in
melting (Tonks and Melosh, 1992, 1993).

Fig. 7 shows the present-day value of DE as a function of ctm.
The effect of partial equilibration is found to be unimportant for

large ctm. Inserting ktm ¼ ctmg into Eq. (24) and adopting

ctmb f Hf=W, we have f tCð1�f Hf=WgÞ=ð1þgÞ. This is equivalent to
the case of perfect equilibration if g51. This indicates that the
tungsten concentration in the impactor’s core tends to saturate if
the volume of the equilibrating silicate portion exceeds the

criterion, ctm � f Hf=W. The present-day value of DE becomes much

larger if ctmo f Hf=W (f tC ð1�ctmgÞ=ð1þgÞ for ctm5 f Hf=W). Such a

case is unlikely for Mars because its f Hf=W is low and ctm is likely
to be at least � 3 as discussed above. The effect of partial
equilibration may be much more important for the Earth which

has a much larger f Hf=W; the Hf/W ratio of 25.8 (König et al., 2011)

gives f Hf=W
¼ 25:3 using the Hf/W ratio of 0.98 for CI chondrites.
Fig. 7. Present-day values of DE for the surviving embryos for the case with partial

equilibration of the target’s mantle (ktm r1:0 and kic ¼ 1:0). Eq. (26) is used for

modeling of ktm. The meanings of curves are the same as in Fig. 6. The region

between the two horizontal dashed lines represents the range of DE for present-

day Mars while the vertical dashed line represents ctm ¼ f Hf=W
¼ 3:38.



Fig. 8. Present-day values of DE for the surviving embryos as a function of kic

(ktm ¼ 1:0). The meanings of the curves and the lines are the same as those in

Fig. 7.

Fig. 9. Same as Fig. 6 but for the case with partial equilibration of both the target’s

mantle and the impactors’ cores. Eq. (26) with ctm ¼ 10 is used for the modeling of

ktm whereas Eq. (27) with cic ¼ 0:01 is used for the modeling of kic.

Fig. 10. Present-day values of DE for the surviving embryos as a function of f Hf=W.

The partial equilibration model from Fig. 9 is used. The meanings of the solid and

dashed lines, and the horizontal dotted lines are the same as those in Fig. 7.

The region between the two vertical dotted lines represents the range of f Hf=W

estimated by Dauphas and Pourmand (2011).
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4.2.3. Partial equilibration of the impactor’s core

Cases of a constant kicðr1Þ for all impacts are first considered

while keeping ktm ¼ 1. The reductions of DE after impacts are
much smaller than in the case of perfect equilibration. Eq. (24)

shows that f t ¼ ð1þgþkicf Hf=WgÞ�1. Thus, the effect of partial
equilibration of the impactor’s core is equivalent to reducing

f Hf=W to kicf Hf=W, or to reducing the metal–silicate partition

coefficient DW to kicDW. In addition, the disequilibrated impactor’s
mantle is added to the target’s mantle (Eq. (25)). This leads to an

additional increase in DE.
Fig. 8 shows the present-day value of DE as a function of kic. As

discussed, DE increases with decreasing kic. In the limit of kic-0,
DE¼ CW (Eq. (19)) regardless of accretion history. It is found
that DE for present-day Mars is fulfilled with kic less than 0.1.
This value is even smaller than the lower limit (0.36) suggested
for the Earth (Rudge et al., 2010). If accretion is halted at the end
of the N-body simulation with gas, kic needs to range from
0.2 to 0.7.

4.2.4. A model with a deep magma ocean

In this section, we consider a case where Mars has a deep
magma ocean during its accretion. Whether this assumption is
reasonable is discussed in the next section. As found in hydro-
dynamic modeling (Deguen et al., 2011; Samuel, 2012), kic is
likely to decrease with increasing impactor size. As a nominal
model, we adopt the following form:

kic ¼min½cicg�1,1�, ð27Þ

where cic is the proportional coefficient and we adopt cic ¼ 0:01.
This means that large impactors only partially equilibrate with
the target whereas smaller impactors (gr0:01) fully equilibrate.
This model is probably close to the condition derived by Samuel
(2012), who found that impactors with sizes smaller than the
depth of the target’s magma ocean fully equilibrate. We also
adopt partial equilibration of the target’s mantle using Eq. (26)
with ctm ¼ 10. As discussed in Section 4.2.2, this is likely to cause
only a very small difference from the case of ktm ¼ 1.

The evolution curves of DE are shown in Fig. 9. There is no
large decrease in DE at impacts unlike in Fig. 6 because kic for
large impactors is very small. Nevertheless, the increase in DE as
compared with those for the cases of perfect equilibration is
rather small, because more than half of an embryo mass is
delivered by small impactors and their cores fully equilibrate
with the embryo mantle. The present-day values of DE are close to
the values obtained with kic ¼ 0:520:7 in Fig. 8. This is reasonable
as the fraction of small impactors is roughly two-thirds as shown
in Figs. 3 and 5. In any cases, the present-day values of DE are
much lower than the Martian value. If accretion is halted at the
end of the N-body simulation with gas, the present-day values of
DE becomes barely consistent with the Martian value.

So far, we have fixed the value of f Hf=W to be 3.38. Nimmo and

Kleine (2007) showed that different values of f Hf=W result in very

different accretion timescales. Thus, the uncertainty of f Hf=W

needs to be taken into account, although it is now much smaller
owing to the work of Dauphas and Pourmand (2011). Fig. 10

shows DE as a function of f Hf=W. It is found that DE is almost

independent of f Hf=W (solid lines). Increase of DE with time due

to radiogenic decay is simply proportional to f Hf=W (Eq. (18)). On

the other hand, the decrease of DE due to an impact also

increases with increasing f Hf=W (see Eq. (24) and Section 4.2.2).
If the accretion timescale is longer than the radiogenic decay
timescale, both effects roughly compensate each other and the
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present-day DE depends very weakly on f Hf=W. On the other
hand, if accretion rapidly completes as in the cases shown by

dashed lines in Fig. 10, the present-day DE is primarily deter-

mined by radiogenic decay so DE is roughly proportional to

f Hf=W. Similar dependence and independence can be found if

f Hf=W is varied in calculations shown in Fig. 6.
5. Discussion

In Section 4.2.4, we showed that as long as a Mars-analog has a
deep magma ocean during its accretion and the final stage of
accretion is prolonged, the present-day DE turns out to be much
lower than the Martian value. This may indicate that accretion of
Mars proceeded and terminated much more rapidly than in our
model calculations, because (1) the solid surface density was
larger, (2) the gas surface density was larger, or (3) the planete-
simals size was smaller than what we have assumed. For the first
possibility, the terrestrial planets might have accreted in a narrow
annulus around 1 AU, and Mars is ejected to the current location
(Hansen, 2009; Morishima et al., 2008; Walsh et al., 2011).
Although this scenario is favorable for the strong radial mass
concentration of the terrestrial planets, the Earth is likely to
accrete too rapidly to explain its DE and it may be difficult to
produce the large difference in the oxidization states (represented
by f Hf=W and the FeO content) between Earth and Mars (but see
Morbidelli and Rubie, 2012). For the second possibility, the high
gas density may be achieved in a low turbulent viscosity region
called the dead zone (Gammie, 1996; Morishima, 2012). For the
third possibility, growth of embryos is significantly accelerated
due to accretion of fragments of planetesimals (Chambers, 2006;
Kobayashi et al., 2010; Wetherill and Stewart, 1993) or small
pebbles that are precursors of planetesimals (Lambrechts and
Johansen, 2012; Morbidelli and Nesvorny, 2012). A quantitative
discussion assuming perfect metal–silicate equilibration can be
found in Kobayashi and Dauphas (submitted for publication).
The mechanisms listed above also help to terminate accretion
quickly because Mars is ejected to a low surface density region, or
remnant planetesimals are removed by strong gas drag. Perturba-
tions from giant planets also help to disperse remnant planete-
simals (e.g., Morishima et al., 2010). Unfortunately, these effects
cannot be properly evaluated in local simulations with the
periodic boundary condition, although it is evident that rapid
dispersal of remnant planetesimals significantly enhances tung-
sten anomaly (dashed lines in Figs. 6 and 9).

Alternative to the rapid accretion discussed above, the degree
of metal–silicate equilibration might have been very low
(kicr0:1, see Section 4.2.3) while accretion of Mars was as slow
as in our simulations (see also Mezger et al., in press). Such a low
degree of equilibration might be feasible if accretion still
proceeds while the global magma ocean starts to solidify.
However, geochemical evidence seems to suggest that Mars
gained most of its mass while it had a deep magma ocean. The
most recent study of partitioning of the siderophile elements
indicates a deep (41000 km) global magma ocean on Mars
(Righter and Chabot, 2011), contrary to a shallow magma ocean
suggested by previous studies (Righter and Drake, 1996; Kong
et al., 1999). A deep magma ocean of Mars is also indicated from
a differentiation model (Elkins-Tanton et al., 2005) that can
produce magma source regions consistent with element data for
SNC meteorites and the Martian crust. For Mars-size bodies, both
impact heating and radiogenic heating due to the decay of 26Al
are likely to contribute to formation of magma oceans (Rubie
et al., 2007; Šrámek et al., 2012). Numerical models suggest that
the presence of a magma ocean on Mars is very likely (Monteux
et al., 2009; Ricard et al., 2009; Šrámek et al., 2012) but its depth
and duration depend on various uncertain parameters. An
important parameter is impactor sizes which can be directly
obtained from N-body simulations. Thermal evolution of the
embryos in our N-body simulations is investigated in a compa-
nion paper (Golabek et al., in preparation).

A late stage giant impact is favorable for the origin of the
geological dichotomy of Mars (Golabek et al., 2011; Marinova
et al., 2008; Nimmo et al., 2008; Wilhelms and Squyres, 1984).
The impact is unlikely to have significantly reset the chronometer
probably because the impactor size was not large enough to stir
the entire Martian mantle or emulsification of the impactor’s core
was inefficient.
6. Summary

We have performed high-resolution N-body simulations for
oligarchic growth of Mars, using the body supply boundary
condition which keeps the total solid mass in the simulation
annulus constant. One simulation in the gas-free environment
and another simulation with nebular gas were carried out.
The surface densities of solid and gas are larger than those for
the minimum mass solar nebula model by only 30%. The time
evolution of the embryo mass in nebular gas coincides well with
that of the analytic model of Chambers (2006) until the middle of
accretion. However, the N-body simulations show much slower
accretion than the analytic model in the late stage. The mass
delivered by embryo–embryo collisions relative to the embryo
mass is about half at maximum in the middle of accretion. This
fraction decreases to 0.1–0.2 when planetesimals are completely
swept up because only small planetesimals collide with the
embryos during the late stage of accretion.

We have calculated the Hf–W isotopic evolution of the
embryos, using accretion histories from the N-body simulations.
It is likely that only a part of the target’s mantle is involved in the
equilibration if the impactor size is small while only a small
fraction of the impactor’s core is involved for a large impactor.
These effects are modeled and examined using the output of the
N-body simulations. It was found that as long as the target has a
deep liquid magma ocean during its accretion, the effects of
imperfect equilibration are small. The effect of partial involve-
ment of the target’s mantle is small as long as the volume of the
target’s mantle portion involved in equilibration relative to the
impactor volume is larger than f Hf=W. This is likely to be the case
for Mars as its f Hf=W value is low. The effect of partial involvement
of the impactor’s core is also small because a large fraction of the
embryo mass is delivered by small impactors, which are likely to
fully equilibrate in the deep magma ocean of the embryo (Samuel,
2012).

We found that with a prolonged accretion suggested from our
simulations (� 100 Myr), the high value of the Martian tungsten
anomaly can be achieved only if less than 10% of each impactor’s
core re-equilibrates with the Martian mantle. This indicates that
growth of Mars proceeded rapidly due to solid and gas surface
densities significantly larger than those for the minimum mass
solar nebula or due to accretion of small fragments or pebbles.
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Appendix A. Changes of tungsten isotope concentrations
during a collision

The mass concentrations of the radiogenic and stable isotopes
of tungsten are defined as 182W and 183W. Let us assume that a
change in 182W (or 183W) due to a collision is given as

182Wtm,1 ¼ f t
182Wtm,0þ f i

182Wimþ f c
182WCHUR , ð28Þ

where f t, f i, and f c are the coefficients derived below, the
subscripts tm, im, and CHUR represent the target’s mantle,
the impactor’s mantle, and the CHondritic Uniform Reservoir,
and the subscript numbers 0 and 1 for the target’s mantle mean
before and after the collision, respectively. With assumptions
2 and 3 from Section 4.1, the concentration of the stable isotope
183W does not change due to a collision even for kico1 or ktmo1
(proved below). This leads to

183Wtm,1 ¼
183Wtm,0 ¼

183Wim ¼
f c

1�f t�f i

183WCHUR ð29Þ

and

DE1 ¼ f tDE0þ f iDEi, ð30Þ

where DE1 and DE0 are DE of the target’s mantle after and before
the collision and DEi is for the impactor’s mantle.

In the following, the factors f t, f i, and f c are derived. The total
mass involved in equilibration is

Meq ¼ ktmytMtþyiMiþkicð1�yiÞMi, ð31Þ

where Mt and Mi are the masses of the target and the impactor,
and yt and yi are the silicate fractions of the target and the
impactor. Since the bulk composition of the impactor is assumed
to be chondritic, we have

182WCHUR ¼ yi
182Wimþð1�yiÞ

182Wic, ð32Þ

where the subscript ic denotes the impactor’s core. Using Eq. (32),
the total mass of equilibrated 182W supplied by the impactor
relative to the impactor mass is given as

182Wi,eq ¼ yi
182Wimþkicð1�yiÞ

182Wic

¼ ð1�kicÞyi
182Wimþkic

182WCHUR: ð33Þ

The concentration 182Weq,0 averaged over the masses involved in
the equilibration is given by

182Weq,0 ¼
1

Meq
ðktmytMt

182Wtm,0þMi
182Wi,eqÞ: ð34Þ

The silicate fraction of the equilibrated masses is

yeq ¼
ktmytMtþyiMi

Meq
: ð35Þ

After the equilibration, the concentration 182Weq,1 of the equili-
brated silicate portion is (Nimmo and Agnor, 2006)

182Weq,1 ¼

182Weq,0

yeqþð1�yeqÞD
W
: ð36Þ

The fraction of 182Wtm,1 for the entire target’s mantle is given by
averaging the equilibrated and non-equilibrated portions as

182Wtm,1 ¼
ktmytMtþyiMi

ytMtþyiMi

182Weq,1þ
ð1�ktmÞytMt

ytMtþyiMi

182Wtm,0: ð37Þ
From Eqs. (34) to (37), we have

f t ¼
C1þð1�ktmÞC2

ðC1þC2ÞC3
ytMt, ð38Þ

f i ¼
ð1�kicÞC1

ðC1þC2ÞC3
yiMi, ð39Þ

f c ¼
kicC1

ðC1þC2ÞC3
Mi, ð40Þ

where

C1 ¼ ktmytMtþyiMi, ð41Þ

C2 ¼ kicDW
ð1�yiÞMi, ð42Þ

C3 ¼ ytMtþyiMi: ð43Þ

For y¼ yi ¼ yt, Eqs. (38) and (39) are reduced to Eqs. (24) and (25),
respectively, using Eq. (22).

Eq. (37) is also applicable to the stable isotope 183W. Consider
the case where both the impactor and the target body have not
experienced any collision but have experienced core formation
with full metal–silicate equilibration. For these bodies with
y¼ yi ¼ yt, we have

183Wtm,0 ¼
183Wim ¼

183WCHUR

yþð1�yÞDW
: ð44Þ

Inserting this equation into Eq. (37), we obtain
183Wtm,1¼

183Wtm,0 (Eq. (29)). This relationship holds for subse-
quent collisions. Therefore, the concentration of the stable isotope
is not changed by collisions, as long as DW and y are constant.
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A., 2011. The Earth’s tungsten budget during mantle melting and crust
formation. Geochim. Cosmochim. Acta 75, 2119–2136.

Lambrechts, M., Johansen, A., 2012. Rapid growth of gas-giant cores by pebble
accretion. Astron. Astrophys. 544, A32.

Lissauer, J.J., 1987. Timescales for planetary accretion and the structure of the
protoplanetary disk. Icarus 69, 249–265.

Marinova, M.M., Aharonson, O., Asphau, E., 2008. Mega-impact formation of the
Mars hemispheric dichotomy. Nature 453, 1216–1219.

Mezger, K., Debaille, V., Kleine, T., 2013. Core formation and mantle differentiation
on Mars. Space Sci. Rev.174, 27–48.

Monteux, J., Ricard, Y., Coltice, N., Dubuffet, F., Ulvrová, M., 2009. A model of
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