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S1 Numerical setup and governing equations

Mantle solid-state flow may be reasonably described by the motion of a Boussi-
nesq, highly viscous fluid in the limit of infinite Prandtl number (i.e., inertia is
negligible). In this case, the dimensionless governing equations in a 2D (x, z)
Cartesian domain are the conservation of mass:

∇ · u = 0, (1)

the conservation of momentum:

−∇P +∇ · η(∂jui + ∂iuj)−Ra T �ez = 0, (2)

and the conservation of energy:

∂tT + u · ∇T = ∇2T. (3)

In these equations, u is the velocity vector, P is the dynamic pressure, T is
the temperature, t is the time, �ez is a unit vector pointing upward, Ra is the
reference Rayleigh number. The viscosity η = η0 exp[− ln(103) T ]. To account
in a simplified way for the effect of olivine-to-perovskite phase transition oc-
curring between the upper and the lower mantle, we impose η0 = 1 in the top
half of the domain, and η0 = 10 in the remaining bottom half of the domain.
The value for the transition depth was chosen in order to maintain the same
volumetric proportions between the upper and lower mantles as in the spherical
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Earth. Additional runs with shallower transition depths did not reveal signifi-
cant differences.

The reference Rayleigh number that provides a measure of the convective
vigor is defined using dimensional values of reference physical parameters for
the Earth’s mantle:

Ra =
ρrefgrefαref∆TD

3

ηrefκref
, (4)

where ρref = 4500 kg m−3 is the reference mantle density, gref = 9.8 m2/s
is the acceleration of gravity, αref = 2.5 × 10−5 K−1 is the thermal expansion
coefficient, ∆T = 2500 K is the superadiabatic temperature difference between
the surface and the core-mantle boundary, D = 2900 km is the mantle thickness.
The value for the reference thermal diffusivity κref is set to 2 × 10−6m2/s
according to recent estimates1. The most poorly constrained parameter is the
reference upper-mantle viscosity ηref , which can range between ∼ 1020 Pa s and
∼ 1021 Pa s. We use Ra = 3 105, which corresponds to ηref = 1.8 1021 Pa s. In
order to account for the dependence of viscosity to temperature on the convective
vigor, it is more appropriate to refer to the effective Rayleigh number:

Raeff = Ra/ηeff , (5)

whose definition is based on the dimensionless effective viscosity ηeff = exp(− ln(103) Ti),
and Ti is the average dimensionless temperature. In our numerical experiments
Raeff varied between 5 106 and 2 108.

Equations (1) and (2) are formulated in terms of a stream function. The
whole system is discretized with a finite volume method, using the StreamV
code2,3 that was benchmarked against various analytic and numerical solutions.

At the surface, horizontal velocities are prescribed in order to produce a
ridge-like flow, with surface plate velocities equal to the dimensionless Péclet
number, Pe, representing the dimensionless half-spreading rate. The latter can
be converted into dimensional units by multiplication with the diffusive time
scale: D2/κref . The ridge axis is initially located at the center xridge = xcenter,
but its position varies with time due to an imposed sinusoidal and randomly
perturbed motion of small amplitude in order to avoid complete symmetry at
large values of Pe:

xridge = xcenter + (0.08 + p r) sin(t f) (6)

where, p = 0.02 is the amplitude of the random noise, r is a random Gaussian
number ranging between 0 and 1, and f = 5Pe is the frequency.

All other velocity boundaries are free-slip. Temperature sidewalls are insu-
lating (zero flux), and top and bottom boundaries are isothermal at T = 0 and
T = 1, respectively. The domain was discretized using 100 cells of equal sizes
in the vertical direction and between 200 to 800 square cells in the horizontal
direction depending on the domain aspect ratio.
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S2 Measuring mixing efficiency

We measure the convective mixing efficiency using a Lagrangian method that de-
termines the value of the maximum Finite Time Lyapunov Exponents (FTLE),
λ+, as described in4. The latter measure the Lagrangian strain rate along the
direction of maximum stretching imposed by mantle motion. Large values of
FTLE (λ+ >> 1) indicate an efficient (also called chaotic) mixing, where the
Lagrangian deformation is an exponential function of time. In contrast, λ+ ≤ 1
are indicative of a weak (or regular) mixing, where the Lagrangian deforma-
tion exhibits only a linear dependence with time5. To avoid the bias due to
the arbitrary choice of the initial conditions, the FTLEs were calculated after
each experiment had reached statistical steady state. The latter is considered to
be reached whenever the average mantle temperature has converged towards a
constant value (statistically speaking), which also corresponds to similar values
of surface and bottom heat fluxes.

S3 Influence of the viscous rheology

We have tested the effect of a possible bias due to the temperature change with
Pe between models by running cases for which viscosity does not depend on
temperature, accounting only for the viscosity increase between the upper and
lower mantle i.e., η = η0, and H = 1. As specified in section S1 η0 increases from
1 to 10 the upper to the lower mantle. For these models, we set Ra = 3.9 107,
which is close to the effective Rayleigh number values for the cases shown in
Fig. 1a-f. The resulting dependence of FTLE values with Pe displayed in Fig. S1
(solid line) remains very similar to cases with temperature-dependent viscosity
shown in Fig. 1.

Additionally, we tested the effect of stress-dependent rheology on our results
using the following viscosity law:

η = η
0

[
1 +

(
σ

II

σ
T

)n−1
]−1

, (7)

where σII is the second invariant of the deviatoric stress tensor, n = 3.5 and
σ

T
= 1.
The viscous rheology may affect the value of the critical Pe at which the

transition from mixed small-scale convection and large scale flow to purely plate-
driven flow. However, the resulting curve for the RMS FTLEs displayed in
Fig. S1 (dashed line) shows the same V-shaped form observed for other rheolo-
gies (Fig. 2c).

Overall, the additional experiments shown in Fig. S1 demonstrate that our
results remain robust for various mantle rheologies.
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S4 Semi-analytic mixing model

The efficiency of convective mixing is directly related to the Lagrangian defor-
mation. An incompressible fluid parcel will, under the action of the imposed
flow, deform by stretching along a principal direction and shrink along one
perpendicular direction. Considering the principal direction of stretching the
corresponding Lagrangian strain rate is λ. Assuming that the flow is the quasi-
linear superposition of large-scale plate flow and small-scale convection, one can
write:

λ ∼= λ
SSC

φ+ λ
LS

(1− φ), (8)

where φ expresses the relative importance of small-scale convection on deforma-
tion, and ranges between 0 (pure plate-flow) to 1 (pure small-scale convection
flow). The subscripts ‘LS’ and ‘SSC’ refer to the contributions of large-scale
flow and small-scale convection, respectively.

The end-member Lagrangian strain rates λSSC and λLS are estimated to be
directly proportional to the corresponding characteristic velocity of each flow

field. This leads to λLS = a Pe and λSSC = b Ra
2/3
eff (e.g.,6), where Raeff is the

effective Rayleigh number defined in (5).
The dimensionless constants a = 0.15 and b = 3.5 × 10−2 were determined

by fitting the results of the numerical experiments carried out at various Pe
and Raeff values. Note that upon determining a, FTLE values corresponding
to the weakly-mixed isolated areas observed in the large-scale flow regime (e.g.,
Fig. 1i-j) were excluded, because these regions are not sampled by ridges.

The function φ depends on the relative importance of the Péclet number Pe
compared to the critical Péclet number Pec above which small-scale convection
is inhibited. The latter is estimated from our numerical experiments (see Fig. 3)
and can be expressed as:

Pec ∼= 500 exp[ln(2) H]. (9)

The best fit to our experiments for φ in the range H = 0.5−2 is the following
exponential decrease with increasing Pe:

φ(Pe,H) ∼= exp (−3.8 Pe/Pec) . (10)

The corresponding curve along with the associated fit to the numerical ex-
periments are displayed in Fig. S2a and Fig. S2b, respectively.

Making the reasonable assumption that mixing is chaotic (as systematically
observed in the vicinity of the ridge axis, see Fig. 1g-l), the evolution of passive
heterogeneities is governed by the presence of hyperbolic points where the de-
formation occurs essentially via pure shear6. In the 2D (x, z) plane, assuming
that compression and extension occur along the z-direction and the x-direction
respectively, the velocity components (u, v) in the vicinity of an hyperbolic point
located at x = z = 0 are: (u = λ x, v = −λ z). Consider a circular passive het-
erogeneity of radius δ, centered on the hyperbolic point. Along the extensional
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direction the rate of change of the heterogeneity at x = δ is then:

dδ

dt
= u(x = δ) = δλ. (11)

Similarly, along the compressional direction, the rate of change of the het-
erogeneity at z = δ is −δλ. Assuming a constant Lagrangian strain rate λ,
Equation (11) can be integrated with respect to time from t = 0 to t:

ln

(
δ(t = 0)

δ(t)

)
= ln

(
δ0
δ

)
= λ t. (12)

Equation (12), can be used to express the time t = τ necessary to stretch
or to reduce a heterogeneity of initial size δ0 to a given final size δf , i.e., the
‘mixing time’:

τ =
1

λ
ln

(
δ0
δf

)
. (13)

Equation (13) can be combined with Equations (8),(9) and (10) to estimate
a mixing time along various mid-ocean ridges. For models with pure large-
scale flow we use φ(Pe,H) = 0, while models that account for both large-scale
flow and small-scale convection we use Equation (10) to estimate the value of
φ(Pe,H). For the calculations shown in Fig. 3c, we use δ0/δf = 8, i.e., we calcu-
late the time necessary to stretch or to reduce the size of mantle heterogeneities
by about one order of magnitude.

The influence of the predicted mixing efficiencies on the isotopic variability
at ridges can be tested by relating the standard deviation to the mixing time.
Under the assumption of chaotic mixing, the normalized variance that expresses
the spatial dispersion of passive mantle heterogeneities decreases exponentially
with time from one towards a statistical limit close to zero7,8 is:

var = exp(−t/τ). (14)

We assume that at some ‘initial’ stage from present, the mantle is uniformly
heterogeneous such that the eight regions considered share the same degree of
heterogeneity (i.e., initially, var(t0 = 0) = 1 everywhere). During the subse-
quent period of time, te, differences in mixing efficiencies may locally impact
the chemical variability. The latter can also be expressed by the standard devi-
ation:

σ =
√

var = exp

(
−1

2

te
τ

)
. (15)

Fig. S3a-c illustrates the influence of the elapsed time te on the chemical
variability, for different values of Pe and H. The rate at which the standard de-
viation decreases with the elapsed time increases with decreasing Pe (Fig. S3a).
However, the transition from the small-scale convection to the plate-driven flow
regime corresponds to the largest values of the standard deviation (Fig. S3b-c).
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This inverse V-shaped curve results directly from the observed dependence of
the mixing efficiency with Pe and H (e.g., Equation (8), Fig. S2 and Fig. 2).
While the values of these parameters are constrained for the calculations dis-
played in Fig. 3c, a meaningful value for te must be specified. A reasonable
choice is te = 200 Myrs which corresponds roughly to half the duration of a
Wilson cycle. During this period of time one can reasonably assume that the
tectonic plate configuration considered in Fig. 3a and Table S1 (i.e., the values
of Pe and H for each of the eight mid-ocean ridge regions) has remained ap-
proximatively steady. However, this elapsed time needs to be compared with
an estimate for the age of mantle material extracted at mid-ocean ridges.

For this purpose, we evaluate the sampling time, τsampling: the age of recycled
lithospheric material being processed again at the ridge. In practice, using
Lagrangian tracers we track for tens of overturn times the location and the
corresponding age of lithospheric material that leaves a processing zone bounded
by a dimensionless distance to the ridge axis equal to 0.04 (∼ 100 km). When
material re-enters the ridge processing zone, its age is recorded before being
reset to zero.

The resulting sampling times distribution is Gaussian, with an average value
τ̄sampling and a standard deviation σsampling:

τsampling
∼=

1

σsampling

√
2π

exp

[
− (t− τ̄sampling)

2

2σ2
sampling

]
. (16)

In the large-scale, plate-driven regime the sampling time is bounded by the
imposed geometry and half-spreading rate: τ̄sampling,LS = 2(1 +H)/Pe. In the
small-scale convection regime the average sampling time was found to be in-

versely proportional to the convective velocity: τ̄sampling,SSC = c Ra
−2/3
eff , where

c = 1.78×102 was determined by fit to the numerical experiments. The variabil-
ity of sampling times expressed by σsampling decreases continuously as small-scale
convection progressively vanishes (i.e., with increasing Pe and decreasing H).
In the plate-driven regime σsampling corresponds to the imposed random per-
turbation of the ridge position (see Equation (6)), whose amplitude p = 0.02 is
small). Therefore, we assume the following relationship for σsampling:

σsampling
∼=
[
φ (τ̄sampling,SSC)

−1
+ (1− φ) (p τ̄sampling,LS)

−1
]−1

, (17)

where φ is the function defined earlier that expresses the relative importance
of small-scale convection (Equation(10)). Harmonic averaging was preferred to
a weighted arithmetic mean in order to avoid singularities in the vicinity of
Pe = 0. Similarly, the average dimensionless sampling time between the two
end-members is described by:

τ̄sampling
∼=
[
φ (τ̄sampling,SSC)

−1
+ (1− φ) (τ̄sampling,LS)

−1
]−1

. (18)

Using Equations (13) and (14), the average normalized variance at a given
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elapsed time te is:

var =

∫ te

t=0

τsampling exp

[
te λ ln

(
δf
δ0

)]
dt∫ te

t=0

τsampling dt

. (19)

Using Equations (15) and (19) yields the corresponding average standard
deviation:

σ̄ =
√

var (20)

We use Eq. (20) to calculate the predicted isotopic variability in the eight
mid-ocean ridge regions. Fig. 3d shows the corresponding predicted standard
deviations.

S5 Standard deviation of helium ratios along ridges

We selected eight regions along the main mid-oceanic ridges (Table 1). These
regions were chosen in order to avoid complexities such as contamination by
plume material, which is why the Icelandic ridge or triple junctions were not
considered. Along the selected ridge portions we gathered R/Ratm data mea-
sured in basalt glasses and peridotite using the PetDB tool9. To avoid statistical
bias, multiple measurements on the same samples were not considered and only
the most recent value was retained. We used the data presented in10 to deter-
mine for each region the average half-spreading rate, and the oldest oceanic age
within each region, averaged along the edge of oceanic plates moving away from
the ridge axis. The ratio of these two parameters yields the effective horizontal
distance from the ridge axis, H, over which small-scale convection can develop
under oceanic plates. (see Table S1) used in Fig. 3c.
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Figure S1: Numerical experiments results: effect of rheology on mixing
efficiency| RMS values of Finite-Time Lyapunov Exponents for a case with
constant viscosity (plain curve) and stress-dependent viscosity.

Figure S2: Results of the semi-analytical mixing model for a half-domain
aspect ratio H = 2 | (a) The function φ vs. Pe. φ expresses the relative
importance of small-scale convection on deformation, and ranges between 0
(pure plate-flow) to 1 (pure small-scale convection flow). (b) Predicted Finite-
Time Lyapunov Exponent value as a function of the Péclet number, Pe (curve),
and average values measured from the numerical experiments (circles).

Figure S3: Effect of Pe, H and the elapsed time on the chemical vari-
ability | Standard deviation σ of chemical heterogeneities as a function of (a)
the elapsed time te, (b-c) the dimensionless spreading rate Pe for H = 1 and
various te (b), or for te = 200 Myrs and for various values of H (c).

Table S1: Characteristics of the Mid-Ocean Ridge regions considered
and displayed in Fig. 3a. H represents the dimensionless horizontal distance
where small-scale convection can develop under the oceanic lithosphere. The
Average value for the normalized 3He/4He ratios along each region and the
corresponding standard deviation, σ, and number of samples, n, are indicated.
See section S5 for further details.

Region acronym Ridge name Half-Spreading rate (cm/yr) H R/Ratm σ n
SWIR Southwest Indian 0.8 0.5 7.0 0.4 85
MAR Mid Atlantic 1.5 1.0 8.2 0.9 102
SAR South Atlantic 2.0 0.8 8.1 1.7 75
CIR Central Indian 2.5 1.3 7.9 0.9 14
PAR Pacific-Antarctic 3.0 0.9 7.1 0.7 25
CR Chile ridge 3.0 1.0 7.2 1.4 23
SEIR Southeast Indian 4.0 1.4 8.1 1.4 84
EPR East Pacific Rise 7.0 2.8 8.6 0.9 131
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