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Due to mechanisms such as impact heating, early atmospheric thermal blanketing, and radioactive heating,
the presence of at least one global magma ocean stage in the early histories of terrestrial planets seems un-
avoidable. In such a context, a key question to constrain the early thermo–chemical evolution of the Earth is
how much iron diapirs provided by differentiated impactors emulsified during their sinking towards the bot-
tom of an early magma ocean.
In the past years, several workers have focused on this question, using however various approaches and mak-
ing different assumptions. While most studies favor rapid breakup and equilibration of iron bodies during
their sinking through the magma ocean, recent work suggests that iron bodies of size comparable or greater
than a few tens of kilometers may preserve most of their initial volume as they reach the bottom of a magma
ocean, therefore leading to metal–silicate disequilibrium.
To clarify the discrepancies and the differences among studies I have conducted a series of numerical simu-
lations and theoretical calculations to derive the conditions and the timing for the breakup of metal diapirs of
any size, sinking through a silicate magma ocean, with a large range of plausible viscosity values. The
obtained breakup criterion is used to derive stable diapir sizes and their ability to equilibrate with the sur-
rounding silicates. I show that for plausible magma ocean viscosities, diapirs with initial radii smaller than
the thickness of a magma ocean rapidly break up into stable diapir sizes smaller than 0.2 m, at which
metal–silicate equilibration is rapidly achieved.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The earliest stages of planetary evolution are punctuated by a great
variety of events that have reshaped the Earth and other terrestrial
planets and influenced their long term evolution. During the accretional
stages of planetary evolution, planetesimals driven by gravitational in-
teractions aggregate rapidly into growing planetary embryos (Kokubo
and Ida, 1996; Kortenkamp et al., 2000; Weidenschilling, 1976).
Throughout the duration of the accretional growth period, physical pro-
cesses, such as radioactive decay, impact heating, and possibly thermal
blanketing, significantly contribute to increasing the protoplanet's tem-
perature. Once the radius of the growing terrestrial planet reaches a
critical size of about 1000 km, the kinetic energy provided by incoming
planetesimals becomes large enough to trigger local melting (Coradini
et al., 1983; Davies, 1985; Safronov, 1978; Sasaki and Nakazawa,
1986; Senshu et al., 2002; Tonks and Melosh, 1992). As inferred from
N-body simulations, during the late stages of planetary accretion (oli-
garchic growth), impacts become more energetic (Kokubo and Ida,
1996), leading to more frequent melting events of greater extents.
Moreover, the latest stages of planetary accretion are also characterized
by the occurrence of giant impacts (Benz et al., 1986; Canup, 2004), fol-
lowed by isostatic readjustment, which are expected to trigger global
scale melting as well as possible vaporization on terrestrial planets
l rights reserved.
(Tonks and Melosh, 1993). The presence of a steamed impact-heated
atmosphere would also favor the occurrence of large scale melting
events (Abe, 1997). Therefore, with such an array of mechanisms favor-
ing high temperatures, the occurrence of at least one global scale melt-
ing event during the early stages of terrestrial planet formation seems
unavoidable (Tonks and Melosh, 1993).

In addition, radioactive heating produced by the disintegration of
26Al and 60Fe could also yield super-solidus temperatures, even in bod-
ies of modest sizes such as planetesimals (Merk et al., 2002;Walter and
Trϕnnes, 2004). Therefore, incoming impactors may have already been
differentiated, with a small iron core surrounded by silicate material.

In such a context a key question is how much iron diapirs provid-
ed by differentiated impactors have emulsified during their sinking
towards the bottom of an early magma ocean. Addressing this prob-
lem allows one to put strong constraints on metal–silicate equilibra-
tion processes (Dahl and Stevenson, 2010; Karato and Murthy,
1997; Rubie et al., 2003; Rubie et al., 2007; Wood et al., 2006). This
is of prime importance for the interpretation of cosmochemical data
such as Hf/W and U/Pb chronometers, allowing to put bounds on
the timing of the accretion and differentiation of the Earth and
other terrestrial bodies (Dahl and Stevenson, 2010; Kleine and
Rudge, 2011; Kleine et al., 2004a; Kleine et al., 2004b; Rudge et al.,
2010). In addition, the size of iron bodies sinking through the solid
or molten silicate proto-mantle determines the heat distribution
within a young terrestrial planet (Ichikawa et al., 2010; King and
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Fig. 1. Schematic representation of the problem. See text for further details.
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Olson, 2011; Lin et al., 2011; Monteux et al., 2009; Monteux et al.,
2011; Ricard et al., 2009; Samuel et al., 2010; Senshu et al., 2002),
which influences the subsequent long-term planetary thermal
evolution.

Until recently, it was thought that even large iron diapirs sinking
through a silicate magma ocean would rapidly break up into centime-
ter or millimeter-sized droplets (Ichikawa et al., 2010; Rubie et al.,
2003; Stevenson, 1990). Such small droplets would allow metal-
silicate equilibration to occur within sinking distances of just a few
tens of meters (Karato and Murthy, 1997; Rubie et al., 2003). Howev-
er, this scenario was recently questioned by (Dahl and Stevenson,
2010), who derived theoretical models to account for the turbulent
erosion of iron diapirs via Kevin–Helmholtz and Rayleigh–Taylor
mechanisms. The main result of their study is that large diapirs (i.e.,
of radius >10 km) can survive complete erosion and preserve most
of their initial volume as they reach the bottom of a ∼1000 km thick
magma ocean, therefore leading to metal–silicate disequilibrium.

A comparison between these different studies is not necessarily
straightforward because the underlying assumptions, the governing pa-
rameters, their ranges of variation, and to some extent the geometry
and modeling approaches may be very different. For instance in Rubie
et al. (2003) the authors derive a conceptual/parameterized model
where the criterion used to determine the diapir stable sizes was
based only on the value of the Webber number, implying that viscous
effects are negligible. In Ichikawa et al. (2010) surface tension and vis-
cous effects are taken into account, however, due to computational lim-
itations of numerical experiments, the explored range of Reynolds
numbers was restricted to low values and the effect of surface tension
forces on diapir breakup and stable sizeswas not investigated systemat-
ically, since the Webber number was fixed to a constant value close to
unity. In addition, most of their exploration was performed in a 2D Car-
tesian geometry, also due to limitations imposed by computational run
time. On the other hand, using theoretical turbulent modeling Dahl and
Stevenson (2010) have focused only on diapirs where Reynolds and
Webber numbers are both very large. Although they account formoder-
ate diapir deformation, they made the assumption that iron diapirs do
not breakup during their descent through the silicate magma ocean.
In a recent study, Deguen et al. (2011) have investigated experimentally
the mixing of dense bodies during their sinking. They find that large
bodies are not fully mixed by turbulent instabilities, which confirms
qualitatively the theoretical results of Dahl and Stevenson (2010). How-
ever, in their work sinking iron bodies are modeled as a cloud of dense
particles/flakes instead of a continuous body. While collective behavior
within particle clouds can occur at highReynolds numbers, it is not clear
whether the dynamics and the fragmentation processes are identical for
particle clouds and for initially continuous bodies.

To clarify these discrepancies, I have conducted a series of numer-
ical simulations and theoretical calculations to derive the conditions
and the timing for the breakup of axisymmetric metal diapirs of any
size, sinking through a silicate magma ocean with a large range of
plausible viscosity values. The corresponding range of governing pa-
rameters covers more than 16 orders of magnitude. The obtained
breakup criterion is used to derive stable diapir sizes and their ability
to equilibrate chemically with the surrounding silicates.

The paper is organized as follows: the next section, Section 2 in-
troduces the fluid dynamic problem, the corresponding governing pa-
rameters and their plausible ranges. Section 3 presents a simple
analytical model to derive the general kinematics of iron diapirs sink-
ing through a magma ocean in the absence of diapir breakup. This is
followed by Section 4 devoted to the dynamics of diapir fragmenta-
tion, where general criteria for diapir breakup and the corresponding
timing for breakup is derived using numerical experiments, scaling
analysis and analytical theory. In the last section, Section 5, preceding
the conclusion, the fluid dynamics results are applied to evaluate the
ability of iron diapirs to equilibrate with the surrounding silicate
magma ocean during their descent.
2. Governing parameters, parameter ranges and dynamic regimes

A main focus of this study is to constrain the size of iron bodies of
density ρm sinking through a liquid silicate magma ocean of density ρs
and viscosity η at a given velocity v, as sketched in Fig. 1. The iron diapirs
are assumed to be initially spherical with a radius R

0
, and are subject to

surface tension forces acting at the interface to preserve a constant cur-
vature κ. In principle, one should expect the diapir viscosity to be smal-
ler than the surrounding silicate, however it is assumed here that there
are no viscosity differences between the diapir and the silicates. This
simplification should not affect the results and conclusions significantly.

With such a configuration the dynamics is entirely governed by
two dimensionless numbers. The Reynolds number, which expresses
the importance of inertia over viscous effects:

Re ¼ ρsvR0

η
; ð1Þ

and the Webber number, which measures the importance of inertia
over surface tension forces acting on the diapir surface:

We ¼ ρsv
2R

0

σ
; ð2Þ

where σ is the coefficient of surface tension.
The value of Re defines three dynamical regimes for the sinking di-

apir (e.g., (Crowe et al., 1997; Lamb, 1932) and references therein):

1. Reb1 corresponds to the Stokes regime of creeping flow where in-
ertia is negligible.

2. Re=1−500 corresponds to the intermediate regime where the
influences of both inertial and viscous effects are important.

3. For larger values of Re(>500) viscous forces are negligible com-
pared to inertia. This is called the Newton regime. Within this re-
gime the flow around the diapir transits from laminar to
turbulent at about Re∼105 (Fig. 2).

In the Stokes regime the diapir instantaneously reaches its termi-
nal velocity vs (regardless of the value of its initial velocity v0), which
is for a sphere:

vs ¼ β
ρm−ρsð ÞgR2

0

η
; ð3Þ



Table 2
Symbols definition and values of the physical parameters used throughout this study.

Symbol Meaning Range or value

R
0

Diapir initial radius 10−4−105 m
η Magma ocean viscosity 10−4−102 Pa
ρm Iron density 7800 kg/m3

ρs Silicate density 3750 kg/m3

σ Coefficient of surface tension 1 N/m
g Acceleration of gravity 10 m/s2

κc Chemical diffusivity 10
− 8

m2/s
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where g is the acceleration of gravity, β=2/9 for a rigid sphere
(Lamb, 1932) and β=1/3 for a frictionless sphere (Hadamard,
1911; Rybczynski, 1911). However, in the intermediate and Newton
regimes the diapir accelerates or decelerates to reach its terminal ve-
locity v∞ given by:

v∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
3

ρm−ρsð ÞgR0

ρsCD

s
; ð4Þ

where C
D
is the coefficient of drag which will be given explicitly later.

Because of this inertia, Re and We defined in Eqs. (1) and (2) become
effective (or instantaneous) Reynolds and Webber numbers. For this
reason it is convenient to use instead a more general definition of
Re and We based on the diapir terminal velocity:

Re∞ ¼ Re
v

∞

v
¼ ρsv∞

R
0

η
; ð5Þ

We∞ ¼ We
v

∞

v

� �2

¼ ρsv
2
∞
R

0

σ
; ð6Þ

which for a given set of physical parameters (e.g., densities, viscosity
…) have a constant value. This pair of dimensionless numbers
can be revealed by carrying out dimensional analysis with the charac-
teristic scales listed in Table 1 systematically used throughout this
paper.

The values of the physical parameters appearing in Eqs. (5) and
(6) are listed in Table 2. While densities, gravity and surface tension
can reasonably be considered to be constant, the viscosity η and the
diapir radius R

0
may vary by several orders of magnitude. As shown

in Fig. 3a–b these large ranges in η and R
0
result in variations in Re

∞

and We
∞
of up to 18 orders of magnitude. Consequently, all three dy-

namical flow regimes mentioned earlier must be considered. One can
remark, however, that all large diapirs (R

0
>1m) fall in the Newton

regime where viscous effects are negligible (Fig. 3a).

3. Time-dependent velocity model

In this section I present a simple analytic model to determine the
sinking velocity v, the sinking distance z, and the sinking time t of a
given iron diapir, starting from the most general case applying to
any dynamic regime. The resulting solutions can be simplified for
the Newton and the Stokes regimes. The diapir motion relative to a
fixed frame of reference can be determined using Newton's law:

ρmV
dv
dt

¼ F
B
−F

D
; ð7Þ

where V=4πR
0

3/3 is the spherical diapir volume, F
B
=V(ρm−ρs)g is

the buoyancy force and F
D
=ρsπR0

2C
D
v2/2 is the drag force opposite

to the diapir motion. The drag coefficient C
D
is a function of the effec-

tive diapir Reynolds number Re. I approximate such a dependence of
the drag coefficient as:

C
D
¼ c

S

v′
þ c

N
; ð8Þ
Table 1
Characteristic scales used throughout this
study.

Density ρs
Distance R

0

Velocity v∞
Time R

0
/v∞
where v′=v/v∞ is the dimensionless sinking velocity, c
S
=12/

Re
∞
= lim

Re→ 0
C

D
is the Stokes drag (Lamb, 1932) and c

N
= lim

Re→ ∞CD
is

the Newton drag, assumed to be constant and equal to about 0.3
(e.g., (Crowe et al., 1997), Fig. 2). While there are more precise ap-
proximations to C

D
((Crowe et al., 1997) and references therein), the

above expression remains physically consistent for all values of Reyn-
olds numbers. In addition, it simplifies the analytical integration of
Eq. (7). The largest error in Eq. (8) with respect to the data is compa-
rable to or smaller than uncertainties in physical parameters or un-
certainties due to the fact that the sinking bodies probably do not
keep a spherical shape during their descent, which can easily affect
the value of the drag coefficient by 100% or more (Chang, 1961).

Non-dimensionalization of Eq. 7 with the characteristic scales
listed in Table 1 yields:

dv′

dt′
¼ 3

8
ρs

ρm
C

∞

D
−v′2C

D

� �
; ð9Þ

where C
D

∞
is the drag coefficient at the dimensionless terminal velocity

v′=1 that according to Eq. (8) is C
D

∞
=c

S
+c

N
. Integration of Eq. (9)

yields:

v′ ¼ 1
2c

N

−c
S
þ c

S
þ 2c

N

� �
tanh

ρs

ρm

3 c
S
þ 2c

N

� �
16

t′ þ atanh
c
S
þ 2c

N
v′0

c
S
þ 2c

N

 !2
4

3
5

8<
:

9=
;:

ð10Þ
Fig. 2. Drag coefficient as a function of the Reynolds number. The red curve, corre-
sponding to Eq. (8) is an approximate fit to the data displayed in green (Crowe et al.,
1997) and references therein. Dark gray, light gray and white background colors delim-
it the three different dynamic regimes (Stokes, intermediate and Newton, respectively).
The vertical dashed line shows the transition between laminar and turbulent flows.

image of Fig.�2


Fig. 3. Plausible range of governing parameters as a function of diapir radius R0 and
magma ocean viscosity η. Top: Reynolds number with the boundaries of the three dy-
namic regimes indicated by the thick black lines. Bottom: Webber number with the
thick black curve indicating We

∞
=1. The red dotted curves indicate the stable radius

according to the criteria defined in Eq. (33). See text for further details.
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Inverting Eq. (10) yields the sinking time as a function of the di-
mensionless sinking velocity:

t′ ¼ 16

3 c
S
þ 2c

N

� �ρm

ρs
atanh

2v′c
N
þ c

S

c
S
þ 2c

N

 !
−atanh

2v′0cN
þ c

S

c
S
þ 2c

N

 !" #
: ð11Þ

The dimensionless sinking distance z′ is obtained by integrating
Eq. (10) with respect to time:

z′ ¼ z′0

þ 8
3c

N

ρm

ρs

 !
ln½cosh ρs

ρm

3 c
S
þ 2c

N

� �
16

t′
0
@

1
A

þ c
S
þ 2c

N
v′0

c
S
þ 2c

N

 !
sinh

ρs

ρm

3 c
S
þ 2c

N

� �
16

t′
0
@

1
A�−1

2
c
S

c
N

t′:

ð12Þ

Eqs. (10), (11) and (13) are valid for any Reynolds number, but
can be considerably simplified in the limit of large or small Reynolds
numbers. In the Newton regime (Re>>1), c

S
bb1 and the expressions

for v′, t′ and z′ simplify to:

v′ ¼ tanh
3
8
ρs

ρm
c
N
t′ þ atanh v′0

� �	 

; ð13Þ
t′ ¼ 8
3c

N

ρm

ρs
atanh v′

� �
−atanh v′0

� �� �
; ð14Þ

z′ ¼ z′0 þ
8
3c

N

ρm

ρs
ln cosh

3c
N

8
ρs

ρm
t′

� �
þ v′0sinh

3c
N

8
ρs

ρm
t′

� �	 

: ð15Þ

For the Stokes (low Reynolds) regime, c
S
>>1, and as expected,

Eq. (10) simplifies to the (dimensionless) expression of Stokes veloc-
ity: v′=1.

3.1. Distance to reach essentially terminal velocity

As illustrated in Fig. 4a and b, in the intermediate and the Newton re-
gime, thediapir reaches its terminal velocitywith a certain timedelay cor-
responding to some sinking distance z−z0. One can evaluate a pseudo-
terminal sinking distance defined as the distance necessary for a diapir
to reach most (i.e., 99%) of its terminal velocity, or in dimensionless
form: z′∞=z′(v′=0.99).

Fig. 4c displays z′∞ for a range of Re
∞
numbers. Not surprisingly one

can see that z′∞ increases with increasing Re
∞
, but converges to an as-

ymptotic maximum value (corresponding to the limit C
D
=c

N
). As-

suming that the diapir is initially at rest (v′0=0), z′0=0, together
with Eqs. (14), (15) and the definition of z′∞, one can calculate the
maximum asymptotic value as:

z′
max

∞ ¼ 8
3c

N

ρm

ρs
ln cosh atanh 0:99ð Þ½ �f g≅36:2: ð16Þ

In other words all diapirs reachmost of their terminal velocity with-
in a distance less than about 37 times their own radius. For a typical
value of a terrestrial magma ocean thickness, say 103 km, only diapirs
larger than ∼10−100 km still accelerate to reach their terminal veloc-
ity at the bottom of the magma ocean. On the other hand, diapirs with
radius less than 1 km reach their pseudo-terminal velocity within dis-
tances that are negligible compared to the thickness of a magma ocean.

4. The physics of diapir breakup

While the previous analysis focuses on describing the diapir sink-
ing velocities and distances, it does not account for the possibility of
strong diapir deformation leading to breakup. This is done in the fol-
lowing subsections, using numerical experiments, scaling analysis
and analytical theory.

4.1. Numerical experiments

I performed a series of experiments in cylindrical axisymmetric
geometry to model the evolution of an iron diapir initially spherical
and at rest, gravitationally sinking through a liquid Newtonian silicate
magma ocean. The dynamics is governed by three conservation equa-
tions, written below in dimensionless form (using the characteristic
scales listed in Table 1). The conservation of mass:

∇:U′ ¼ 0; ð17Þ

whereU′ ¼ U′
r ;U

′
z

� �
is the dimensionless velocity vector. The conser-

vation of momentum:

ρ′
DU ′

Dt ′
¼ −∇p′ þ 1

Rs
e
∇

2

U′ þ 1
Fsr

C g
→ þ 1

Ws
e
κ ′δ d ′ð Þ n→ ; ð18Þ

where p is the dynamic pressure, C is the composition ranging from
0 (pure silicate) to 1 (pure iron), g

→
is a unit vector pointing in the di-

rection of gravity, κ′ is the dimensionless curvature of the diapir inter-
face, δ(d′) is a smeared out Dirac function (Sussman et al., 1994), d′ is

image of Fig.�3


Fig. 4. Results of the time dependent sinking model. (a) Time evolution of the dimen-
sionless diapir sinking velocity for Re

∞
=10 with a diapir initially at rest (blue curve) or

with a diapir initially sinking at a velocity equal to ten times the value of its dimension-
less terminal velocity v′=1. (b) Time evolution of the dimensionless diapir sinking ve-
locity initially at rest for three values of Re

∞
in the intermediate and Newton regimes.

(c) Diapir pseudo-terminal sinking distance (i.e., the distance necessary for a diapir
to reach 99% of its terminal velocity as a function of the diapir Reynolds number).
The black dotted line is the asymptotic value determined using Eq. (16). See Section 3.1
for further details.

109H. Samuel / Earth and Planetary Science Letters 313-314 (2012) 105–114
the dimensionless distance to the diapir interface, n
→

is a unit vector
normal to the diapir interface, ρ′ is the dimensionless density that
varies with C according to ρ=ρ′ρs=ρs+C(ρm−ρs), and Fr

s=vs
2/gR0

is a Froude number based on the Stokes velocity in Eq. 3. Similarly,
Re

s

and We
s

appearing in Eq. (18) are Reynolds and Webber numbers
based on the Stokes velocity vs rather than on the general terminal
velocity v∞, Eq. 4. These input governing parameters were chosen be-
cause in these experiments, where the diapir sinking velocity and
drag coefficient are a priori unknowns, Re

∞
andWe

∞
are output param-

eters and therefore their value cannot be imposed. Frs, Res andWe
s were

adjusted in order to obtain the desired values of Re
∞
and We

∞
.

The last governing equation is the conservation of composition:

DC
Dt′

¼ 0: ð19Þ

As previously, primes indicate dimensionless values. The mass and
momentum equations are solved with a stream function formulation
and are discretized with a similar approach to that described in
(Kupferman, 2001). The conservation of composition is solved with a
Particle Level Set method (Enright et al., 2002) as described in Samuel
and Evonuk (2010). Such an approach is particularly well suited to ac-
curately track sharp interfaces and to handle surface tension forces
that can cause numerical difficulties with classical Lagrangian ap-
proaches (e.g., tracer-in-cell (Samuel et al., 2010) or marker-chain
(Samuel and Bercovici, 2006)). The codewas successfully benchmarked
against analytical and numerical solutions (Samuel and Evonuk, 2010).

The initial condition consists of a spherical diapir of dimensionless
radius 1 located in the center of the axisymmetric domain (Fig. 1). Con-
trary to previous experiments focusing on sinking iron diapirs (Samuel
and Tackley, 2008; Samuel et al., 2010), the frame of reference is located
at the diapir center ofmass,which allows one tomodel only a small area
around the sinking diapir, as in Daly and Raefsky (1985). To avoid wall
effects, each physical boundary is located at least 10 dimensionless
units from the diapir center. The computational domain is discretized
using either 200×400 square cells or 400×800 square cells for cases
with the largest Reynolds numbers. All boundaries are free-slip.

In order to determine the conditions for diapir breakup I have per-
formed a systematic exploration of the parameter space in the range
Re∞=10−2−103 and We∞=10−1−104. Unfortunately, higher
values of Re∞ and lower values of We∞, still plausible for magma
ocean scenarios (Fig. 3a–b), require higher spatial and temporal reso-
lutions leading to prohibitive computational cost and could not be ex-
plored systematically in a timely manner. This restricted parameter
range however allows the exploration of the Stokes and the full inter-
mediate regime. A few cases were also run in the Newton regime with
fairly large values of We∞>1.

For each case run, the diapir initially at rest accelerates. The velocity
field around the diapir organizes itself as a stagnation point flow that
tends to favor the deformation of the diapir while internal motion also
occurs (Fig. 5a). For cases where Re and We are relatively small, the di-
apir reaches its asymptotic terminal velocitywith little deformation. For
cases with higher Reynolds andWebber numbers, breakup occurs gen-
erally before the diapir has reached its terminal velocity. The breakup
sequence occurs systematically in two steps: (1) it initiates as the diapir
flattens and stretches horizontally in a pancake-like fashion due to the
action of drag forces (Fig. 5b–c), (2) after a breakup distance db, the
thickness h(t) of the flattened diapir away from the rim decreases rap-
idly and most of the material is collected in the rim where the interface
curvature (hence surface tension) is the largest, therefore forming a
torus of inner radius ∼Rb and a circular section with radius ∼r0. A
small fraction of diapir material forms a very thin film (sometimes
called “bag”) with a curvature that increaseswith time due to the action
of the external flow (Fig. 5d). This breakup sequence is also sketched in
Fig. 6.

In the few experiments carried out in the Newton regime, where
turbulence effects were observed, the breakup sequence was compa-
rable to what was observed in the intermediate regime. In addition,
the behavior seen in these numerical experiments and summarized
in Fig. 6 is also observed in laboratory experiments between two
fluids of comparable densities ((Arecchi et al., 1989) and references
therein) and in laboratory experiments performed on the

image of Fig.�4
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fragmentation of water falling in air (Villermaux, 2007; Villermaux
and Bossa, 2009), where the corresponding Reynolds numbers were
much larger (i.e., within the turbulent regime) than the range inves-
tigated in the most of the numerical experiments presented here.
Therefore, the presence of turbulence does not appear to affect the di-
apir deformation and breakup sequence. As observed in these labora-
tory experiments, one could expect this torus to break up into spheres
of radius ∼r0 due to Rayleigh–Taylor or capillary instabilities. Such an
asymmetric breakup cannot be observed in the present numerical ex-
periments where axisymmetry is imposed.

Fig. 7 maps out the stable and unstable regions explored with the
numerical experiments. The boundary between these regions defines
Fig. 5. Result for a numerical experiments in the intermediate regime (Re∞∼102,
We∞∼103). Typical breakup sequence of an unstable iron diapir (red) initially at rest
sinking though a silicate liquid magma ocean (blue) displayed in four snapshots in
time. Internal and external motions are shown by streamlines in figures (a–c). The sur-
face tension vector is displayed in snapshot b.
the experimental criterion for diapir breakup. The shape of the
stable–unstable boundary can be constrained via a simple scaling
analysis performed in the following subsection.

4.2. Theoretical breakup criterion: scaling analysis

Consider a spherical metal diapir of radius R0 and surface S=4πR
0

2

sinking through a silicate magma ocean at a given speed v. As long as
the diapir preserves its initial spherical shape, and even if its sinking
velocity v differs from its terminal velocity v∞, its acceleration with re-
spect to the moving frame of reference located at the diapir center of
mass is essentially zero. In this case, applying Newton's law with this
mobile frame of reference yields the following force balance:

F
V
þ F

T
¼ F

D
: ð20Þ

The left hand side of Eq. (20) represents the two forces that prevent
breakup: the diapir resistance to viscous deformation F

V
∼η v S/R0 and

the surface tension force F
T
∼ σ κ S, where the spherical diapir's interface

curvature κ is initially 1/R
0
. At equilibrium, these forces are balanced by

the drag force FD∼ρsv2SCD
that favors diapir deformation and breakup at

high speeds.
Rewriting Eq. (20) more explicitly yields, after non-

dimensionalization by the same scales used in Section 2:

a1
Re

þ a2
We

¼ C
D
; ð21Þ

where a1 and a2 are scaling constants accounting for geometrical factors,
ignored in this dimensional analysis, which will subsequently be
determined.

Using the form of drag described in Eq. (8) one can easily see that
in the Stokes regime (Rebb1), viscous forces are always balanced by
the drag, therefore the diapir deformation is small and no breakup
should occur, even in the absence of surface tension (i.e., We→∞).
In that case the balance between F

V
and F

D
yields a1=c

S
Re

∞
=12.

For larger values of Reynolds numbers (intermediate or Newton re-
gimes) the form of drag changes (Fig. 2) and may lead to an imbal-
ance between stabilizing forces (F

V
and F

T
) and the drag force F

D
.

Therefore in that case, there exists a critical velocity vc at which F
V
+

F
T
bF

D
. By Newton's law this force imbalance is compensated by an ac-

celeration of the diapir occurring through its deformation. This marks
the start of the diapir breakup sequence described in Section 4.1 and
Figs. 5 and 6. Using Eqs. (5) and (6) the general criteria for diapir
breakup can be written as:

v′c a1
Re

∞ þ a2
We

∞ b C
D
v′c

2
; ð22Þ

where v′c=vc/v∞ is the dimensionless critical sinking velocity at
which breakup initiates. Eq. (22) can be used to determine the critical
velocity v′c. Depending on the complexity of the form of drag chosen
CD= f(Re,v) the solution v′c may only be determined implicitly. How-
ever, as shown in Fig. 3a, large diapirs belong to the Newton regime
(Re>>1) for which the drag coefficient (Eq. 8) simplifies to a con-
stant c

N
, and Eq. (22) becomes:

v′C >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

c
N
We

∞

s
: ð23Þ

Assuming that the diapir initially at rest has reached its maximum
terminal velocity v′c=1, the above criterion becomes: We

∞
>a2 c

N
. A

similar criterion (i.e., We>10) was considered in (Rubie et al.,
2003). Using the data displayed in Fig. 7 at Re=500 (i.e., the bound-
ary between the intermediate and the Newton regime) yields a fit to
the coefficients a2=7 c

N
≅2.1.
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Fig. 6. Schematic diapir breakup sequence according to the model of Villermaux and
Bossa (2009). The breakup occurs in two stages: (1) The diapir breakup initiation
where the diapir flattens due to the stagnation point flow developing near the front
of the diapir. (2) Breakup of the flattened diapir into a torus of radius Rb followed up
by a destabilization into smaller spherical bodies of radius r0.

Fig. 7. Stable (blue squares) and unstable (red triangles) regions for sinking diapirsin
the (Re1,We1) space. Each symbol corresponds to a numerical experiment.

Table 3
Summary of the diapir breakup criterion for the three flow regimes.

Flow regime Reynolds range Breakup criterion

Stokes b 0.5 No breakup
Intermediate 0.5–500 We

∞
>2 104(Re

∞− 1−1.3 10−2 Re
∞− 1/3

)
Newton >500 We

∞
>7
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For the intermediate regime none of the three forces in Eq. (21)
can be neglected and the condition for breakup is therefore given by
Eq. (22). Instead of Eq. (8) one can choose a more adapted form of
drag determined by experimental fit:

C
D
¼ 12

Re
∞ þ 1:05 10

−4 1
Re

∞ −1:3 10
−2

Re
∞ −1=3� �−1

ð24Þ

which gives a better fit than Eq. (8) to the numerical experiments.
Note that a direct comparison of this form of drag with the data
shown in Fig. 2 would be misleading because Eq. (24) accounts for
the drag of non-spherical deformable bodies while the data displayed
in Fig. 2 corresponds to non-deformable rigid spheres. Using this form
of drag together with Eq. (22), v′c ¼ 1, and the previously determined
constants a1=12 and a2=2.1, yields a criteria for diapir breakup in
the intermediate regime:

We
∞
> 2 104 Re

∞−1

−1:3 10−2 Re
∞−1=3� �

: ð25Þ

The stability criteria for all flow regimes are summarized in Table 3
and is displayed in Fig. 7, where it shows, by construction, a very good
fit (green line) to the numerical experiments.

4.3. Breakup initiation distances, breakup distances and post-breakup diapir
sizes

A priori, the fact that a diapir is unstable does not necessarily mean
that it breaks up before it reaches the bottom of a magma ocean. It is
therefore important to determine the distance necessary to initiate
breakup and the distance necessary for breakup to occur. In the follow-
ing I consider unstable diapirs of initial radius greater than 1 m (there-
fore belonging to the Newton regime), starting initially at rest at z0=0.
Using Eqs. (14) and (15) the dimensionless critical sinking distance z′c
necessary for an accelerating diapir to reach the critical velocity v′c to
initiate breakup is:

z′c ¼
4
3c

N

ρm

ρs
ln

1

1−v′c
2

 !
ð26Þ

Using the expression for the terminal velocity, Eq. (4), and the
condition for breakup, Eq. (23), to express v′c one gets:

z′c ¼
4

3 c
N

ln 1−3
8

a2 σ
ρm−ρsð ÞgR0

2

� �−1	 

ð27Þ

which for values for R0>1m, corresponding to the Newton regime
(see Fig. 3a), are much smaller than one. Consequently, in this
range zb bb ~z∞, therefore large, unstable diapirs almost immediately
initiate their breakup, well before they reach their terminal
velocity.

Once the critical velocity is reached (v=vc), the diapir will start
deforming until it breaks up over a distance, db (Fig. 6). To estimate
this distance, one can follow the approach of Villermaux and Bossa
(2009), which is applicable here as the assumptions made in their
study also hold in the context of a terrestrial magma ocean. Assuming
a stagnation point flow outside the diapir and under the assumption
that h(t)bbR(t), Villermaux and Bossa (2009) have shown that the

image of Fig.�5
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Fig. 8. Stable diapir radius as a function of plausible magma ocean viscosity spanning
the Intermediate and Newton regimes. The red curve corresponds to the present
study (Eq. (33)). The blue curve displays the results of Rubie et al. (2003).
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dimensionless radius of the flattening pancake/cylinder (Figs. 5 and
6) evolves as:

R′ ¼ exp
t′

τ′b

� �
ð28Þ

where τ′b is a dimensionless characteristic time:

τ′b ¼ ρs

ρm
− v′c b1

Re
∞ − b2

We
∞ þ v′c

2
 !" #−1

2

ð29Þ

There are two slight differences between the above expression of
the characteristic time τ′b and the one derived in Villermaux and
Bossa (2009). (1) I have included a term −v′c=Re

∞ modulated by a
scaling constant b1 that corresponds to the viscous resistance of the
diapir to deformation, otherwise negligible at high Reynolds num-
bers. (2) The second scaling constant b2 in Eq. (29) is absent in the
derivation of Villermaux and Bossa (2009) as they explicitly pre-
scribed a curvature at the rim of the stretching pancake κrim=h/2.
While such a curvature value is probably reasonable, I chose to mod-
ulate κrim by the scaling factor b2 of order 1 that can be constrained
using a fit to the results of the numerical experiments. The last term
in Eq. (29) corresponds to inertial effects that favor diapir stretching
and breakup.

If τ′b
2
b 0 no breakup occurs, the radius R oscillates with time

around a mean with a decaying amplitude. However, if τ′b
2
> 0 the

disk stretches at an exponential rate and breakup occurs after a
characteristic time ∼τ′b. Therefore the sign of τ′b is also a criterion
for diapir breakup, which is consistent with the scaling argument
used to derive Eq. (22). To close the system in a consistent manner,
one can specify the constants b1 and b2 by identification with
Eq. (21), which yields a completely explicit expression for τ′

b
:

τ ′b ¼ ρs

ρm
− 12 v′c

Re
∞
C

D

− 2:1
We

∞
C

D

þ v′c
2

 !" #−1
2

ð30Þ

At t′=τ′b, the rim of the disk has collected most of the diapir ma-
terial gathered as a torus of exterior radius R′

b ¼ R′ t′ ¼ τ′b
� � ¼ R0 e1

and ‘tubular’ radius r
0
whose volume is: 2 π2r0

2Rb=V (Fig. 6). In the
simplest case the torus will destabilize via Rayleigh–Taylor mecha-
nism, leading to the formation of n identical smaller diapirs of dimen-
sionless radius (Fig. 6):

r′0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3 π e1

s
≅0:28: ð31Þ

This corresponds to the formation of n=45 spherical diapirs dur-
ing a single breakup event, a value significantly larger than n=2 con-
sidered in Rubie et al. (2003).

Since the cross sectional areas of the initial sphere and the torus
are similar, it is reasonable to assume that during breakup the diapir
sinking velocity remains approximately constant and equal to vc. For
large diapirs (R0>1m), Re>>1 and We>>1, Eq. (30) simplifies to:

τ ′b ¼ 1
v′c

ffiffiffiffiffiffi
ρm

ρs

r
; ð32Þ

which translates into a dimensionless breakup distance d′b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρm=ρs

p
∼1:4. In other words, an unstable diapir will break up within a

sinking distance comparable to its own radius. This short breakup dis-
tance, which does not depend explicitly on the diapir sinking velocity,
can be understood as a sinking diapir will deform at the same speed
as its sinking velocity due to the stagnation pointflowoutside the diapir
(Fig. 5). Therefore, although larger diapirs travel faster, they will also
deform and break up at a faster rate. For this reason, even iron diapirs
initially sinking at a non-zero velocity (as a result of a post-impact
stage) will break up within a distance close to d′b.

4.4. Stable diapir sizes

The breakup mechanism described earlier will continue until the
new diapir generation reaches a stable size (Arecchi et al., 1989;
Rubie et al., 2003; Villermaux, 2007). One can determine the maxi-
mum stable size of iron bodies by solving for the radius R0 given in
Eq. (22) with v′c ¼ v′∞ ¼ 1:

12
Re

∞ þ 2:1
We

∞ ¼ C
D
: ð33Þ

Using Eqs. (5), (6), (8), and (24), the solution of Eq. (33) is dis-
played in Fig. 3a–b, and shows that for plausible values of magma
ocean viscosities, stable diapirs belong to the intermediate and the
Newton regimes. These new estimates of stable diapir sizes are also
shown in Fig. 8 (solid curve) and are compared to the stable radii de-
termined in (Rubie et al., 2003) (dashed curve). In the Newton re-
gime both estimates are very close because the stability criteria
considered are very similar. However, in the intermediate regime,
contrary to Rubie et al. (2003) I consider a different breakup criterion
(due to the change in drag coefficient dependence with Re). This
yields larger values of diapir radius (up to about a factor of ∼5) for
large values of magma ocean viscosity than was proposed in Rubie
et al. (2003).

In order to investigate the influence of these higher estimates of
diapir sizes on metal–silicate equilibration processes in a magma
ocean, I considered a simple chemical equilibration model described
in the next section.

5. Application to metal–silicate equilibration terrestrial magma
oceans

The degree of equilibration of a metal diapir sinking through a silicate
magma ocean can be expressed by the diapir concentration Cm in a chem-
ical element of interest (e.g., Ni, Co,W, Hf). Assuming that at all times t the
diapir concentration is homogeneous, Fick's law is written as:

4πR3
0

3
dCm

dt
¼ −4πR2

0

δBL
κc Cm−Ceq

� �
ð34Þ
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Fig. 9. Results of the equilibration model. Equilibration degree for stable diapirs for dif-
ferent values of magma ocean viscosities (η=0.01,1,100 Pa) as a function of the diapir
sinking distance. Even for relatively viscous magma oceans (green curve), the diapir
reaches high degrees of equilibration (i.e., >99%) within distances smaller than 2 km,
which are small compared to typical magma ocean thicknesses (∼1000 km).
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with Ceq=Dms/Cs the equilibrium concentration based on the metal–
silicate partition coefficient, Dms, and the concentration of the
element of interest in the silicates Cs. κc is the chemical diffusion coef-
ficient. Assuming that Ceq is constant, one seeks an analytical solution
to Eq. (34). Approximating the thickness of the chemical boundary
layer around the sphere with δBL≅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κc 2 R0=v

p
yields, after proper

non-dimensionalization (with the same characteristic scales used in
this paper):

dCm

dt′
¼ Ceq−Cm

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v′
9
2
1
Pe

r
; ð35Þ

where the chemical Péclet number is:

Pe ¼ v∞R0

κc
: ð36Þ

In principle v′ in Eq. (35) is a function of time t′. However, as
shown in Section 3.1, stable diapirs quickly reach their terminal ve-
locity (in less than ∼37 diapir radii, a negligible distance compared
to the thickness of a magma ocean). Therefore, for small diapir
sizes, such as those shown in Fig. 8, it is reasonable to assume that
v′∼1 during most of the diapir sinking. In that case taking Ceq=1
and Cm(t=0)=0, the solution of Eq. (35) is:

Cm ¼ 1−exp −t′
ffiffiffiffiffiffiffiffi
9

2Pe

r !
ð37Þ

Eq. (37) gives the degree of equilibration of the diapir, ranging
from 0 (complete disequilibrium) to 1 (perfect metal–silicate equili-
bration) as a function of dimensionless time t′. Note that the above
equation ignores the presence of internal convection within the iron
bodies, and the decrease of the boundary layer thickness occurring
at high Reynolds number. These processes would further enhance
metal–silicate equilibration (Ulvrovà et al., 2011). Therefore, the re-
sults of Eq. (37) only represent a lower bound for chemical
equilibration.

Fig. 9 shows the degree of equilibration as a function of the diapir
sinking distance for extreme and one intermediate value of magma
ocean viscosity. In all cases, metal–silicate equilibration is essentially
achieved within sinking distances less than about 2 km, which are
small compared to the thickness of a magma ocean (typically few
hundreds of kilometers or more). Therefore, even with the new larger
estimates of stable diapir sizes displayed in Fig. 8, metal–silicate
equilibration in a magma ocean is likely for all plausible values of
magma ocean viscosities. In this analysis, I have considered only the
stable iron diapirs that have a modest size, while much larger iron di-
apirs could have plunged into a silicate magma ocean (Dahl and
Stevenson, 2010). However as shown in Section 4, the breakup se-
quence for large diapirs occurs within distances that are comparable
to the initial diapir radius R0. In this case, the sinking distance neces-
sary to break up an unstable diapir down to stable sizes in a cascade
mechanism remains comparable to R0, even if several successive
breakup sequences are needed (Rubie et al., 2003). Therefore for dia-
pir sizes that are smaller than the thickness of a magma ocean
(∼1000 km) the above results should remain valid. In the case of
iron diapirs of sizes greater than the thickness of the magma ocean/
pond(s), despite erosion by turbulent instabilities, a significant frac-
tion of the iron diapir survives, which would lead to chemical disequi-
librium (Dahl and Stevenson, 2010). Such a scenario would
correspond to giant impacts. However, as pointed out in Deguen et
al. (2011), the kinetic energy of surviving iron bodies impacting the
bottom of a magma ocean/pool may induce additional fragmentation
and mixing that would further enhance metal–silicates equilibration.
6. Conclusions

I have revisited the conditions for iron diapir breakup, and the conse-
quences for metal–silicate equilibration in a magma ocean context.
Scaling analysis combinedwith numerical experimentswere used to de-
rive a general criteria for diapir breakup (Eq. (22) and Table 3). Using
this criteria, I have re-evaluated the sizes of stable iron bodies sinking
through a silicate magma ocean (Eq. (33)). These new estimates yield
stable iron radii lower than 0.2 m for plausible magma ocean viscosities.

To complement these estimates I have investigated the timing for
unstable diapir breakup, using numerical experiments and analytical
theory. The numerical experiments reveal the upstream formation
of a stagnation point flow that favors diapir deformation at a rate pro-
portional to the diapir sinking velocity. This behavior is also observed
in laboratory experiments carried out in the turbulent regime
(Villermaux, 2007; Villermaux and Bossa, 2009). In the context of a
magma ocean, this implies that iron diapirs larger than their maxi-
mum stable size breakup within distances comparable to their initial
radius into smaller size bodies. As suggested by experiments (Arecchi
et al., 1989; Villermaux and Bossa, 2009) this breakup process is re-
peated until the new iron bodies reach their stable sizes.

Using a simple equilibrationmodel, I show that with such small stable
diapir sizes, equilibration is achieved before the iron bodies reach the bot-
tom of the magma ocean. These results broadly confirm the findings or
the validity of several assumptions made in Ichikawa et al. (2010);
Rubie et al. (2003), and contrast in part with the results of Dahl and
Stevenson (2010), where the assumption that iron diapirs systematically
sink without breaking up was made. However, the present study shows,
on the basis of scaling analysis, numerical experiments and simple analyt-
ical theory, also consistent with laboratory experiments, that such an as-
sumption is reasonable only if the initial iron diapir sizes are larger than
the thickness of a magma ocean (e.g., as would be appropriate for a
giant impact). In that case, iron diapirs would be only partially eroded
byKevin–Helmholtz andRayleigh–Taylormechanisms andmetal–silicate
chemical exchanges would be drastically reduced (Dahl and Stevenson,
2010). Otherwise, for diapir sizes smaller than the thickness of a magma
ocean, rapid breakup and metal–silicate equilibration seem unavoidable.
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