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[1] I present a time domain parallelization approach for geodynamic modeling. This algorithm, named
parareal, is based on the use of coarse sequential and fine parallel propagators to predict and to iteratively
correct the solution of the governing equations over a given time interal. Although the method has been
successfully used to solve differential equations, in various scientific areas, it has not been applied to model
solid‐state convective motions relevant to the Earth and other planetary mantles. In that case, the time‐
dependence of the velocity is only implicit, which requires modifications to the original algorithm. The
performances of this adapted version of the parareal algorithm were investigated using theoretical model
predictions in good agreement with numerical experiments. I show that under optimum conditions, the par-
allel speedup increases linearly with the number of processors, and speedups close to 10 were measured,
using only few tens of CPUs. This parareal approach can be used alone or combined with any spatial par-
allel algorithm, allowing significant additional increase in speedup with increasing number of processors.
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1. Introduction

[2] Modern computational geodynamics heavily
relies on parallel algorithms to speed up calcula-
tions. Such a tendency is continuously growing over
time as the available parallel resources increase,
in particular with the development of multi‐core
architectures and Graphical Processing Unit com-
putations [Schmidt et al., 2010]. One of the most
widely used approaches in parallel geodynamic
codes is spatial decomposition [Bunge and
Baumgardner, 1995; Zhong et al., 2000; Schmalzl
and Hansen, 2000; Kageyama and Sato, 2004;
Choblet et al., 2007; Zhong et al., 2008; Tackley,
2008; Hütigg and Stemmer, 2008; Aleksandrov and
Samuel, 2011], where the physical computational

space is subdivided into smaller domains that are
attributed to one processor or to a set of processors.
Each sub‐domain carries out its own calculation in
parallel and exchanges information periodically with
other sub‐domains. Such approaches are efficient as
long as the size of the sub‐domains is large enough
so that computational time remains larger than
communication time. However, when the size of the
sub‐domains becomes too small, the speedup stag-
nates, which puts bounds on the maximum perfor-
mances of the algorithm (Figure 1).

[3] Other approaches consist in solving at each
time step the global set of discretized governing
equations using parallel direct libraries or parallel
iterative solvers [e.g., Katz et al., 2007; Braun et al.,
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2008; Tosi et al., 2010; Suckale et al., 2010; Samuel
and Evonuk, 2010; Thieulot, 2011]. Similar to the
domain‐decomposition approach, such a paralleli-
zation only concerns the spatial domain and the
performances of parallel solvers also saturate and
sometimes decrease when the number of processors
becomes too large.

[4] I present here an alternative approach named
parareal [Lions et al., 2001], which is based on
time domain decomposition. This method has been
successfully applied to solve ordinary differential
equations and time‐dependent systems of partial
differential equations in various scientific areas,
including molecular dynamic simulations [Baffico
et al., 2002], wave propagation [Mercerat et al.,
2009] and finite Prandtl number fluid dynamics
[Fisher et al., 2003; Trindade and Pereira, 2004;
Liu and Hu, 2008; Samaddar et al., 2010]. How-
ever, to my knowledge, the parareal algorithm has
not been applied in geodynamic studies where
motions relevant to the Earth and other planetary
mantles are that of a convective fluid at infinite
Prandtl number. In that case, the time dependence
of the mass and momentum equations is only
implicit, due to thermal and/or viscous couplings
with the explicitly time‐dependent energy equa-
tion. This requires a number of modifications to the
original algorithm.

[5] This parareal approach can be combined to
spatial domain decomposition or to any other

parallel algorithm, allowing an additional increase in
speedup with increasing the number of processors.

[6] The main objective of this study is to adapt
the original version of the parareal algorithm to
the governing equations for solid state convection,
to test its robustness, and to evaluate its parallel
performances theoretically and experimentally,
using test cases representative of typical geody-
namic scenarios.

[7] The paper is organized as follows: section 2
introduces the set of governing equations to be
solved with the parareal approach. Section 3
describes the algorithm. Section 4 presents the
theoretical performances of the parareal algorithm,
which are compared with those measured experi-
mentally in the context of two geodynamic sce-
narios, presented in section 5, preceding the
discussion.

2. Governing Conservation Equations

[8] Mantle solid‐state flow may be reasonably
described by the motion of a Boussinesq, highly
viscous fluid in the limit of infinite Prandtl number
(i.e., inertia is negligible). In that case, the dimen-
sionless governing equations are the conservation
of mass:

r � u ¼ 0; ð1Þ

Figure 1. Parallel speedup associated to the resolution of a Poisson Equation in a square domain, as a function of the
total number of processors NCPU. Parallelization is achieved through spatial domain decomposition, using an iterative
geometric multigrid solver. The two solid curves represent cases with different resolution, resulting in different num-
ber of unknowns.
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the conservation of momentum:

�rpþr � � @jui þ @iuj
� �

� Ra T~ez ¼ 0; ð2Þ

and the conservation of energy:

@T

@t
þ u:rT ¼ r2T : ð3Þ

[9] In these equations, u is the dimensionless
velocity vector, p is the dynamic pressure, T is the
temperature, t is the time, h = exp(−gT), is the
dimensionless viscosity, ~ez is a unit vector pointing
upward. The Rayleigh number Ra and the sensi-
tivity of the viscosity to temperature, g, are the two
governing parameters. Additional complexities
relevant to the Earth’s and other planetary mantles
could be added to the above equations, such as
compressibility, variable thermal conductivity and
expansion coefficients, or multiple phase changes.
By simplicity these were ignored here, but this
should not affect significantly the application of the
parareal algorithm.

[10] As mentioned previously, the approach has
been applied to finite Prandtl number Navier‐
Stokes Equations [Fisher et al., 2003; Trindade
and Pereira, 2004; Samaddar et al., 2010], where
the solutions of the conservation equations (tem-
perature, velocity and pressure) are explicitly time‐
dependent. However, in the case of infinite Prandtl
number convection, the explicit time dependence
only appears in the conservation of energy
(equation (3)). In this case, the mass and momen-
tum equations do not explicitly depend on time and
the temporal dependence of the velocity field is
only due to the coupling of the Navier‐Stokes and
the energy equations via the buoyancy term RaT(t)
and the viscosity h(T(t)). We shall see in the fol-
lowing sections that this requires modifications to
the original parareal algorithm.

3. The Algorithm

[11] Consider the solution vector of equations (1)–
(3): U(t) = (T(t), U(t)), where U(t) is the velocity
field that satisfies the momentum equation subject
to the incompressibility constraint.

[12] In the serial case, U(ti) is obtained by propa-
gating the solution until the desired time is reached,
starting from the previous time step ti − dt, and
using an operator Fdt such that:

U tið Þ ¼ F �t U ti � �tð Þð Þ: ð4Þ

[13] In most numerical geodynamic studies, the
time step size dt, varies and is subject to stability
constraints, which are often (but not systematically)
based on a Courant‐Friedrichs‐Lewy (CFL) crite-
rion. Consequently, for a given spatial resolution,
dt varies with time as it is a function of the time‐
dependent solution U(t).
[14] To speed up the calculations, a way around
this CFL time step restriction would be to solve
equation (3) using implicit schemes that are
unconditionally stable, and therefore not subject to
a CFL criterion. This would allow propagating the
solution using a coarse operator CDt based on a
larger time step Dt such that:

U tið Þ ¼ CDt U ti �Dtð Þð Þ: ð5Þ

[15] While this approach allows one to reach the
solution at a desired time more rapidly, the use
larger time steps would by definition yield poorer
time resolution.

[16] In order to accelerate the calculations without
affecting the accuracy of the solution Lions et al.
[2001] have proposed a time domain decomposi-
tion algorithm named parareal. Compared to
spatial decomposition methods, the idea of time
domain decomposition is much more recent,
because the evolution of time‐dependent systems
is serial by nature, which complicates the paral-
lelization. However, time domain parallelization
can be achieved by considering a predictor‐corrector
procedure embedded in an iterative approach. This
constitutes the basis of the parareal algorithm
[Lions et al., 2001]. This approach is based on the
use of coarse and fine operators to predict and to
correct the solution over a given time interval.

[17] Consider a time dependent problem whose
initial condition is U(t0) = U0 (Figure 2). One seeks
the solution U(ti) = U i over a time interval of size
Dtparareal = tN − t0, which is divided into N sub‐
intervals of equal size Dt = Dtparareal/N. This time
interval can contain several CFL time steps and we
are not only interested in the solution at the end of
the time interval but also the solution at a given
time step “i” within the interval. To solve this
problem in parallel, each time sub‐domain can be
assigned to a processor. Applying the parareal
approach over Dtparareal consists in two steps,
monitored by an index k:

[18] 1. The initialization (k = 0), where a first guess
is obtained over Dtparareal by propagating the
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solution with the coarse operator (according to
equation (5)):

U0
i ¼ CDt U0

i�1

� �
: ð6Þ

As the knowledge of the solution at the previous
time step is required, this step needs to be per-
formed in serial.

[19] 2. The iterative (k‐indexed) improvement of
the solution according to:

Uk
i ¼ CDt Uk

i�1

� �
þ F �t Uk�1

i�1

� �
� CDt Uk�1

i�1

� �� �
: ð7Þ

The first term on the right hand side of the above
equation can be seen as a predictor step, while the
second represents a correction, which is simply the
jump between the fine and coarse solutions at a
given time step i and at the previous parareal iter-
ation k − 1. Since the coarse predictor term requires
the knowledge of the coarse solution from the
previous time step (i − 1) at the present parareal
iteration k, it must be computed serially. However,
this is not the case of the jump, which can be
computed in parallel over each of the N time sub‐
intervals. This iterative procedure continues until
the solution has reached the desirable level of

accuracy, which in all cases is bounded by the
truncation error of the fine operator [Lions et al.,
2001].

[20] Of course, if all executed in serial, the iterative
nature of the above algorithm makes it less efficient
than a simple use of a fine operator applied over
Dtparareal. However, as illustrated in Figure 3, this
algorithm can be efficiently parallelized since all
the operations involving the use of the fine pro-
pagators can be carried out in parallel, over each
corresponding time sub‐interval. It is also evident
that in order for the parareal algorithm to be effi-
cient, the computational time associated with the
coarse operator must be much smaller than the one
associated with the use of the fine operator.

[21] To minimize synchronization among pro-
cessors, I present here a parareal version that
uses a master‐slave configuration [Farhat and
Chandesris, 2003]: Among the NCPU = N + 1
processors used, one “master” CPU is systemati-
cally assigned to serial calculations, and each of the
remaining N “slave” processors are assigned to a
time sub‐domain to perform calculations in paral-
lel. The master node therefore distributes informa-
tion to, and gathers information from the slave

Figure 2. Schematic representation of the parareal algorithm. (top) Representation of the discrete grid in a 3D
space‐time domain (x, z, t). (bottom) Representation of the discrete domain along the time axis (i.e., cross section
in time of the 3D domain above) for one parareal time interval NDt, distributed among N slave processors.
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processors. The pseudo‐code for the algorithm with
such a configuration is shown in Figure 3.

[22] An important remark is that convergence of the
parareal algorithm is reached within at most k = N
iterations. This is illustrated in Figure 4 showing
the evolution of the solution U (using the average
temperature Tmean as a proxy) as a function of

the parareal iteration k, with N = 4 sub‐intervals.
At t = t0 (i.e., i = 0) all the solutions U i=0

k = U0

are identical since this represents the initial condi-
tion for the parareal process applied over the time
interval [t0, t0 + N Dt]. Even at t = t0 + Dt (i = 1),
all the solutions remain identical to each other.
Such a match at i = 1 is not fortuitous: for instance,

Figure 4. Result of the parareal algorithm with N = 4 during one time interval NDt. Time evolution of the average
dimensionless temperature over one time interval containing 4 time steps (i = 1,4). Each colored symbol corresponds
to the solution at a different iteration k of the parareal algorithm. Complete convergence with the sequential solution
(black line) is reached within at most k = N = 4 iterations.

Figure 3. Pseudo‐code for the parareal algorithm, using a master‐slave configuration.
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according to equation (7), the new parareal solu-
tion at k = 1 is:

Uk¼1
i¼1 ¼ CDt Uk¼1

i¼0

� �
þ F �t Uk¼0

i¼0

� �
� CDt Uk¼0

i¼0

� �
: ð8Þ

[23] In addition, since the initial condition (i = 0) is
the same for all k, CDt(U i=0

k=1) and CDt(U i=0
k=0) are

identical and therefore cancel each other. This
yields U i=1

k=1 = Fdt(U i=0
k=0) = Fdt(U0), which would

have been obtained in the sequential case. One can
generalize this result for all k ≥ 1, and therefore:

Uk
i¼1 ¼ F �t U0ð Þ: ð9Þ

[24] Differences between the solutions at different
parareal iterations only appear at the next time step
t = t0 + 2Dt (i = 2): the parareal solution at the first
iteration k = 1 significantly differs from the
sequential solution while the next parareal solu-
tions U i=2

k≥2 are identical to the sequential solution.
Using the same previous reasoning, one can show
that the parareal solution at k = 2 is:

Uk¼2
i¼2 ¼ CDt Uk¼2

i¼1

� �
þ F �t Uk¼1

i¼1

� �
� CDt Uk¼1

i¼1

� �
ð10Þ

[25] In addition, using equation (9), CDt(U i=1
k=2) =

CDt(U i=1
k=1), yielding U i=2

k=2 = Fdt(U i=1
k=1) = Fdt(U i=1),

which again would be obtained with a serial prop-
agation using the fine operator.

[26] It is easy to see that by the same mechanism at
t ≤ t0 + kDt both parareal and sequential solutions
are identical, as illustrated in Figure 4. This is the
reason why convergence of the parareal algorithm
is guaranteed within at most k = N iterations.
Although this example is interesting for educa-
tional purposes, in practice such a situation must be
avoided. Indeed, convergence reached after k = N
iterations yields worse computational performances
than the sequential case, because more operations
are involved compared to a serial execution.
Therefore, one must reduce the total number of
parareal iterations, K, to a minimum, ideally 1.

3.1. Coarse and Fine Operators

[27] The efficiency of the parareal algorithm
depends heavily on the choice of the coarse and fine
operators. In addition to the use of a larger time step,
Dt, for CDt than a CFL time step, dt, for FDt, several
choices are possible.

[28] The fact that the size of Dt is by construction
larger than a CFL time step would naturally suggest

to use an implicit scheme to solve the time depen-
dent heat equation (3). Although this is a popular
choice, including for fluid dynamics applications
of the parareal algorithm [Fisher et al., 2003;
Trindade and Pereira, 2004, 2006; Samaddar et al.,
2010], we will see that at least for the cases pre-
sented in this paper this is not the best strategy. The
main reason is that the use of implicit schemes
yields significantly larger numerical diffusion
compared to the best explicit schemes (e.g., WENO
schemes [Jiang and Shu, 1996] or the use of TVD
schemes combined with flux limiters [Sweby, 1984;
Roe, 1986]). This numerical artifact further dete-
riorates the coarse solution, which yields a larger
number of parareal iterations K in order to reach
convergence. In addition, the computational cost
associated with implicit solvers is generally larger
than the one associated with explicit solvers, which
are optimum.

[29] On the other hand, using an explicit scheme for
the coarse operator can be problematic since Dt
may not satisfy the CFL stability criteria. To cir-
cumvent this problem, one can split the resolution
of the governing equations into two groups: one
elliptic group corresponding to the Navier‐Stokes
equations (1) and (2), and a second parabolic group
which corresponds to the conservation of energy
(equation (3)), where the time dependence of the
temperature is explicit. The solution for the para-
bolic group is propagated in time using an explicit
scheme with a time step dt subject to a CFL cri-
terion (therefore smaller than Dt). However, the
solution of the elliptic group, which does not
explicitly depend on time is determined only at
every Dt (i.e., at the end of each time sub‐domain).
The error associated with such a decoupling of the
Navier‐Stokes equations and the conservation of
energy was found to be smaller than the numerical
diffusion associated with the use of an implicit
solver for the coarse operator. Indeed, this elliptic‐
parabolic splitting associated with explicit coarse
propagation was found to be the best choice for
the coarse operator in terms of convergence of the
parareal algorithm (see section 5). In addition, the
use of a larger time step for the elliptic group
reduces the computational cost of the coarse
operator, which further improves the efficiency of
the parareal algorithm.

[30] There is much less freedom in the choice of the
fine operator. It simply consists in solving the set
of governing equations over a time interval Dt,
with a series of smaller time steps dt, each satis-
fying a CFL criteria, exactly as one would proceed
for the serial case (equation (4)).

Geochemistry
Geophysics
Geosystems G3G3 SAMUEL: TECHNICAL BRIEF 10.1029/2011GC003905

6 of 16



3.2. Size of the Time Interval

[31] At each initialization step of the parareal pro-
cedure (k = 0), a time step, dtCFL0 , satisfying the CFL
criteria is determined using the corresponding initial
velocity field. The size of the time interval over which
the parareal algorithm is applied is then obtained
by extrapolation of this time step (Figure 2):

Dtparareal ¼ N�t0CFLnCFL ð11Þ

[32] If the velocity field was constant throughout
Dtparareal, the user‐defined parameter nCFL would
corresponds to the number of CFL time steps per
sub‐domain over which each fine operator is
applied. However, as the velocity field changes
with time, the assumption that dtCFL

0 is constant is no
longer exact. In this general case, nCFL represents
the approximate/average number of CFL time steps
per sub‐domain. As mentioned previously, each
time sub‐domain has the same size, which is then:
Dt = dtCFL

0 nCFL.

[33] Ideally, one would choose the largest possible
value for nCFL in order to minimize the importance
of the parareal initialization step. However, as
shown in the following sections, in general for
problems with strong time variations of the solution
when nCFL exceeds ∼20 the number of parareal
iterations exceeds 1, which is not desirable. There
is therefore an optimum size of the interval corre-
sponding to the maximum value of nCFL for which
K = 1.

3.3. Convergence Criteria

[34] It has been shown in section 3 that the accuracy
of the parareal method converges to that of the fine
operator within at most N iterations. Clearly, for
efficiency purposes it is desirable to reach conver-
gence as quickly as possible (K = 1) and in any
cases for a total number of parareal iterations K
lower than N. Therefore, as for any iterative
method, the choice of a good measure of conver-
gence is crucial, and several choices are possible.

[35] A simple, but blind criterion would be to stop
the iterations whenever the Root Mean Squared of
the changes between two consecutive parareal
iterations:

Dk
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Z
V

T k�1
i � T k

i

� �2
dV

s
; ð12Þ

falls below some prescribed threshold [Samaddar
et al., 2010]. In the above equation, T i

k is the

solution vector of equation (3) at the end of the
time domain i and at the kth parareal iteration, n
is the size of the solution vector, and V represents
the computational domain.

[36] Another criterion based on the value of the
maximum of the jump between the coarse and fine
solutions has also been proposed [Trindade and
Pereira, 2006].

[37] I choose instead a more general criterion based
on the comparison between Di

k and the value of
the Local Truncation Error (LTE) [Lepsa and
Sandu, 2010]. In this case, convergence is reached
according to the following condition:

max Dk
i

� �
< tol max LTEk

i

� �
; ð13Þ

where tol is an empirical parameter adjusted to
10−1. For each parareal iteration k, the Local
Truncation Error vector on the temperature LTEi

k,
is estimated at the end of each parareal time sub‐
interval i, by subtracting the solution T i,dt

k to
equation (3) over one CFL time step, dt, to the
solution T i,dt/2

k , obtained at the same time but using a
time step twice smaller i.e., LTEi

k = |T i,dt
k − T i,dt/2

k |.

4. Theoretical Performances of the
Parareal Algorithm

[38] As mentioned previously, a misuse of the
parareal algorithm can yield slow convergence and
could result in a slower execution time, tparareal,
compared to that of a serial execution, tserial. It is
therefore important to identify the conditions for
which the performances of the parareal algorithm
are optimum, as well as those where the perfor-
mances are reduced. This can easily be revealed by
a theoretical performance model. Since the time to
compute the solution U over a single time step is
much larger than the time to communicate the
solution from one processor to the other, the
communication time is negligible and will not be
considered. The validity of this approximation is
shown a posteriori.

[39] The parallel performances of the algorithm
can be measured by the speedup S = tserial/tparareal
and the efficiency E = S/N. The overall execution
time of the parareal algorithm is:

�parareal ffi N�c þ K �f þ N�c
� �

ð14Þ

where tc and tf represent the computational time
associated to the use of the coarse and the fine
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operators, respectively. The serial execution time
for the same problem over the same time interval is
simply:

�serial ffi N�f : ð15Þ

Therefore, the speedup of the parareal algorithm is:

S ¼ N

N � þ K 1þ N �ð Þ ; ð16Þ

with b = tc/tf . Optimal speedup is achieved for
K = 1 and b ∼ 0. Conversely, the speedup degrades
very quickly with the total number of parareal
iterations K, and can even reach values lower than 1.

[40] Since the presented version of the parareal
algorithm uses an elliptic‐parabolic splitting (i.e.,
the energy equation is solved more frequently than
the Navier‐Stokes equations when applying the
coarse operator, see section 3.1) it is more reveal-
ing to express b more explicitly, by considering the
contribution in solving the time‐dependent energy
equation, tadvdiff, and the time required to solve the
elliptic Navier‐Stokes equations, tNS:

� ¼ �c
�f

¼ �NS þ nCFL�advdiff
nCFL �advdiff þ �NSð Þ ¼

1þ nCFL�

nCFL 1þ �ð Þ ; ð17Þ

where a = tadvdiff /tNS and the parameter nCFL was
defined in section 3.2.

[41] Using equations (16) and (17), one can predict
the parallel performance of the algorithm as a
function of the number of parareal iterations K,
the number of slave processors N (i.e., the total
number of processors minus one, see section 3 and
Figure 3), the size of the time sub‐intervals,
determined by the value of nCFL, and a. The latter
depends on the size of the problem n and the
geometry considered (i.e., 2D vs. 3D) but is always
smaller than one. For instance, using the MUMPS
library [Amestoy et al., 1998] to solve the 2DNavier‐
Stokes equations recast as a biharmonic equation
and an explicit scheme for the energy equation with
n = 104 grid cells a ∼ 0.03 and decreases with
decreasing n. This behavior could be even more
pronounced in 3D geometries, since for large pro-
blems the computational time associated with the
Navier‐Stokes equations solved with a direct method
tends to increase as ∼n2, while the time to solve for
the energy equation with an explicit method goes
as ∼n.

[42] Further reduction of the computational cost
associated to CDt can be obtained by decreasing the
spatial resolution during the coarse time propaga-

tion, and remapping the results onto the original
grid with finer spatial resolution. This can be per-
formed using restriction and prolongation opera-
tions as it is done in geometric multigrid methods
[Brandt, 1982]. In this case, one can introduce an
additional parameter f, which expresses the spatial
coarsening ratio used during the coarse propagation
(i.e., when using CDt). For instance, one can decide
to propagate the coarse solution on a grid that is
twice coarser than the original one in all spatial
directions (i.e., f = Dxcoarse/Dx = �Dycoarse/Dy =
�Dzcoarse/Dz = 2). Then, in the case of a 2D (in
space) problem the computational cost associated
with the coarse propagation over one time sub‐
interval becomes:

�c ffi
1

f 2
�NS þ nCFL�advdiffð Þ; ð18Þ

where I have assumed that the dependence of
both tNS and tadvdiff with the problem size n is
linear, which is reasonable for relatively small 2D
problems.

[43] In that case, the theoretical expression of the
parallel speedup becomes:

S ¼ N

N � f �2
0 þ K 1þ N � f �2

k

� � ; ð19Þ

where f0 and fk are the spatial coarsening ratios used
during the initialization and the iterative predictor‐
corrector steps of the parareal algorithm, respec-
tively. Tests were performed with f0 and fk equal to
unity (i.e., no spatial coarsening), or 2. While spatial
coarsening inevitably decreases the computation
time associated with CDt, it may also degrade the
accuracy of the coarse solution too severely, and
consequently yield poor convergence of the para-
real algorithm (i.e., larger K values).

[44] Figure 5 shows the influence of the total
number of iterations K on the speedup of the
parareal algorithm for different values of N. The
parallel performances of the algorithm decrease
dramatically with increasing K, and speedups
lower than 1 can even be obtained (grey areas in
Figure 5). The strategy of the present paper is to
determine the optimum set of adjustable parameters
that yield convergence within the minimum number
of parareal iterations: the size of the parareal
interval nCFL, the number of time sub‐domains, N,
and to some extent a, f0 and fk. Therefore in the
following I will only focus on cases where K = 1.

[45] Figures 6a and 6b display the speedup and
efficiency as a function of nCFL and N, assuming
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Figure 5. Result of the theoretical performance model (equation (16)). Speedup as a function of the parareal total
iteration number K for various values of N. The speedup degrades very rapidly with increasing K, possibly reaching
values lower than 1 (gray area) for which the parareal algorithm is slower than the sequential solution. This occurs
when K >∼ N. See text for further details.
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Figure 6. Results of the theoretical performance model, equation (16), with (K = 1 and a = 10−3). (a) Speedup S and
(b) efficiency of the parareal algorithm as a function of the number of slave processors N and the size of the parareal
interval nCFL. The black thick curve in Figure 6a corresponds to S = 1, and the dashed line corresponds to the optimum
setting nCFL = N. The black thick curves in Figure 6b correspond to E = 0.1, E = 0.35 and E = 0.8. See text for further
details.
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K= 1 and a = 10−3. One clearly sees in Figure 6a
that S increases with increasing either nCFL or N.
However, this increase in S rapidly stagnates if
either nCFL or N is held constant. This is shown
more clearly in Figures 7a–7c. Therefore, in order
to make the best use of the parareal algorithm
the optimum setup is:

nCFL � N : ð20Þ

[46] In this case, for small values of a, S increases
with N (or nCFL) almost linearly (dashed line in
Figures 6a and 7d). In theory linear speedup of 100
can be reached with N = nCFL = 1000 (Figure 6a).
Figure 6b shows that even for the optimum setting
(equation (20)), the parareal efficiency is far from
1 and increases with increasing the size of the
parareal time interval (or nCFL). This can be
understood as increasing nCFL tends to minimize
the computational time spent during the initializa-
tion step, which is purely sequential (see section 3
and Figure 3). Although the speedup is linear along
the optimum setting line, the parallel efficiency is
close to 0.35 instead of 1 because the slope N/nCFL
is smaller than one.

[47] It is also important to measure the influence of
a on the parallel speedup, which is not directly
adjustable as a depends essentially on the spatial
resolution of the computational domain. The later

is displayed in Figures 7b–7d and shows that
smaller values of a yield higher speedup and more
linear speedup increase with increasingN, especially
for cases with large number of processors. As men-
tioned previously, a should decrease with increasing
the size and the spatial dimension of the compu-
tational domain. Therefore, one can expect an
improvement of the parareal performances for large
size problems with high dimensionality.

5. Performance Tests

[48] To measure the performances of the parareal
algorithm and to compare them with the theoretical
predictions (equations (16), (19), and (17)), two
test cases relevant to typical geodynamic situations
are considered. For both cases, Ra = 107, g = ln(100)
and equations (1) and (2) were formulated in terms
of a stream function. The whole system is dis-
cretized with a finite volume method, using the
StreamV code [Samuel, 2009; Samuel and Evonuk,
2010] that was benchmarked against various ana-
lytic and numerical solutions. The code is written in
FORTRAN 95, using the MPI library for the
communications. The overall implementation of
the parareal algorithm (Figure 3) is rather short
and is greatly facilitated by the use of object‐
oriented like programming, allowing more flexi-
bility to manipulate the coarse and fine operators.

Figure 7. Results of the theoretical performance model, equation (16), with K = 1. Speedup S (a and b) as a function
of the size of the parareal interval nCFL, or (c and d) as a function of the number of slave processors N. Different
values of a, N and nCFL are shown.
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Using different MPI communicators, simultaneous
space and time parallelization is possible. In that
case, a group of processors belonging to same
communicator are assigned to master tasks or to a
specific slave time sub‐interval.

[49] Equation (3) was discretized using a first order
in time and second order in space Eulerian TVD
scheme with a Sweby flux limiter. Further details
about the implementation are given by Samuel and
Evonuk [2010]. Unless specified otherwise, the
results shown here were obtained using the
MUMPS direct solver [Amestoy et al., 1998].

5.1. Axisymmetric Plume Test

[50] I consider here the rise of a thermal plume
through an axisymmetric domain discretized using
50 × 200 square cells. Fixed temperature and free‐
slip boundary conditions are applied on all external
boundaries. The plume is generated by imposing a
heating patch at the bottom of the domain. The test
starts when the advective (CFL) time step becomes
smaller than the diffusive time step, and ends at a
dimensionless time t = 3.510−4, which corresponds
to 100 Myr if dimensionalized using a thermal
diffusivity of 10−6 m2/s, and a mantle thickness of
3000 km. Throughout the plume rise shown in
Figure 8a, the average temperature and the Root
Mean Squared velocity are monitored as proxies
for the solution U(t) and displayed in Figures 8b
and 8c. The parareal solution closely matches the
sequential computation, both for temperature
(Figure 8b) and velocities (Figure 8c).

[51] Figure 8d displays the number of parareal
iterations required to reach convergence, K, as a
function of the size of the time sub‐interval nCFL,
with the optimum setup given by equation (20).
Different values of spatial coarsening ( f0 and fk)
during the coarse propagation were considered,
along with either an explicit or an implicit scheme
for solving equation (3). For small sub‐interval
sizes nCFL ≤ 5, all configurations converge within
the minimum possible value of K = 1. The best
convergence is observed when no spatial coarsen-
ing is used (black circles), with K = 1 up to nCFL ≤
20, followed by an increase for larger sizes of
time interval. Spatial coarsening applied only
during the iterative step of the parareal algorithm
( f0 = 1 and fk > 1, red squares) also yields optimum
convergence up to nCFL ≤ 20, with however an
improvement in parallel speedup as predicted by
equation (19). Beyond this threshold, the conver-
gence deteriorates dramatically with K = 18 for
nCFL = 30. Further spatial coarsening ( f0 > 1 and

fk > 1, blue triangles) significantly degrades the
parareal convergence for even smaller values of
nCFL, therefore reducing the parallel speedup
(Figure 5). This is a logical consequence of the fact
that a poor initial guess requires more corrections,
as it is often the case with iterative methods. This
suggests to avoid the use of spatial coarsening
during the initialization step (i.e., f0 > 1). For
similar reasons, the use of an implicit scheme to
propagate the coarse solution is not recommended
as it introduces larger amounts of numerical dif-
fusion compared to the explicit scheme used here.
Consequently, the accuracy of the initial guess
decreases, leading to poor convergence (green
diamonds). In summary, the optimum use of the
parareal algorithm is obtained using the following
setup: nCFL = N = 20, f0 = 1, and fk = 2.

[52] Figure 8e shows the speedup of the parareal
calculations measured experimentally (squares) for
different values of the number of slave processors
N and compared with the theoretical predictions
(curves). Two cases are considered: one where no
spatial coarsening was considered ( f0 = fk = 1) for
Cdt (blue), and another where spatial coarsening
was applied only during the predictor‐corrector
iterations ( f0 = 1, fk = 2), yielding better perfor-
mances, as predicted by equation (19). In this case,
the parareal approach has reduced the computa-
tional execution by almost one order of magnitude,
using 40 CPUs.

5.2. Rayleigh Bénard Convection Test

[53] This test consists in computing the evolution
of a convective mantle of aspect ratio 1:3, starting
from the initial condition displayed in Figure 9a,
for a total time period of t = 1.410−3, corresponding
to 40 Myr using the characteristic scales listed in
section 5.1. The spatial domain was discretized
using 225 × 150 identical cells. Temperature is 0 at
the top and 1 at the bottom boundaries. Free‐slip
boundary conditions are applied on the horizontal
boundaries. The vertical side‐walls are reflective.
As for the plume case, the average temperature and
the Root Mean Squared velocity are monitored as
proxies for the solution U(t) and displayed in
Figures 9b and 9c. As previously, the parareal
solution closely matches the sequential computa-
tion. This is remarkable since the time dependence
of the solution is strong as illustrated by the “roller‐
coaster” shape of the VRMS time evolution shown
in Figure 9c. This demonstrates the robustness of
the parareal algorithm even after only one iteration
K = 1.
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[54] Figure 9d displays the number of parareal
iterations required to reach convergence, as a
function of the size of the time sub‐interval, with
the optimum setup given by equation (20). Spatial
coarsening (not shown here) was also tested, but
contrary to the plume test case (Figure 8) it yielded
systematically very poor convergence, with values
of K close to N. The reason why spatial coarsening
severely degrades the convergence here may be

explained by the fact that further reduction of
the spatial resolution may lead to stronger under‐
resolution of important features (such as thermal
boundary layers) than for the plume case. In addi-
tion, as for the plume test, the use of an implicit
scheme to propagate the coarse solution severely
deteriorates the parareal convergence for all cases
with nCFL > 5.

Figure 8. Result of the axisymmetric plume test (Ra = 107, g = ln(100)). (a) Snapshots in time showing the plume
dimensionless temperature field. Comparison between the sequential (black) and parareal (red) solutions displayed
with the (b) dimensionless average temperature and (c) RMS velocities. (d) Total number of parareal iterations K
required to reach convergence as a function of the number of slave processors N, for the optimum setup (N = nCFL),
for different values of spatial coarsening ( f0 and fk), and using either explicit or implicit schemes for the coarse prop-
agation. (e) Comparison of the speedup predicted with the theoretical model, equation (19), (solid curves) and the one
measured experimentally (squares) for two configurations: fk = 1 in red (i.e., no spatial coarsening) and fk = 2 in blue
(i.e., using spatial grid coarsening during the coarse propagation).
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[55] The measured parareal speedup displayed in
Figure 9e for different values of N compares well
with the theoretical predictions (curves) and shows
that the computational cost is reduced by up to a
factor 5, using 40 CPUs. While the obtained
speedup is relatively modest, for a problem of such
small size, spatial parallelization using the MUMPS
direct solver would yield an even smaller speedup
value (∼1.8, using 40 CPUs).

5.3. Space and Time Parallelization

[56] One can further extend the parareal approach
by combining it with spatial parallelization. To do
so, I have considered the same Rayleigh Bénard

convection test described previously, with a grid
composed of 512 × 256 rectangular cells. Despite
the use of a larger grid, the use of a parallel direct
solver was found to be rather inefficient, with
maximum speedups of 2 using up to 64 CPUs.
Parallel direct solvers on distributed memory
machines generally scale better for much larger 2D
problems or for 3D problems. Therefore, instead of
using a direct solver, the Navier‐Stokes equations
are solved here using a parallel geometric multigrid
solver performing V‐cycles with a simple domain
decomposition. Figure 10 shows the parallel speed
up obtained for pure spatial parallelization (red
curve), pure time parallelization (blue curve) and a
hybrid space‐time domain parallelization (green

Figure 9. Result of the Rayleigh‐Bénard convection test (Ra = 107, g = ln(100)). (a) Initial dimensionless temper-
ature field. Comparison between the sequential (black) and parareal (red) solutions displayed with the (b) dimension-
less average temperature and (c) RMS velocities. (d) Total number of parareal iterations K required to reach
convergence as a function of the number of slave processors N, for the optimum setup (N = nCFL), using either explicit
or implicit schemes for the coarse propagation. (e) Comparison of the speedup predicted with the theoretical model
(solid curves) and the speedup measured experimentally (squares) for two configurations: nCFL = 20 in red and nCFL =
10 in blue (i.e., using a twice smaller parareal time interval).
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curve) as a function of NCPU, the total number of
CPUs. Note that NCPU used in Figure 10 is different
from the total number of slave processes N; in
the case of purely time parallelization N = NCPU =
N − 1. However, for space‐time parallelization,
more than one processor are assigned to the master
tasks or to a given slave time sub‐interval.
Denoting this number by Nspace, the number of time
sub‐interval is written N = NCPU/Nspace − 1.

[57] As for the previous experiments (e.g., Figures 8e
and 9e), the speedup slope for the parareal case
(blue curve) progressively decreases with increasing
the number of CPUs.

[58] Similar to the behavior displayed in Figure 1,
the speedup for the case with purely spatial paral-
lelization first increases linearly with NCPU. How-
ever, for NCPU above 4, the communications start to
dominate the execution time and the slope of the
speedup curve progressively decreases to zero. In
the case of both space and time parallelization, four
processors are used for the spatial decomposition, as
this number corresponds to the maximum value that
yields optimum (linear) speedup scaling observed
for the purely spatial parallelization (Figure 10, red
line). This results in Nspace = 4 processors assigned
to each (slave) time sub‐domain and another group
of four CPUs to perform the master tasks (Figure 3).
While the speedup for cases with either purely
spatial or time parallelization saturates at S ffi 5, the
combination of space and time domain decompo-
sition yields a speedup close to 25, using up to
64 CPUs.

[59] This test shows that the parareal approach
applied in addition to spatial decomposition drasti-
cally enhances the speedup by a factor ∼5,
even though saturation is reached for the spatial
parallelization.

[60] Overall, the optimal use of space‐time paral-
lelization is obtained with applying the parareal
algorithm when the following condition is met:

dS

dN

� �
parareal

>
dS

dNCPU

� �
spatial

: ð21Þ

[61] Using equation (16), equation (21) is more
explicitly written:

K

N � þ K 1þ N �ð Þ½ �2
>

dS

dNCPU

� �
spatial

: ð22Þ

The above expression can be used to determine the
number of processors used for the spatial paralle-
lization, Nspace.

6. Discussion

[62] The theoretical predictions and experimental
tests presented in the previous sections have al-
lowed to define the optimum conditions for the use
of the parareal algorithm, which are summarized
below:

[63] 1. A maximum size of time sub‐interval Dt of
about 20 CFL time steps (i.e., nCFL = 20). Larger

Figure 10. Result of the Rayleigh‐Bénard convection test on a 512 × 256 grid. Parallel speedup as a function of the
total number of processors used NCPU. Case with pure spatial parallelization, pure time parallelization and hybrid
space and time parallelization are shown with the red, blue and green solid lines, respectively. For the hybrid case,
the spatial domain is decomposed into four identical sub‐domains, each assigned to one processor. This results in four
processors assigned to each (slave) time sub‐domains and another group of four CPUs to perform the master tasks.
The dashed line corresponds to an ideal linear scaling with a slope of one. The parameters used for the time paralle-
lization are: nCFL = 20, f0 = fk = 1.
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sizes of Dt were found to decrease the convergence
rate of the algorithm for the problems considered.
This value, however, is probably model‐dependent,
and may in particular be very sensitive to the time‐
dependency of the solution.

[64] 2. A number of time sub‐intervals N equal to
nCFL.

[65] 3. The use of explicit schemes minimizing the
numerical diffusion during the coarse propagation,
combined with a parabolic‐elliptic splitting (i.e.,
the energy equation is solved more frequently than
the Navier‐Stokes equations). Coarse propagation
using implicit schemes introduces larger amounts
of numerical diffusion and results in poorer con-
vergence of the algorithm.

[66] 4. Spatial coarsening during the coarse (time)
propagation can improve the performance in some
cases, but only if it is used during the iterative stage
of the algorithm. Spatial coarsening during the
initialization systematically yields poorer conver-
gence and should be avoided.

[67] The performances of the present version of the
parareal algorithm may be optimized in the future,
for instance by considering different sizes of time
sub‐intervals Dt assigned to each processor and/or
by adjusting the frequency of the elliptic‐parabolic
splitting according to the time dependence of the
velocity field. In addition, a better spatial coars-
ening could be constructed using adaptive mesh
refinements [Alam et al., 2006]. Another possible
way to improve convergence with large time
interval sizes could be to use a higher order time
integrator to compute the initial guess. These are
few ongoing areas of investigations.

[68] Although this paper primarily focused on the
use of the parareal algorithm to solid‐state con-
vective flows, the approach can certainly be applied
to the modeling of finite Prandtl number fluid
motions related to Earth and planetary dynamics:
magma ocean and magma chamber dynamics
[Hoïnk et al., 2006; Samuel, 2012; Verhoeven and
Schmalzl, 2009], geodynamo studies [Christensen
et al., 1999], or giant planets dynamics [Evonuk
and Glatzmaier, 2004].

7. Conclusion

[69] I have presented a time domain parallel algo-
rithm [Lions et al., 2001] adapted to the resolution
of infinite Prandtl number convection relevant to
geodynamic problems. This parareal approach is
based on the use of coarse and fine operators to

predict and to iteratively correct the solution over a
given time interval. The coarse operator, applied
serially, propagates the solution in time using a
time step larger than a CFL time step, while the
fine operator propagates the solution using a CFL
time step and can be applied in parallel, over N
time sub‐intervals, distributed among at least N
slave processors. Although the algorithm must
converge to the accuracy of the fine operator within
at most N iterations, I have verified experimentally
that convergence can be achieved within the mini-
mum of one iteration, even for cases with large
values of N (∼10–100). Using a simple performance
model I have shown that under optimum conditions,
the parallel execution time scales linearly with the
number of CPUs used. These theoretical predictions
are in good agreement with numerical experiments
(axisymmetric plume and 2D Rayleigh‐Bénard
convection), for which speedup close to 10 were
measured, using up to 40 CPUs.

[70] Another attractive feature of the parareal
algorithm is that it can be combined to other par-
allel spatial domain decomposition methods, which
alone tend to saturate when the number of CPUs is
too large and the problem size is too small. In that
case, speedups close to 25 were obtained with a
space‐time parallelization, using up to 64 CPUs.

[71] As present parallel codes used for geodynamic
modeling only use spatial decomposition, the
addition of parallel time domain decomposition
should allow a significant (10‐fold and more)
increase in speedup, even for the most computa-
tionally demanding models.
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