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1. Introduction

[2] Advection is one of the major processes that
commonly occurs on various scales in Geody-
namics. When diffusion is negligible this transport
mode, in its simplest form, can be described by the
following differential equation:

@C

@t
þ U:rC ¼ 0; ð1Þ

where t is the time, and C is a scalar quantity (e.g.,
temperature or a chemical component) being ad-
vected by a given velocity field U. Various geody-
namic scenarios of current interest involve the
presence of sharp discontinuities in C (e.g., core
formation processes [Hoïnk et al., 2006; Samuel et
al., 2010; Lin et al., 2009; Monteux et al., 2009;
Ichikawa et al., 2010], subduction dynamics
[Schmeling et al., 2008; van Hunen et al., 2004],
lithospheric dynamics [Muehlhaus et al., 2002],
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mantle convective stirring [Manga, 1996; Schmalzl
et al., 1996; Tackley, 2002; Samuel and Farnetani,
2003; van Keken et al., 2003; Farnetani and
Samuel, 2003], thermochemical plume dynamics
[Farnetani and Samuel, 2005; Lin and van Keken,
2005, 2006; Samuel and Bercovici, 2006], multi
phase flows in magma chambers [Verhoeven and
Schmalzl, 2009], salt diapirism [Weinberg and
Schmeling, 1992; Chemia et al., 2008] or bubble
dynamics in magma flows [Manga and Stone,
1994]). Unfortunately in such cases, solving for
equation (1) can be very challenging because
sharp discontinuities lead to numerical instabilities,
which prevent the local use of high order numerical
schemes.

[3] Several approaches have been used in compu-
tational geodynamics in order to overcome this
difficulty with variable amounts of success. Despite
the use of correcting filters or non‐oscillatory, shock‐
preserving schemes, Eulerian (fixed grid) techniques
generally suffer from artificial numerical diffusion
and dispersion. Lagrangian approaches (dynamic
grids or particles) tend to be more popular in com-
putational geodynamics because they are not prone
to excessive numerical diffusion. However, these
approaches are generally computationally expen-
sive, especially in 3D, and can suffer from spurious
statistical noise.

[4] As an alternative to these aforementioned
approaches, a powerful hybrid Eulerian‐Lagrangian
Particle Level Set method for modeling advection of
sharply varying quantities, has become increasingly
popular in the field of computer graphics [Enright et
al., 2002]. This Particle Level Set method is an
extension of the Level Set method [Osher and
Sethian, 1988], which is based on the concept of
implicit surfaces that mark the boundary between
sharply varying scalar fields.

[5] This paper aims to apply this recent method that
combines the best of Eulerian and Lagrangian
approaches, to geodynamic flows. In the first part
of the paper the Particle Level Set methodology
is described. In the second part of the paper the
method is tested against well known benchmarks
and classical two‐ and three‐dimensional Geo-
dynamic flows.

2. Numerical Strategies for Advecting
a Scalar Field

[6] In this section we first briefly review the
numerical methods that have been developed and

commonly used inGeodynamics to solve equation (1).
Next we will introduce two relatively recent meth-
ods that have proven to be accurate and efficient for
advecting sharp material surfaces: the Eulerian
Level Set method [Osher and Sethian, 1988] and the
Particle Level Set method, a Lagrangian extension
of the Level Set approach [Enright et al., 2002].
The pure Eulerian Level Set method is becoming
increasingly common in Geodynamics [Gross et al.,
2007; Suckale et al., 2010], and the Particle Level
Set is a popular method in hydrodynamics and
computer graphics [Osher and Fedkiw, 2003].
However, to our knowledge, the Particle Level Set
method has not been applied to geodynamic flows.

2.1. Popular Advection Methods
in Geodynamics

[7] Numerical methods for modeling advective
transport can generally be cast into either Eulerian
(i.e., fixed grid), Lagrangian (i.e., mobile grid or
particles) approaches, or a combination of the two.

2.1.1. Eulerian Methods

[8] The advection equation (1) can be straightfor-
wardly discretized onto a fixed grid. The advan-
tage, in computational geodynamics, is that often
the discretization of equation (1) is similar to that
of other conservation equations, such as the con-
servation of energy, which are also discretized on
Eulerian grids. Sharp variations in C require special
care in discretizing equation (1). For instance, it is
well known that discretizing the advective terms in
equation (1) with a second order centered finite
difference scheme can lead to the appearance of
unphysical spurious oscillations in C [Press et al.,
1992; Fletcher, 1991]. Low order schemes, such
as upwinding, provide a way to solve equation (1)
without producing oscillations in C, but are gen-
erally prone to significant numerical diffusion. An
alternative approach is to add a small diffusion term
in equation (1) [Farnetani and Richards, 1995; van
Keken et al., 1997] which artificially smoothes C.
Further significant reduction of numerical diffusion
can also be achieved with the use of correcting filters
[Lenardic and Kaula, 1993; Tackley and King,
2003] and the use of anti‐diffusive corrections
[Smolakiewicz, 1984].

[9] More sophisticated Eulerian advection schemes
have been developed in the past decades. In par-
ticular the use of Total Variation Diminishing
schemes with flux limiters [Harten, 1984; Sweby,
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1984; Roe, 1986] allow a high order discretization of
advection in regions where C varies smoothly and
low order monotone discretization of advection in
regions where C varies sharply. Providing that the
resolution is sufficient, TVD schemes with flux
limiters such as Superbee or Sweby [Roe, 1986],
yield significant reduction in numerical diffusion
[Ricard et al., 2009; Monteux et al., 2009].

[10] Another approach, popular in hydrodynamic
modeling, is to discretize equation (1) using Essen-
tially Non Oscillatory (ENO) and Weighted Essen-
tially Non Oscillatory (WENO) schemes [Harten et
al., 1987; Liu et al., 1994]. Such schemes use
polynomial interpolation of the discrete values of C,
which upon differentiation yield stencils for the
approximation of numerical fluxes. The main
idea behind these schemes is the use of either the
smoothest local stencil (for ENO schemes) or a
weighted combination of local stencils (for WENO
schemes), leading to monotonicity even in the
vicinity of discontinuities, and high accuracy wher-
ever C is smooth.

[11] Despite all these improvements, due to the
fixed nature of the grid, numerical diffusion and
dispersion in Eulerian grids cannot be completely
removed [e.g., van Keken et al., 1997; Tackley and
King, 2003] and are always significantly larger in
regions where C varies sharply.

[12] Finally, considering a total number of Degrees
of Freedom (grid cells/points) N, and assuming
optimum solvers (e.g., multigrid) or explicit schemes
are used for solving and discretizing equation (1),
the computational cost associated with the use of
Eulerian methods goes as ∼N.

2.1.2. Lagrangian (Tracer) Methods

[13] A fundamentally different approach to solve
equation (1) can be adopted using Lagrangian
methods that involve either the use of deformable
meshes or tracer particles that are advected in a given
velocity field U [Christensen and Hofmann, 1994;
vanKeken et al., 1997; Samuel and Farnetani, 2003;
Tackley and King, 2003]. In this case the Lagrangian
version of equation (1) is a set of ordinary differ-
ential equations for each component of the particle
position vector xp

dxp
dt

¼ U; ð2Þ

which can be integrated using classical methods, e.g.,
Runge‐Kutta of second order or higher. The tracers

locations xp are then converted into a continuum
field C at each time step by weighted averaging
[Tackley and King, 2003; Gerya and Yuen, 2003;
Deubelbeiss and Kaus, 2008]. The major advantage
of Tracer‐in‐Cell methods (also named tracer ratio
methods) is the fact that numerical diffusion is
negligible. In addition they allow sub grid scale
resolution. On the other hand, these methods suffer
from spurious statistical noise because the number of
particles is finite. Reducing this noise to an accept-
able level requires the use of at least 3n tracers per
cell, where n is the number of spatial dimensions.
This makes these methods computationally expen-
sive, particularly in 3D. Indeed, for the least favor-
able case (tracers particles located everywhere in the
computational domain), the cost associated with the
use of Lagrangian methods goes as N × Ntracer/cell,
where the minimum number of tracers per cell
Ntracer/cell is typically 9 in 2D and 27 in 3D
geometry. This leads to an extra cost that can
be one or two orders of magnitude larger than the
computational cost associated with Eulerian advec-
tion methods. In addition, the advection of tracer
particles may lead to incorrect results when char-
acteristics are merging [Enright et al., 2002].
Finally, the use of tracer particles is not suitable
for numerically determining geometrical quantities
such as normal vectors to interfaces or the interface
curvature, even in the case of a continuous interface
with a smooth curvature.

[14] Other Lagrangianmethods focus on tracking only
the interfaceW that marks changes/discontinuities in
the scalar field C. For instance 2D marker chains
have been proven to track accurately the evolution of
2D surfaces [van Keken et al., 1997; Lin and van
Keken, 2005; Samuel and Bercovici, 2006], and
subdivision surfaces have been successfully applied
to 3D geodynamic flows [Schmalzl and Loddoch,
2003]. However, these methods can become pro-
hibitively expensive, even in 2D, because their
associated computational cost increases with the
area of the interface tracked. Contrary to Tracer‐in‐
Cell methods for which the number of tracers
remains constant during the calculation, the area of
the interface tracked can grow without bounds. This
can lead to a significant increase in computational
cost, sometimes exceeding by far the cost associated
with advection using Tracer‐in‐Cell methods [van
Keken et al., 1997]. For instance, in chaotic con-
vective flows, the repeated action of stretching and
folding leads to efficient convective stirringwhere the
area of the interface W and consequently the com-
putational cost will grow exponentially with time.
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2.2. Dynamic Implicit Surfaces for
Advecting Sharply Varying Quantities

[15] In the following sections, the Level Set and
Particle Level Set methods will be summarized. For
more details the reader is referred to Osher and
Sethian [1988], Sethian [1999], Enright et al.
[2002], Osher and Fedkiw [2003] and references
therein.

2.2.1. Level Set Method

[16] In order to track the location of an interface that
marks sharp discontinuities in an advected field C,
Osher and Sethian [1988] have developed anEulerian
method whose basic principle consists in the use of
an implicit surface, as part of a smooth Level Set
function � of higher dimension, which replaces C in
equation (1):

@�

@t
þ U:r� ¼ 0: ð3Þ

[17] The choice of the Level Set function is free as
long as � remains continuous. However, it is con-
venient to maintain the Level Set as a signed dis-
tance function to the interface W. This guarantees
that � remains smooth and it enables a straight-
forward reconstruction of the interface W as it
corresponds exactly to the location of the zero level
set W ≡ � = 0. A major advantage of the Level
Set method over other Eulerian methods lies in
the smoothness of �, for which high order accurate
schemes can be efficiently applied, thus significantly
reducing numerical errors.

[18] When solving equation (3) with physical
velocities U (i.e., obtained by solving the Navier‐
Stokes equations) to advect �, the Level Set will be
distorted by the flow, therefore, in general, �will not
remain a signed distance function to the interface W.
In order to remain a signed distance function, the
Level Set function must be reinitialized to meet the
following Eikonal requirement at each time step:

jr�j ¼ 1: ð4Þ

[19] However, as proposed by Sussman et al.
[1994], the Level Set reinitialization step can also
be achieved by solving the following non‐linear
hyperbolic equation to steady state:

@�

@�
¼ Sð�0Þð1� jr�jÞ; ð5Þ

where�0 is the Level Set determinedwith equation (3)
prior to reinitialization, t represents a fictitious time
and S(�0) is a smoothed signed distance function:

Sð�0Þ ¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 þ "2

p ; ð6Þ

where " is taken as the grid spacingDh (assuming
a constant grid spacing). Note that solving for
equation (5) is not computationally prohibitive as
the steady state is generally reached within 1 to 2
fictitious time iterations, with a time stepDt = 0.1
Dh [Sussman et al., 1994]. Similarly to Sussman
et al. [1994] and Min and Gibou [2007], the spa-
tial derivatives in equation (5) can be approximated
with a monotone second order Godunov‐Hamilto-
nian scheme. The time discretization of equation (5)
is performed via a second order TVD Runge‐Kutta
(predictor‐corrector) scheme [Shu and Osher, 1988;
Min and Gibou, 2007].

[20] As noted by Sussman et al. [1994] such a
reinitialization step tends to produce artificial dis-
placement of the zero Level Set, which leads even-
tually to weak mass conservation of the Level
Set method. In fact the reinitialization step could
be avoided by constructing extension velocities
[Adalsteinsson and Sethian, 1999; Sethian, 1999] for
advecting the Level Set when solving equation (3).
This has the advantage that the Level Set is not dis-
torted and therefore no reinitialization is necessary.
However, the use of tracers in the Particle Level Set
method prevents the artificial displacement of the
zero Level Set during the reinitialization step. Thus,
for simplicity we do not construct extension veloc-
ities and maintain the Level Set as a signed distance
function by solving equation (5).

[21] Finally, in cases where the velocity field is
affected by C, the Level Set needs to be converted
into a compositional field C as follows:

C ¼
1 if � > þ l
0 if � < � l
Ci if j�j � l

8<
: ð7Þ

where l represents the half grid cell diagonal
length (e.g., in 3D Cartesian geometry l =
0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2 þDz2

p
). Ci corresponds to the

value of the compositional field in cells that are
crossed by the zero Level Set. This quantity can
be calculated as the volume fraction of positive �
to negative � contained in the cell following, for
instance, the approach described by Sussman and
Puckett [2000] or Ménard et al. [2007].

[22] Overall, despite the additional computational
cost involved in the reinitialization or the con-
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struction of extension velocities, the Level Set
method is computationally efficient. Indeed, similar
to the other Eulerian methods listed in section 2.1.1,
the computational cost is O(N). However, this limit
is an upper bound as equations (1), (4) or (5) only
need to be solved in the vicinity of the zero Level Set
function, instead of in the whole domain. Therefore
the effective computational cost of the method will
vary with time and with the problem considered, but
will always be bounded by N. Moreover, the Level
Set method has proven to be particularly efficient in
tracking interfaces of a sharply varying advected
field, even in the presence of strong topological
changes [Sethian, 1999, and references therein].

[23] In addition, this formulation allows a straight-
forward calculation of critical geometric quantities
such as the unit normal vector to the interface:

n ¼ r�

jr�j ð8Þ

and the mean curvature:

G ¼ r:n; ð9Þ

which are required in order to evaluate surface ten-
sion acting on the interface W [Brackbill et al.,
1992]. This can be relevant to several geodynamic
scenarios such as metal diapir fragmentation in a
magma ocean during the earliest stages of terrestrial
planet evolution [Rubie et al., 2003; Ichikawa et al., 2010]
or gas bubble dynamics in magma flows [Manga

and Stone, 1994]. Note that additional useful geo-
metric quantities can be derived from the Level Set
such as the area of the interface W [Sethian, 1999].
This important advantage of the Level Set method
over Lagrangian advection is illustrated in Figure 1,
which displays the surface tension magnitude and
vectors of a 2D heterogeneity located in the center
of a square domain discretized with 100 × 100
identical cells. For simplicity we have considered a
static problem, therefore advection is totally absent.
However, the compositional field is either calculated
using a Tracer‐in‐Cell method with 25 tracers/cell
(Figures 1a and 1b), or using the Level Set method
(Figures 1c and 1d). The surface tension is calcu-
lated using the Continuum Surface Force (CSF)
formulation of Brackbill et al. [1992], involving
second order derivatives of either � (for the Level
Set method) or C (for the Tracer‐in‐Cell method) in
the vicinity of the interface. To the naked eye,
both Tracer‐in‐Cell and Level Set methods lead to
indistinguishable compositional fields C (compare
Figures 1a and 1c). However, the resulting surface
tension (Figures 1b and 1d) are very different. The
Tracer‐in‐Cell method yields incoherent direction,
sign andmagnitude of the surface tension (Figure 1b).
This is a direct consequence of the discontinuity inC,
which is well captured by the Tracer‐in‐Cell method,
leading to numerical instabilities when determining
the normal vectors n and the curvature G. On the
other hand, the use of a smooth function in the Level
Set method allows accurate determination of the
surface tension acting on the interface (Figure 1d).
Of course, there are ways to limit these problems
in Lagrangian methods, for instance by artificially
smoothing C near the interface and by using first
order differencing. However, this alters the accuracy
of the solution.

[24] Despite its advantages, the Level Set method
still suffers from inaccuracies due to numerical
diffusion and dispersion (even though the use of a
smooth function � significantly reduces the problem),
artificial displacement of the zero Level Set during
the reinitialization process, and does not allow effi-
cient capture of sub‐grid scale features [Suckale et
al., 2010]. For these reasons, the Level Set method
often fails to conserve mass accurately [Sussman et
al., 1994; Enright et al., 2002]. We remark that on
the contrary, Lagrangianmethods are not affected by
these particular difficulties.

2.2.2. Particle Level Set Method

[25] More recently, a Lagrangian improvement to
the Level Set method was developed by Enright et

Figure 1. Comparison between the (a and b) Tracer‐
in‐Cell and (c and d) Level Set methods. Compositional
fieldC (Figures 1a and 1c) and surface tension (Figures 1b
and 1d) vectors and magnitude of a static, disk‐shaped,
heterogeneity in a 2D square domain discretized using
100 × 100 identical cells.
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al. [2002]. It consists of using Lagrangian tracer
particles that are not prone to numerical diffusion
to perform two sets of corrections to the Level Set
in regions where its accuracy is low (i.e., mainly
where the Level Set smoothness is low). Initially,
as depicted in Figure 2, the tracers are randomly
located at a distance ±3Dh = 3 max(Dx, Dy, Dz)
on both sides the zero Level Set. Each tracer par-
ticle is considered to be a sphere of radius rp cen-
tered on xp, which defines locally the zero Level
Set by being tangent to the interface (Figure 2).
Therefore, in addition to their position xp, tracers
carry two pieces of information: a sign sp: −1 for
tracers initially located in regions where � < 0, +1
otherwise; and a “radius” rp, which is the distance
� (xp) between the tracer’s location and the zero
Level Set. � (xp) is the local value of the Level Set
at xp determined by linear interpolation, using the
grid values of the closest neighboring points sur-
rounding each tracer. Note that rp is bounded by a
minimum and a maximum value rmin and rmax,
respectively:

rp ¼ minðrmax;maxðj�ðxpÞj; rminÞÞ; ð10Þ

where we choose rmin = 0.1min (Dx, Dy, Dz) and
rmax = 0.5min (Dx, Dy, Dz) as proposed by
Enright et al. [2002]. We have tested other values,
without noticeable improvement. Note that contrary
to Tracer‐in‐Cell methods, here the tracer particles
are considered to be massless, and are therefore
allowed to overlap. In fact, an optimum tracking of
the interface is obtained for tracer particles that
closely overlap each other [Enright et al., 2002].

[26] The first set of corrections aims to reduce
the errors/inaccuracies in solving the Level Set
equation (3). Tracers are used to reconstruct the

interface in those regions, identified as follows:
positive particles that are found in the region E+

where the Level Set function is negative and
conversely negative particles that are found in the
region E− where the Level Set function is posi-
tive, define regions where the Level Set needs to
be corrected (Figure 3a).

[27] In order to reduce the errors the following
corrections �+ and �− are calculated in regions E+

and E −

�þ ¼ maxð�p; �
þÞ; 8p 2 Eþ ð11aÞ

�� ¼ minð�p; �
�Þ; 8p 2 E�; ð11bÞ

where �+ and �− are first initialized to �, and �p is
a local Level Set function associated with each
tracer particle:

�pðxÞ ¼ spðrp � jx� xpjÞ: ð12Þ

Figure 2. Schematic representation of the interface W
(zero Level Set) in the Particle Level Set method. The
radius rp of positive (red) and negative (blue) Lagrangian
tracer particles of location xp are used to better track the
evolution of zero Level Set.

Figure 3. (a) Schematic representation of the Particle
Level Set method prior to the correction step. Due to
inaccuracies in solving the Level Set equation (3) posi-
tive (red) and negative (blue) particles have “escaped”
and define E+ and E− regions where the Level Set will be
corrected. (b) Schematic representation of the Particle
Level Set method after the correction step. See text for
further explanation.
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[28] Finally, �+ and �− are merged back into a
single, corrected Level Set by giving priority to
values that are closer to the interface (Figure 3b):

� ¼ �þ if j�þj � j��j
�� if j�þj > j��j

�
ð13Þ

[29] The second correction is applied to the Level
Set in order to reduce the errors introduced in
the reinitialization step (see section 2.2.1) during
which the zero Level Set may have been errone-
ously displaced. Instead of correcting explicitly
the reinitialized Level Set �, each tracer particle’s
radius rp is readjusted according to equation (10)
without altering the particle location. This “static”
radius adjustment will favor the Level Set correc-
tions performed on the next time step.

[30] The Particle Level Set algorithm can be sum-
marized as follow:

[31] 1. Advect tracer particles by solving equation (2).

[32] 2. Solve the Level Set equation (3).

[33] 3. Apply a set of corrections to the Level Set
function.

[34] 4. Reinitialize the Level Set by solving
equation (4) or (5).

[35] 5. Adjust the particles radii according to
equation (10) (i.e., implicit correction of the Level
Set performed on the next time step).

[36] 6. Move to the next time step.

[37] In order to remain efficient, the above algo-
rithm must be supplemented by particle re‐seeding
and deletion procedures. Indeed, as the Level Set
evolves, the interface may stretch or be distorted by
the flow. Consequently the number of tracer par-
ticles per cell in the vicinity of the zero Level Set
(defined as ∣�∣ ≤ 3 Dh = 3 max (Dx, Dy, Dz)) may
decrease to 0, or on the contrary become unneces-
sarily high. It may also happen that tracer particles
migrate too far away from the zero Level Set, where
they become useless. Therefore, particles are deleted
when they are found in regions where ∣�∣ > 3Dh or
when they are located within the region ∣�∣ ≤ 3Dh
and their number per cell exceeds 2Ntracer/cell. In
addition, tracers are added in cells within the region
∣�∣ ≤ 3Dh if the number per cell is 0. The cost
involved in deletion/re‐seeding procedures is simi-
lar to that involved in advecting the tracers particles.
However, contrary to the steps listed in the Particle
Level Set algorithm, the re‐seeding and deletion
procedures do not need to be performed at every

time step. As remarked by Enright et al. [2002], the
frequency of re‐seeding and deleting particles is
problem dependent. In the examples presented in
section 3 we find re‐seeding and deleting every five
time steps, as opposed to every time step, did not
affect our results significantly. However, the com-
putational savings can be substantial, in particular
for 3D geometries. Finally, note that as long as there
is at least one tracer per cell in the region ∣�∣ > 3Dh,
re‐seeding does not lead to numerical diffusion. This
is due to the fact that for the Particle Level Set
method, the location of the interface (determined by
the corrected zero Level Set) is not affected by the
addition or removal of tracer particles at a given
time.

3. Comparison of the Numerical
Methods for Advection in Geodynamic
Flows

[38] We have set up a series of numerical experi-
ments in 2D and 3D Cartesian geometries to test
the accuracy and the efficiency of the Particle Level
Set method. As a reference, we have chosen to
compare these two methods with the Tracer‐in‐
Cell approach only, because among the popular
methods for solving equation (1), the Tracer‐in‐Cell
method is probably one of the most robust and
versatile.

[39] We first briefly describe the set of governing
equations (in addition to equation (1)), which
determine the velocity field U: the conservation of
mass, momentum and energy. This set of equations
defines our geodynamic framework. Next we briefly
describe the numerical methods used to solve the set
of governing equations. This will be followed by
comparisons of the methods for 2D and 3D geody-
namic flows.

3.1. Governing Equations and Numerical
Methodology

[40] We consider here thermochemical convection
of a Boussinesq viscous fluid in the limit of infinite
Prandtl number. In this case, fluid motions U may
be described by the following set of dimensionless
conservation equations for mass:

r � U ¼ 0; ð14Þ

the conservation of momentum:

rp�r � �þ ðRa T � Rb CÞ~ez ¼ 0; ð15Þ
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and the conservation of energy:

@T

@t
þ U:rT ¼ r2T ; ð16Þ

where p is the dynamic pressure, T is the potential
temperature, t is the time, � is the deviatoric viscous
stress tensor, and~ez is a unit vector along the vertical
z axis. These equations are non‐dimensionalized
using the following characteristic scales: the thick-
ness of the convective domain H for distances, the
super‐adiabatic temperature difference between the
top and bottom surfaces DT for temperature, and
H2/� for time, where � is the thermal diffusivity.
The equation of state for the dimensionless density is:
r = r0 (1 − aT + CDrc/r0), where r0 is the reference
density,a is the thermal expansion, andDrc = r (C =
1) − r (C = 0) is the compositional density contrast.

[41] The first non‐dimensional number that appears
in the conservation of momentum is a thermal
Rayleigh number, Ra = r0aDTgH3/(h0�), where g
is the gravitational acceleration and h0 is the ref-
erence viscosity. The second is a compositional
Rayleigh number, Rb = DrcgH

3/(h0�).

[42] The whole set of conservation equations is
solved using a finite volume code StreamV3D. Two
different approaches are used to solve the Stokes
(mass and momentum) equations. In 2D, a pure
stream function formulation is adopted [Samuel,
2009]. This reduces the set of Stokes equations to
one biharmonic equation for the stream function that
automatically satisfies the conservation of mass
[e.g., Christensen, 1989; van Keken et al., 1997].
The stream function is calculated at nodal points,
leading to a natural finite volume configuration
where the velocity components are located at the
center of each cell surface.

[43] For 3D cases, the mass and momentum equa-
tions are solved using a primitive variable formula-
tion on a staggered grid with a SIMPLER algorithm
[Patankar, 1980; Albers, 2000].

[44] The set of discretized Stokes equations is solved
in 2D with a fast sparse direct solver (superLU
[Demmel et al., 1999]) or with a robust iterative
conjugate gradient method [Press et al., 1992] for
cases with a large number of points.

[45] A finite volume formulation is used to dis-
cretize the energy equation (16) on a staggered grid
[e.g., Patankar, 1980; Albers, 2000]. Two approaches
are available for treating the advection term in
equation (16) in StreamV3D: a pure Eulerian
approach where a Total Variation Diminishing
scheme with various flux limiters is used [Sweby,

1984; Roe, 1986], or the Tracer‐in‐Cell method
[Gerya and Yuen, 2003; Samuel and Tackley,
2008]. However, in this paper the spatial deriva-
tives in equation (16) are discretized using a pure
Eulerian TVD scheme with Sweby a flux limiter
[Sweby, 1984]. Time derivatives are approximated
by explicit, first order finite differences subject to a
Courant‐Friedrich‐Lewy stability criteria.

[46] Finally, equation (1) is either solved using the
Particle‐in‐Cell or the Particle Level Set method.
Unless specified otherwise, for tests with the Particle
Level Set method, the Level Set equation (3) is
discretized with the same finite volume TVD scheme
with a Sweby flux limiter, as for the energy equation.

[47] The code has been successfully benchmarked
against analytical solutions (see appendix A),
purely thermal and thermo‐chemical benchmarks
[Blankenbach et al., 1989; van Keken et al., 1997]
including strongly variable viscosity cases (see
also section 3.2 and Appendix A).

3.2. Two‐Dimensional Flows

[48] We consider the well‐known thermochemical
benchmarks presented by van Keken et al. [1997]
in a 2D Cartesian box of aspect ratio l, with dif-
ferent velocities and temperature boundary condi-
tions and different values for Ra and Rb. The initial
condition for the composition corresponds to a hori-
zontally layered structure of thickness db. The time
evolution of several quantities is monitored, in par-
ticular the Root Mean Square velocity:

Vrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V

Z
kUk2 dV

s
; ð17Þ

and the entrainment e above a given dimensionless
height de:

e ¼ 1

�n�1db

Z z¼1

z¼de

CdV ; ð18Þ

where n is the number of spatial dimensions. In
addition, the mass error [Tackley and King, 2003]
was monitored for each run:

DM ¼ ðR CdV Þt � ðR CdV Þt¼0

ðR CdV Þt¼0

: ð19Þ

3.2.1. Rayleigh‐Taylor Benchmarks

[49] The first set of numerical experiments corre-
sponds to a gravitational destabilization of a light
layer of initial thickness db = 0.2 in a 2D Cartesian
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box of aspect ratio l = 0.9142. In this case Ra is
set to 0 and Rb to 1. Rigid, isothermal boundary
conditions are applied on horizontal surfaces while
the vertical surfaces are reflective. The layer is
initially deflected by w = 0.02cos(px/l). Three
cases are considered for which Dh, the ratio of the
viscosity in the dense layer hr to the reference
viscosity h0, is 1, 10 and 100.

[50] Before comparing the results obtained using
the Tracer‐in‐Cell and the Particle Level Set

methods, we illustrate further the use of implicit
surfaces in advecting a sharply varying scalar fieldC.
Figure 4 shows the results of one Rayleigh‐Taylor
benchmark case with constant viscosity (Dh = 1)
at dimensionless time t = 500. Figures 4a–4c are
obtained using the Level Set method on a 240 ×
240 cell grid while Figures 4d–4f are obtained
using the Particle Level Set method on a 120 ×
120 cell grid. Figures 4a and 4d display the Level
Set and the interface between the two materials is
delineated by the black contour, representing � = 0.
One can clearly see that the use of a signed distance
function for the Level Set maintains a smooth field
�. Although we advect and reinitialize the Level Set
in the whole domain, which represents a computa-
tional cost of O(N), this could be reduced by con-
sidering only a small region in the vicinity of the
interface, defined as ∣�∣ ≤ 3 max (Dx, Dz). As
shown in Figures 4b and 4f, this can considerably
reduce the computational cost, as the domain ∣�∣ ≤
3 max (Dx, Dz) depicted in gray is only a small
fraction of the entire grid. Zooming on a small
region, displayed in Figures 4b and 4e, the Level
Set and Particle Level Set methods differ in the use
of positive (red) and negative (blue) Lagrangian
tracer particles (Figure 4e) to apply corrections to
the Level Set �. The Lagrangian particles also only
need to be placed in the region ∣�∣ ≤ 3 max (Dx,
Dz). Figures 4c and 4e show the results of the
Level Set conversion into a compositional field C,
for the Level Set and Particle Level Set methods,
respectively. The compositional field has pre-
served a very sharp variation across the interface. The
C fields for both Level Set and Particle Level Set
are very similar, however the Particle Level Set
displays finer details despite the grid resolution
being twice coarser than the one used for the Level
Set method.

[51] Figure 5 shows the comparison between the
Particle Level Set and the Tracer‐in‐Cell method
for the three Rayleigh‐Taylor benchmark cases
(corresponding to h0 = 1, 0.1 and 0.01), at
dimensionless time t = 1500, and for two grid
resolutions (60 × 60 cells and 120 × 120 cells).
Although the results obtained with the Particle
Level Set and Tracer‐in‐Cell methods show com-
parable global features, in detail, differences can
be observed between the methods and between fine
and coarse grid cell results. For instance, the heights
of the rising plume heads observed for Dh = 1 and
Dh = 10 on the coarse grid with the Tracer‐in‐Cell
method (Figures 5a and 5e) are lower than what is
foundwith the Particle Level Set method (Figures 5b
and 5f). These differences between the Tracer‐in‐

Figure 4. Comparison between (a–c) Level Set and
(d–f) Particle Level Set methods in the case of the
Rayleigh‐Taylor benchmark with constant viscosity
(Dh = 1), at t = 500. Figures 4a and 4d show the Level
Set �. The black contour delineates the interface
between the two materials (i.e., � = 0). In Figures 4b
and 4e the Level Set is shown in gray scale in the
vicinity of the interface ∣�∣ < 3Dx = 3Dz = 3Dh. A
zoom on a small region is displayed with the zero
Level Set (black contour) and the local value of the
Level Set �. For the Particle Level Set positive (red)
and negative (blue) Lagrangian tracer particles are dis-
played in the zoom window (Figure 4e). Figures 4c
and 4f show compositional field C. Red (C = 1) corre-
sponds to the light material initially overlaid by a
dense viscous fluid represented in blue (C = 0).
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Cell and Particle Level Set method are reduced on
the finer grid. Such discrepancies between methods
were also observed in previous studies for the
same benchmark [van Keken et al., 1997; Tackley
and King, 2003]. As theory predicts, the growth
rate of Rayleigh‐Taylor instability is exponential
[Chandrasekhar, 1961]. Therefore, even small dif-
ferences between the methods are exponentially
amplified with time.

[52] The time evolution of Vrms and the entrainment
e above 0.2 for the three benchmark cases for the
Particle Level Set method on a 120 × 120 cell grid,
using 25 tracers per cell are displayed in Figures 6a
and 6b, respectively. These quantities compare
well with the results published by van Keken et al.
[1997] and Tackley and King [2003], which shows
that the Particle Level Set method allows an accurate
reproduction of the Rayleigh‐Taylor benchmarks.

[53] We have performed tests to investigate the
minimum number of tracers per cell Ntracer/cell

necessary to model advection accurately with the
Particle Level Set method. Results are displayed in
Figure 7 that shows the maximum absolute value of
the mass error M calculated during the Rayleigh‐
Taylor benchmark with Dh = 100 as a function of
Ntracer/cell for three different grid resolutions. When
Ntracer/cell = 0 (i.e., using the pure Eulerian Level
Set method) the mass error can be very large, on
the order of several tens of percent. Note however
that this could significantly be reduced if extension
velocities were used to advect the Level Set
[Sethian, 1999; Adalsteinsson and Sethian, 1999;
Suckale et al., 2010]. Using only one tracer/cell

reduces mass errors to 1–2%. Finally, forNtracer/cell ≥
4 mass errors are reduced to an acceptable level (i.e.,
≤1%) for any grid size. Again using extension
velocities or a more accurate reinitialization of the
Level Set one could reasonably expect that even

Figure 5. Results of the Rayleigh‐Taylor benchmark: Compositional fields C at t = 1500 for various viscosity ratios
Dh = 1, 10, 100. Red (C = 1) corresponds to the dense material and blue (C = 0) corresponds to the light material.
Figures 5a, 5b, 5e, 5f, 5i, and 5j correspond to a 60 × 60 cells grid while Figures 5c, 5d, 5g, 5h, 5k, and 5l display the
results obtained on a 120 × 120 cells grid. The results obtained with Tracer‐in‐Cell and the Particle Level Set methods
are displayed. Compare with Figures 2, 4 and 6 of van Keken et al. [1997] and Figure 1 of Tackley and King [2003].

Figure 6. Results for the Particle Level Set method.
Time evolution of (a) the RMS velocity and (b) the
entrainment above z = 0.2 for the Rayleigh‐Taylor
benchmark with various viscosity ratios. Compare with
Figures 3, 5 and 7 of van Keken et al. [1997] and Figure 2
of Tackley and King [2003].
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smaller values of Ntracer/cell necessary to model
advection accurately with the Particle Level Set
method. This should be investigated in the future.
For comparison we have displayed in Figure 7
similar curves obtained with the Tracer‐in‐Cell
method. Larger values of Ntracer/cell (i.e., 9) are nec-
essary to reduce mass errors below 1%. Overall, we

verified with all the 2D and 3D cases presented in
this paper the following rules of thumb for the
minimum value of Ntracer/cell required in order to
conserve mass accurately in a domain with n spatial
dimensions:

Particle Level Set : Ntracer=cell � 2n ð20aÞ

Tracer � in� Cell : Ntracer=cell � 3n: ð20bÞ

The above rules are compatible with previous stud-
ies using the Tracer‐in‐Cell method [van Keken et
al., 1997; Tackley and King, 2003; Gerya and
Yuen, 2003] and Particle Level Set method
[Enright et al., 2002, 2005].

[54] Additional selected quantities for these cases
with various grid resolutions are listed in Table 1.
The values obtained with the Particle Level Set or
the Tracer‐in‐Cell method compare well with those
listed in van Keken et al. [1997] and Tackley and
King [2003]. In addition, both methods conserve
mass within less than 1% for any grid size. For
reference we have included in Table 1 several cases
calculated with the Level Set method, which illus-
trates that mass conservation for the pure Eulerian
Level Set method is more problematic and requires
higher grid resolution.

[55] Figure 8 shows the computational time spent
for advecting the compositional field tadv normal-

Figure 7. Results for the Rayleigh‐Taylor benchmark
with a viscosity ratio Dh = 100. Maximum value of
the mass error for various grid resolutions as a function
of the number of tracer particles per cell, for both the
Tracer‐in‐Cell (dashed line and circles) and the Particle
Level Set (solid lines and triangles) methods. The gray
area represents the domain where the mass is reasonably
well conserved (i.e., max ∣M∣ < 1%).

Table 1. Selected Quantities for the Rayleigh‐Taylor Benchmark Problemsa

Method Grid Growth Rate g t (max Vrms) max Vrms max ∣DM∣(%) mean ∣DM∣(%)

Dh = 1
Level Set 60 × 60 0.006607 228.88 0.002925 4.51 2.29
Level Set 120 × 120 0.011066 215.87 0.003051 1.68 0.66
Level Set 240 × 240 0.011519 211.52 0.003093 0.04 0.02
Particle Level Set 60 × 60 0.010643 215.57 0.003087 0.56 0.12
Particle Level Set 120 × 120 0.011549 212.22 0.003109 0.18 0.04
Tracer‐in‐Cell 60 × 60 0.011143 213.72 0.003135 0.14 0.05
Tracer‐in‐Cell 120 × 120 0.011953 214.04 0.003129 0.07 0.03

Dh = 10
Level Set 60 × 60 0.040860 78.48 0.009087 3.03 1.14
Level Set 120 × 120 0.044414 75.89 0.009269 1.72 0.59
Level Set 240 × 240 0.046040 73.45 0.009480 0.18 0.07
Particle Level Set 60 × 60 0.046090 71.98 0.009375 0.83 0.24
Particle Level Set 120 × 120 0.046034 74.07 0.009414 0.63 0.10
Tracer‐in‐Cell 60 × 60 0.043853 75.86 0.009193 0.34 0.10
Tracer‐in‐Cell 120 × 120 0.046188 72.54 0.009185 0.31 0.59

Dh = 100
Level Set 60 × 60 0.09787 55.81 0.01212 3.67 1.37
Level Set 120 × 120 0.10309 51.33 0.01414 0.64 0.20
Level Set 240 × 240 0.10359 50.65 0.01445 0.27 0.09
Particle Level Set 60 × 60 0.10477 51.06 0.01360 0.98 0.44
Particle Level Set 120 × 120 0.10354 51.09 0.01405 0.84 0.23
Tracer‐in‐Cell 60 × 60 0.10343 52.90 0.01292 0.52 0.30
Tracer‐in‐Cell 120 × 120 0.10138 51.23 0.01392 0.33 0.16

aFor the cases calculated with the Particle Level Set and Tracer‐in‐Cell method, 25 tracers per cell are used.
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ized by tStokes, the time spent solving the Stokes
equations. For small amounts of tracers per cell the
computational cost involved in advection is larger
for the Particle Level Set method than for the
Tracer‐in‐Cell method. However, for Ntracer/cell ≥ 9
(recall that this is also the minimum value re-
commended for the Tracer‐in‐Cell method in 2D
according to equation (20b)) the Particle Level Set
method is more efficient than the Tracer‐in‐Cell
method. For instance, for Ntracer/cell = 9 andDh = 1,
the Particle Level Set method is about 30% faster
than the Tracer‐in‐Cell method. The efficiency of
the Particle Level Set method over the Tracer‐in‐
Cell is even more pronounced if one considers that
a smaller value of Ntracer/cell is required for the
Particle Level Set method, as previously discussed
(Figure 7 and equation (20)). Taking this into
account the Particle Level Set method is at least
∼30 to 100% faster than the Tracer‐in‐Cell method.
Further improvement in efficiency for the Particle
Level Set method would be achieved by solving
the Level Set equation only in the vicinity of the
interface (as opposed to the whole domain as we
do here). It is also interesting to remark that in
these 2D benchmarks even for variable viscosity,
advection represents a significant fraction of the
computational time (at least 15 to 20% for variable
viscosity, and more for constant viscosity). There-
fore in these experiments reducing the time spent

for advecting the compositional field will make a
significant impact on the overall calculation time.

3.2.2. Entrainment of a Thin Dense Layer

[56] Here, with Ra = 3 105, Rb = 4.5 105 and l = 2
we consider the entrainment of a dense layer of
initial thickness db = 0.025, with constant viscosity.
An analytical initial condition for temperature is
prescribed (see van Keken et al. [1997] for the
exact expression). The horizontal surfaces are free
slip and isothermal and the vertical sidewalls are
reflective.

[57] For this benchmark we present results obtained
on a 120 × 60 cell grid for the Tracer‐in‐Cell and
the Particle Level Set methods, with 25 tracers/cell.
Figure 9 displays a comparison between compo-
sitional fields at several dimensionless times t
obtained using the Tracer‐in‐Cell and the Particle
Level Set methods for solving equation (1). The
two methods yield very similar results until t =
0.02, after which the evolution diverges slightly.
Note that the Particle Level Set method does not
suffer from spurious statistical noise present in the
Tracer‐in‐Cell method. Indeed, while fluctuations
in the composition C within the dense layer are
visible in Figure 9 (left) at t = 0.01, they are absent
in Figure 9 (right) at t = 0.01.

[58] Figure 10 displays the time evolution of Vrms

and the entrainment e above 0.2 and shows a good
quantitative agreement between the Particle Level
Set and the Tracer‐in‐Cell methods. Similar to
previous studies [van Keken et al., 1997; Samuel
and Farnetani, 2003; Tackley and King, 2003]
for t > 0.02 results tend to diverge between the two
methods, probably due to the chaotic nature of the
flow where small divergences are exponentially
amplified with increasing time. Therefore we can
conclude that here again the Particle Level Set
method allows an accurate reproduction of the
thermochemical entrainment benchmark.

[59] We have tested the influence of the accuracy of
the numerical scheme for discretizing equation (3).
In agreement with Enright et al. [2005], the results
displayed in Figure 11 clearly show that higher
order spatial (fifth order WENO) and temporal
(third order Runge‐Kutta) discretization yield very
similar results for both velocities (Figure 11a) and
entrainment (Figure 11b). In addition, in Figure 12a
we have compared the time evolution of the
entrainment e above z = 0.2 obtained with the
Particle Level Set method using various flux lim-
iters. Similarly, the choice of the flux limiter does

Figure 8. Computational cost involved in solving the
advection equation (1) for the Rayleigh‐Taylor bench-
mark using 60 × 60 grid cells, for either a viscosity ratio
Dh = 100 (red) or for constant viscosity (black). The
Tracer‐in‐Cell (dotted curves and circles) and Particle
Level Set (solid curves and triangles) methods are
compared as a function of the numbers of tracers/cell
used. The computational costs are normalized by tStokes,
the computational time involved in solving the Stokes
equations. Here about 600 and 1250 uneven time steps
were necessary to reach the final time t = 2500 for Dh =
1 and 100, respectively.
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not lead to substantial differences. This is mainly
due to the fact that the level set is smooth, therefore
the flux limiters are not really “activated” in the
vicinity of the interface. This is clearly shown in
Figure 12a where the entrainment obtained without
using a flux limiter (basic centered scheme) is
similar to cases that use a flux limiter for solving
the Level Set equation (3). In addition, the presence

of tracer particles would also tend to minimize
possible differences between various flux limiters.

[60] We performed convergence tests to investigate
the effect of the number of tracers per cell used for
the Particle Level Set method on the entrainment e
above z = 0.2. Results, shown in Figure 12b indi-
cate that for fine grids Ntracer/cell has a weak influ-
ence on the entrainment (as long as Ntracer/cell > 0).

Figure 9. Results of the entrainment layer benchmark: five snapshots in time of the Compositional fields C obtained
using (left) the Tracer‐in‐Cell and (right) the Particle Level Set methods.
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This means that only one tracer per cell is sufficient
to resolve accurately sub‐grid scale features with
the Particle Level Set method. However, this is not
a sufficient condition since, as pointed out in
section 3.2.1 and in Figure 7, at least 4 tracers per
cell are needed to reduce mass errors to less than
1% in 2D.

[61] Note that with such a small initial layer
thickness db, sub‐grid scale resolution is critical for
this benchmark problem. This is partly the reason
why Eulerian approaches fail to reproduce this
benchmark [van Keken et al., 1997] (in addition to
diffusion and dispersion errors). To illustrate this
further, we have performed experiments with the
pure Eulerian Level Set method (i.e., no tracers) and
find that even on a 240 × 120 grid the entrainment e
above z = 0.2 is almost zero, throughout the whole
calculation. This underestimation of the entrainment
is a direct consequence of the fact that pure Eulerian
Level Set fails to capture sub‐grid scale features,
as shown by Suckale et al. [2010]. The ability to
resolve sub‐grid scales represents certainly one of
the most attractive advantages of the Particle Level
Set method compared to other Eulerian approaches,
including the pure Eulerian Level Set method itself.

[62] In summary, the comparisons performed
between implicit surfaces and Tracer‐in‐Cell meth-
ods for 2D flows have shown that the Particle Level
Set method can yield similar results to the Tracer‐in‐
Cell method at the same grid resolution. This
includes cases where sub‐grid scale resolution is
critical.

3.3. Three‐Dimensional Flows

[63] Advection in three‐dimensional flows is com-
putationally expensive, in particular when using
Lagrangian methods. Therefore we have conducted
3D experiments to compare the accuracy and the
computational efficiency of the Tracer‐in‐Cell and
the Particle Level Set methods.

[64] We have selected three geodynamic problems,
the first two involving strong topological changes
in C and sub‐scale flow that are particularly diffi-
cult to model accurately. In these problems, pure
Eulerian methods solving equation (1) would auto-

Figure 10. Results of the entrainment layer bench-
mark. Time evolution of (a) the RMS velocity and
(b) the entrainment above z = 0.2 obtained using the
Tracer‐in‐Cell and the Particle Level Set methods. Com-
pare with Figure 12 of van Keken et al. [1997] and with
Figure 4 of Tackley and King [2003].

Figure 11. Results of the entrainment layer benchmark
with the Particle Level Set method on a 120 × 60 cell
with 25 tracers/cell. Comparison between the results
obtained using high order time and space discretization
(third order TVD Rung Kutta and fifth order WENO
scheme for spatial derivatives, red dashed curves) and
results obtained with a lower accuracy (black curves)
for both time (first order explicit) and space (second
order TVD with Sweby flux limiter). Time evolution
of (a) the RMS velocity and (b) the entrainment above
z = 0.2.
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matically fail to compare well with the more robust
Lagrangian (e.g., Tracer‐in‐Cell) methods. For all
cases presented in this section, we use 27 tracers/cell
for both the Tracer‐in‐Cell and Particle Level Set
methods.

3.3.1. Convective Stirring of a Passive
Heterogeneity

[65] We consider the homogenization via convective
stirring of a passive heterogeneity in a 1 × 1 × 1
domain discretized using 60 × 60 × 60 grid cells. The
horizontal surfaces are free‐slip and isothermal and
the vertical walls are reflective. The values of the
governing parameters are Ra = 107 and Rb = 0. The
initial temperature condition, shown in Figure 13a
was obtained after reaching a statistical steady
state. At t = 0 a spherical passive heterogeneity
(C = 1) of dimensionless radius 0.25 is placed in the
center of the domain, while the composition in the
surrounding fluid is initialized toC = 0 (Figure 13b).
The calculation is run for several thousand time
steps, which would scale for the Earth to a few
billion years.

[66] Figure 14 displays snapshots in time of the iso‐
surface C = 0.5 and of a horizontal cut at mid‐depth
obtained by solving equation (1) with the Tracer‐
in‐Cell (left) or the Particle Level Set (right)
methods. Despite the strong topological changes
due to the repeated action of convective stretching
and folding, the results obtained with both methods
agree very well. This remains true even in the late
stages, where the compositional field becomes
more homogeneous.

[67] The time evolution of the composition is also
monitored via histograms that show the distribution
of C at dimensionless time corresponding to the
snapshots displayed in Figure 15. The histograms
obtained with the Tracer‐in‐Cell and Particle Level

Figure 12. Results of the entrainment layer benchmark
with the Particle Level Set method. Time evolution of
the entrainment above z = 0.2. (a) Influence of the flux
limiters applied for solving equation (3) on a 120 ×
60 cell with 16 tracers/cell. (b) Convergence test with
two grid resolutions and various numbers of tracers/cell.

Figure 13. Initial condition for the 3D passive convective stirring test. (a) Dimensionless temperature T. (b) Dimen-
sionless velocity field (arrows) and iso‐contour displaying the interface between the passive heterogeneity and the
surrounding mantle.
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Set method also agree very well. They both show
that the C distribution evolves towards a Gaussian
shape as a result of vigorous convective stirring.

[68] This first 3D test demonstrates the ability
of the Particle Level Set method to compete with
robust Tracer‐in‐Cell advection. Moreover, the
Particle Level Set method allows a significant
reduction in computational time because only tra-
cers near the interface are involved, contrary to the
Tracer‐in‐Cell method where tracers are located
everywhere in the computational domain. Never-
theless, in this particular example the computa-
tional gain of using the Particle Level Set method
decreases with time because the area occupied by
the zero Level Set increases exponentially with
time as a result of convective stirring. Consequently,
the number of tracers particles used to correct
the Level Set increases. However, this increase is
bounded by the total number of grid cells, and sta-
bilizes around an asymptotic value Ntrmax ∼ N ×

Ntracer/cell, corresponding ultimately to a fully
homogenized state.

3.3.2. Destabilization of a Dense Layer

[69] We consider the homogenization via convective
stirring of a passive heterogeneity in a 2 × 2 × 1
domain discretized using 60 × 60 × 30 grid cells. The
horizontal surfaces are free‐slip and isothermal and
the vertical walls are reflective. The values of the
governing parameters are Ra = 107 and Rb = 2 106.
Similar to the previous case, the initial temperature
condition was obtained after running a convection
calculation until reaching a statistical steady state.
At t = 0 a dense layer of dimensionless thickness
0.3 (C = 1) is placed in the bottom of the domain,
while the composition in the overlying fluid is ini-
tialized to C = 0. The calculation is run until com-
plete destabilization and homogenization of the
dense layer is achieved.

Figure 14. Results of the 3D passive convective stirring test. Comparison of the time evolution of the passive com-
positional field C obtained with the Tracer‐in‐Cell and the Particle Level Set methods. Iso‐contours corresponding to
C = 0.5 (green) and a mid‐depth surface cut are shown.
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[70] Figure 16 displays four snapshots in time of
the iso‐surface C = 0.5 and transparent surface cuts
for cases where equation (1) is solved with the
Tracer‐in‐Cell (Figures 16a, 16c, 16e, and 16g) or
the Particle Level Set (Figures 16b, 16d, 16f, and
16h) methods. The dense layer gets progressively
heated by the bottom surface until the thermal den-
sity contrast overcomes the compositional density
contrast. After this stage is reached the dense layer
rapidly forms a topography (Figures 16a and 16b)
and large domes of dense material rise up and are
stirred by convective motions (Figures 16c–16g).

The comparison of the Particle Level Set and Tracer‐
in‐Cell cases are in good qualitative agreement, and
the results obtained with both methods agree very
well. A more quantitative comparison between the
results obtained with the Tracer‐in‐Cell and Particle
Level Set the methods is shown in Figure 17, which
displays the time evolution of the entrainment e
above z = 0.3. As expected from the dynamic evo-
lution observed in Figure 16, the entrainment
increases rapidly as the dense layer is destabilized and
reaches the asymptotic value of 0.7 corresponding
to the complete homogenization of the heteroge-
neous material. Both the Particle Level Set and
Tracer‐in‐Cell methods yield very similar results.
Further comparison can be made using the com-
position histograms displayed in Figure 18 at four
different elapsed times corresponding to the snap-
shots shown in Figure 16. The distribution evolves

Figure 15. Results of the 3D passive convective
stirring test. Comparison of the time evolution of
the passive compositional field C obtained with the
Tracer‐in‐Cell and the Particle Level Set methods. The
histograms represent the distribution of the composi-
tional field C within the computational domain. The C
distribution evolves towards a Gaussian shape as a result
of vigorous convective stirring. The dimensionless time t
correspond to the snapshots displayed in Figure 14.

Figure 16. Results of the 3D destabilization of a thick
dense layer test. Comparison of the time evolution of the
passive compositional field C obtained with the Tracer‐
in‐Cell and the Particle Level Set methods. Iso‐contours
corresponding to C = 0.5 (green).
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towards a Gaussian shape as a result of the ergo-
dicity. Here again, comparison of the Particle Level
Set and Tracer‐in‐Cell cases are in very good
quantitative agreement, even in the late stages.

[71] Both three‐dimensional flow experiments have
clearly demonstrated the ability of the Particle Level
Set method to model accurately the advection of
sharply varying fields even in the case of vigorous
thermal or thermo‐chemical convective stirring,
where the repeated action of stretching and folding
leads to the development of filament structures that
can reach sub‐grid scale. Despite these difficulties,
the results obtained with the Particle Level Set
method are in remarkably good agreement with
those obtained with the robust Tracer‐in‐Cell
method. However, the Particle Level Set method
allows for a significant reduction in computational
cost (∼50%) compared to the Tracer‐in‐Cell method.
Note that in terms of computational expenses, the two
examples selected represent the least favorable sce-
narios for the Particle Level Set method because they
lead to complete homogenization where the zero
Level Set is present in every cell. As a consequence,
tracers associated with the interface will also be
located everywhere in the computational domain,
similar to the Tracer‐in‐Cell method.

3.3.3. Buoyant Compositional Plume

[72] Following Manga et al. [1993], Schmalzl and
Loddoch [2003], and Suckale et al. [2010], we
have performed a 3D experiment where we model
the rise of a buoyant compositional (i.e., Ra = 0)
plume using the Particle Level Set method, in a 45 ×
45 × 45 grid of aspect ratio 1. Initially the light
material is a half‐sphere of dimensionless radius 1,

located at the bottom of the domain. The composi-
tional Rayleigh number is Rb = 0.15. Time is non‐
dimensionalized using the stokes velocity time scale
[Manga et al., 1993], all boundaries are free‐slip.
Figure 19 shows snapshots in time of the plume
which compare well with the numerical experiments
of Manga et al. [1993], Schmalzl and Loddoch
[2003], and Suckale et al. [2010] and the tank
experiments of Manga et al. [1993].

[73] Contrary to the two previous 3D experiments,
the Particle Level Set method here is particularly
efficient to use, because the interface spans a rela-

Figure 17. Results of the 3D destabilization of a thick
dense layer test. Time evolution of the entrainment
above z = 0.3 obtained using the Tracer‐in‐Cell (solid
black curve) and the Particle Level Set (dashed red
curve) methods.

Figure 18. Results of the 3D destabilization of a thick
dense layer test. Comparison of the time evolution of the
passive compositional field C obtained with the Tracer‐
in‐Cell and the Particle Level Set methods. The histo-
grams represent the distribution of the compositional
field C within the computational domain. As in Figure
15, the C distribution evolves towards a Gaussian
shape as a result of vigorous convective stirring. The
dimensionless time t correspond to the snapshots dis-
played in Figure 16.
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tively small fraction of themodel domain, discretized
using N cells. This is illustrated in Figure 20 where
the computational cost involved in solving the
advection equation (1) using the Tracer‐in‐Cell or
the Particle Level Set methods on a 30 × 30 × 30
grid are compared, for various values of Ntracers/cell.
As expected, for both methods tadv scales linearly
with Ntracers/cell, however, tadv is 4 to 10 times
smaller for the Particle Level Set method because
tracer particles are only located in the vicinity of
the interface, contrary to the Tracer‐in‐Cell method
for which tracers are located everywhere in the
model domain. Note that for finer grids, the ratio
tadv/tStokes would decrease, however the gain in
using the Particle Level Set method instead of the
Tracer‐in‐Cell approach would remain substantial.

4. Conclusions

[74] We have adapted for the first time a robust
numerical method for advecting scalar fields with
discontinuities in geodynamical thermochemical
flows: the Particle Level Set method. This approach
is a Lagrangian extension of the Level Set method
based on the concept of dynamic implicit surfaces,
that allows the use of accurate and stable high order
schemes, even in areas where the advected field
varies sharply. The improved Eulerian‐Lagrangian
character of the Particle Level Set method yields
more accurate solutions for the advection of
sharply varying quantities.

[75] We have compared the accuracy and robust-
ness of the Particle Level Set method with the
popular and robust Tracer‐in‐Cell method in 2D
and 3D flows: Rayleigh‐Taylor overturn, thermo-
chemical convection, mantle convective stirring,
and the rise of a buoyant compositional plume.

[76] For all 2D and 3D cases, the results obtained
with the Particle Level Set and the Tracer‐in‐Cell

method are in very good quantitative agreement,
even in the case of 3D chaotic convective stirring
and for cases where sub‐grid scale resolution is
critical. The Particle Level Set method is accurate,
prone to negligible numerical diffusion, and can
capture sub‐grid scale features. In most cases the
Particle Level Set method is significantly faster
than the Tracer‐in‐Cell method as it requires the
use of tracer particles only in the vicinity of inter-
faces. For instance, we observed a one order of
magnitude reduction in computational expenses in
solving equation (1) for tests where the interface
does not span the whole computational domain.
This demonstrates the robustness, versatility and
the computational efficiency of the Particle Level
Set method. We therefore recommend the use of
the Particle Level Set method for any geodynami-

Figure 19. Time evolution of a light compositional plume rising up from a free‐slip surface [Manga et al., 1993;
Schmalzl and Loddoch, 2003; Suckale et al., 2010] calculated with the Particle Level Set method on a 45 × 45 ×
45 cells grid with 27 tracers per cell. Iso‐surfaces of the zero Level Set at four dimensionless times: (a) t = 0, (b) t =
8.4, (c) t = 16.8, (d) t = 25.2.

Figure 20. Computational cost involved in solving the
advection equation (1) for the plume problem using 30 ×
30 × 30 grid cells. The Tracer‐in‐Cell (dotted curves
and triangles) and Particle Level Set (solid curves and
circles) methods are compared as a function of the
numbers of tracers/cell used. The computational costs
are normalized by tStokes, the computational time involved
in solving the Stokes equations.
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cal problem that involves the pure advection of
sharply varying quantities.

Appendix A: Flow Solver Benchmark

[77] In order to test the accuracy of our flow solver,
we have performed a benchmark comparison with
the analytical solution of Schmid and Podladchikov
[2003], as proposed by Deubelbeiss and Kaus
[2008]. The problem consists of calculating the
instantaneous flow field in a domain where the
pure shear boundary conditions of Schmid and
Podladchikov [2003] are applied on the four
boundaries. In addition, a circular inclusion of
viscosity hi of dimensionless radius ri = 0.1 is
located in the center of the domain. The dimen-
sionless surrounding matrix viscosity hm is 1.
The inclusion is either weak (hi/hm < 1) or strong
(hi/hm > 1). Schmid and Podladchikov [2003] have
derived analytical solutions for this problem, one of
which is shown in Figure A1a for the case of a

strong inclusion with hi/hm = 1000. Figure A1b
displays the numerical solution calculated with
a pure Eulerian (field) approach, using 280 ×
280 nodal points, the same resolution used in the
Figure 10 of Deubelbeiss and Kaus [2008]. The
agreement between numerical and analytical solu-
tions is good: the maximum pressure calculated is
2.8% lower than the analytical solution, which
is smaller than the 11% difference found by
Deubelbeiss and Kaus [2008] for the same condi-
tions. Figure A1c displays the numerical solution
calculated with a Particle Level Set method with
9 tracers per cell, which yields very similar results
to those shown in Figure A1b. As observed by
Deubelbeiss and Kaus [2008] the use of tracer
particles helps to reduce the spurious oscillations
present in the vicinity of the interface, where the
error is maximum. In addition, we calculate the
Root Mean Square error defined as:

RMSerror ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
domainðPnumeric � PanalyticÞ2

N
R
domain P

2
analitic

s
; ðA1Þ

Figure A1. Circular inclusion benchmark test in a pure shear flow [Deubelbeiss and Kaus, 2008]. Instantaneous
pressure field calculated in a pure shear flow containing a circular inclusion of dimensionless radius 0.1 and of
viscosity hi different from the surrounding matrix hm = 1. (a) Analytical solution of Schmid and Podladchikov [2003]
for a strong inclusion, (b) corresponding numerical solution obtained with a pure Eulerian (i.e., field) approach, and
(c) numerical solution obtained with the Particle Level Set method using 9 tracers per cell. The black curves mark the
isocontours of P = {−4, −3, −2, −1, 1, 2, 3, 4}. The benchmark setup and resolution is identical to that shown in the
Figure 10 of Deubelbeiss and Kaus [2008]. (d–f) Similar to Figures A1a–A1c but for a weak inclusion.
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where N is the total number of grid points used. We
find that RMSerror = 0.13% and 0.18% for the
results displayed in Figures A1e and A1f, respec-
tively. These values also compare well with the
results of Deubelbeiss and Kaus [2008].

[78] Such a comparison has also been carried out in
Suckale et al. [2010], except that they considered a
weak inclusion with hi/hm = 10−3. We have there-
fore performed the same tests. The analytical and
numerical solutions are displayed in Figures A1d,
A1e and A1f). We find a larger error (yet accept-
able) for the maximum pressure than in the strong
inclusion test, and comparable rms error values:
RMSerror = 0.15% and 0.12% for the results dis-
played in Figures A1e and A1f, respectively.

[79] As noted by Deubelbeiss and Kaus [2008], the
good agreement between numerical and analytical
solutions is mainly due to the combination of
staggered grid and harmonic averaging of viscosi-
ties from cell centers to nodal points. Indeed, we
find that geometric or arithmetic averaging of vis-
cosities systematically yields larger differences
between numerical and analytical solutions.

[80] These tests demonstrate the robustness of our
Stokes solver for large viscosity contrasts.
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