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[1] We investigate dynamically the timing and metal-silicate equilibration processes during core formation
by negative diapirism. Using numerical modeling in 3-D axisymmetric geometry, we follow the sinking of
iron-rich diapirs through a viscous silicate mantle. We carried out a parameter study in which shear heating
as well as several viscous rheologies are considered and systematically varied. General scaling laws are
derived for the diapir sinking velocity as well as for the silicate melt generation and distribution around the
diapir. Using these scaling laws, we show that metal diapirs of a radius �1–100 m, sinking through a
partially molten silicate mantle can chemically equilibrate within the timescales suggested by geochemical
constraints. Therefore negative diapirism can contribute significantly to metal-silicate equilibration
processes during core formation.
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1. Introduction

[2] Several terrestrial planets and satellites possess
a metallic core surrounded by a silicate mantle.
Core formation by metal-silicate separation is
thought to have happened during or right after
the first stages of planetary accretion, 4.5 billion
years ago [e.g., Kleine et al., 2004a, 2004b]. Core
formation is therefore the first major differentiation

event that has determined the initial thermochem-
ical state of several terrestrial planets.

[3] The processes that led to metal-silicate separa-
tion in terrestrial planets are still debated and
several possible scenarios have been proposed
[Stevenson, 1981]. However, constraints on core
formation are provided by geochemical and min-
eral physics considerations. The most obvious
constraint is the need for temperatures above the
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silicate melting point in order to separate efficiently
metal from silicates. This requirement is supported
by accretional models, which show that once a
growing planet reaches a radius of �2000 km, the
energy provided by incoming impacts leads to
temperatures above the silicate solidus [Coradini
et al., 1983; Sasaki and Nakazawa, 1986; Senshu
et al., 2002]. Furthermore, a giant impact stage,
thought to have occurred on Earth, would have
provided enough energy to entirely melt and par-
tially vaporize the Earth [e.g., Canup, 2004].
Timing constraints on core formation are provided
by geochemical considerations with W/Hf system-
atics and suggest that the timescale for core for-
mation is on the order of 10–100 Ma for the Earth
or Mars [Kleine et al., 2004a, 2004b]. Additional
constraints are provided by the overabundance of
moderately siderophile elements (e.g., Ni, Co) in
the Earth’s mantle, which suggests that complete or
partial equilibration has occurred between the metal
and the silicates during core formation [Ringwood,
1966; Karato and Murthy, 1997; Rubie et al., 2003,
2007; Halliday, 2004; Wood et al., 2006].

[4] Melting at local or global scales is the starting
point for metal-silicate separation and core forma-
tion. This has led to several possible core formation
scenarios as proposed by Stevenson [1981] (see
also Rubie et al. [2007] for a recent review).
Several authors have focused on the ability of a
particular scenario to meet the timing and/or the
equilibration constraints provided by geochemistry
and mineral physics. This type of exercise is
fundamental in determining the initial conditions
from which many terrestrial planets have evolved.

[5] For instance, previous studies (Karato and
Murthy [1997], Rubie et al. [2003], and more
recently Hoı̈nk et al. [2006]) have focused on the
kinetics of core formation via metal ‘‘rain fall’’. In
this scenario, cm-sized metal droplets sink within a
vigorously convecting global silicate magma
ocean. These studies have shown that metal-silicate
equilibration is possible in such a context during
the sinking of the metal droplets. However, once
the denser metal droplets accumulate at the
bottom of the magma ocean, forming a global iron
layer, equilibration processes are too slow to occur
efficiently. Indeed, the short timescale for the
solidification of a magma ocean (�1000 years
[Solomatov, 2000]) quickly drives temperatures
below the silicate solidus. Consequently, equilibra-
tion processes become controlled by the very low
chemical diffusivities of solid silicate, thus pre-

venting metal-silicate equilibration within a rea-
sonable time period [Rubie et al., 2003].

[6] As suggested by various studies [e.g., Stevenson,
1981; Sasaki and Nakazawa, 1986; Senshu et al.,
2002; Rubie et al., 2003; Hoı̈nk et al., 2006] the
accumulation of iron at rheological boundaries
leads to a gravitationally unstable configuration
where a global iron layer surrounds a colder, less
dense, protocore. The timescale of core formation
by Rayleigh-Taylor destabilization of such a dense
iron layer has been studied by Honda et al. [1993]
using numerical modeling in cylindrical geometry
without temperature or stress-dependent viscosity.
Their results show that core formation with this
mechanism can be achieved in a reasonable time
frame if the protocore viscosity is less than 1026 Pa
s. However, the consequences for metal-silicate
equilibration were not investigated and viscous
heating was not taken into account.

[7] An alternative core formation scenario is the
sinking of large iron diapirs that originate at the
surface of a growing planet where magma ponds
are formed [Stevenson, 1981; Senshu et al., 2002]
or at the bottom of a magma ocean [Rubie et al.,
2003]. This scenario was investigated analytically
by Karato and Murthy [1997]. The authors con-
cluded that core formation by negative diapirism
could not explain the observed overabundance of
siderophile elements in the Earth’s mantle because
the large size of the iron diapir would not allow
metal and silicate equilibration. However, these
calculations were conducted only for Newtonian
rheologies and did not take into account the gen-
eration of heat and melting via viscous dissipation.
This mechanism is likely to generate a temperature
increase in the vicinity of the diapir and therefore
to favor metal-silicate equilibration by increasing
significantly the chemical diffusivity of silicate
material.

[8] Therefore, in this paper we examine dynami-
cally the timing and metal-silicate equilibration
processes during core formation by negative dia-
pirism. We use high-resolution numerical modeling
to follow the sinking of iron-rich diapirs through a
viscous silicate mantle in a 3-D axisymmetric
geometry. We conducted a parameter study in
which shear heating as well as several viscous
rheologies are considered and systematically var-
ied. General scaling laws are derived for the diapir
sinking velocity as well as for the heat/melt distri-
bution. We subsequently use these scaling laws to
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investigate the ability of negative diapirism to form
a metallic core in terrestrial planets within the
timing and metal-silicate equilibration constraints
provided by geochemistry and mineral physics.

2. Dynamics of Negative Diapirism

[9] We perform a series of numerical experiments
in order to study the dynamics of a metal diapir
sinking through a solid or partially molten silicate
mantle.

2.1. Numerical Setup

[10] The four governing equations for the system,
under the extended Boussinesq approximation and
in the limit of infinite Prandtl number, are the
conservation of mass:

r � U ¼ 0; ð1Þ

the conservation of momentum:

rp�r � h _eij
� �

þ Ra T � BCð Þ~er ¼ 0; ð2Þ

the conservation of energy:

DT

Dt
¼ r2T þ Di

Ra
fv � DiTUr: ð3Þ

and the conservation of a compositional field C
used to model the presence of iron (C = 1) or
silicate material (C = 0)

DC

Dt
¼ 0: ð4Þ

[11] These equations are expressed in terms of
dimensionless variables: U is the velocity vector,
p is the dynamic pressure, h is the viscosity, T is the
temperature, t is the time, Ur is the radial
component of the velocity, and ~er is a unit vector
along the radial axis and pointing outward. fv = sij :
_eij is the dissipation function where si j is the
deviatoric stress tensor and _eij is the strain rate
tensor.

[12] The characteristic scales used to normalize the
four governing equations are the total silicate-
mantle thickness H, the silicate density r0, a
characteristic temperature difference DT, and the
silicate-mantle viscosity h0. The thermal diffusion
timescale, H2/kT, is used where kT = 10�6 m2 s�1 is
the thermal diffusivity.

[13] Three nondimensional numbers appear from
the normalization of the conservation equations and
define the parameter space of the system. The first
is the Rayleigh number, Ra = (r0aDTgH3)/(h0kT),
where g is the gravitational acceleration and a is the
thermal expansion coefficient. The second is the
buoyancy number, B =Drc/(r0aDT), whereDrc is
the compositional density contrast between the
metal diapir and the silicate material. The third is
the dissipation number, Di = agH/Cp, where Cp is
the specific heat at constant pressure.

[14] The four conservation equations are solved
numerically using the finite volume code STAGYY
in spherical axisymmetric geometry (P. J. Tackley,
Modelling compressible mantle convection with
large viscosity contrasts in a three-dimensional
spherical shell using the yin-yang grid, submitted
to Physics of the Earth and Planetary Interiors,
2008). Equation (4) is solved using a tracer ratio
technique with a mass error [Tackley and King,
2003] lower than 1%. In order to avoid significant
numerical diffusion, the advective part of equation
(3) is also solved using a Lagrangian approach as
described by Gerya and Yuen [2003]. The compu-
tational domain is composed of 512 to 1024 regular
cells in each direction, ranging from 4.0 to 5.0 and
0.0 to 0.15 in the radial and angular directions,
respectively. In order to reduce the wall effects on
the flow [Chang, 1961], the distance between the
diapir and the side wall opposite to the axis of
symmetry is at least ten times the initial radius of
the spherical diapir (less than 0.04 in our experi-
ments). The temperature is set constant at the outer
surface while the temperature flux is set to 0 on all
the other surfaces. Free slip velocity boundary
conditions are imposed on all boundaries. Note
that the following results correspond to cases
where the sinking diapir is far from any boundary
(apart from the axis of symmetry), therefore the
nature of the boundary conditions we impose plays
a minor role.

[15] We consider several rheologies where the
viscosity can be dependent on composition, tem-
perature and/or melt fraction and stress:

h C;T ;melt;sð Þ ¼ h0e
½�ln gTð ÞTp


1þ C gc � 1ð Þ 1þ s
sT

� �n�1
" #�1

ð5Þ

where Tp is the potential excess temperature. The
iron diapir is assumed to be much less viscous than
the surrounding silicate mantle because of the
lower solidus for iron, therefore the viscosity ratio
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between the silicate mantle and the iron diapir is
gc = 103. A higher value for gc would be more
realistic but should not affect our results
[Hadamard, 1911; Rybczynski, 1911]. n is the
power law index, sT is the dimensionless transition
stress at which material flows equally via disloca-
tion and diffusion creep. Viscosity dependence on
temperature and melt fraction is treated in a similar
way with the parameter gT. In some cases we use a
temperature threshold Tr above which viscosity is
abruptly decreased by a factor gr = 105. This is done
in order to mimic the effect of the rheological
transition which occurs in silicates when the melt
volume fraction exceeds a critical value of about
60–70% [Lejeune and Richet, 1995; Scott and
Kohlstedt, 2006]. For numerical stability we impose
a viscosity cutoff h = MAX(h, h0 � 10�5).

[16] Density, r, varies according to the linear
equation of state:

r ¼ r0 1� aTp
� �

þ CDrc: ð6Þ

[17] This model setup shares some similarities with
previous numerical and laboratory experiments that
were studying the motion of rigid or free-slip
diapirs, in temperature-dependent medium [e.g.,
Morris, 1982; Ribe, 1983; Daly and Raefsky,
1985; Mahon et al., 1988; Ziethe and Spohn,
2007; Ricard et al., 2008; Golabek et al., 2008,
and references therein], with, however, several
important differences. In our study both viscous
heating and nonlinear rheologies are considered.
Additionally, in contrast to previous work (with the
exception of Ricard et al. [2008] and Golabek et al.
[2008] carried in 2-D cartesian geometry) melt-
dependent viscosity was considered and the diapir
in our experiments is deformable.

2.2. Results

[18] As previously mentioned, the dynamics of the
system is governed by Ra, B, and Di. However,
one can reduce this parameter space by noticing
that the compositional density contrast Drc �
4500 kg/m3 is much greater than the thermal density
contrast (�1 to at most few hundreds of kg/m3).
Therefore, although the thermal density contrast
are taken into account in our models, B � 1 one
can reasonably neglect the influence of Ra on the
flow (compared to that of RaB) in our numerical
experiments. We checked that this assumption was
reasonable by varying separately Ra and RaB. As
expected, we found that the results (velocity and
thermal evolution) mainly depend on RaB only
rather than on both Ra and RaB.

[19] For similar reasons, viscous heating (second
term on the right hand side of equation (3))
largely dominates over adiabatic heating (third
term on the right hand side of equation (3)). As
a consequence, the parameter space is reduced to
two dimensionless parameters: the compositional
Rayleigh number,

Rb ¼ RaB ¼ DrcgH
3

h0kT

: ð7Þ

and a second parameter which expresses the
efficiency of viscous heating

Hv ¼
Di

Ra
¼ h0kT

r0DTCpH2
: ð8Þ

[20] We therefore systematically investigate the
influence of Rb and Hv for various viscous rheol-
ogies. In the following sections we consider sepa-
rately the behavior for Newtonian and power law
cases, as well as the influence of temperature-/
melt-dependent viscosity. As a common initial
condition for all our numerical experiments, we
start with a spherical metal diapir of radius rd
located along the axis of symmetry, close to the
outer surface of our model domain (at a distance
4.9 on the radial axis) with a positive homogeneous
dimensionless potential temperature excess. Inside
the diapir the dimensionless viscosity is gc

�1, while
outside of the diapir, the viscosity is 1.

2.2.1. Typical Evolution of a Newtonian
Case With Constant Viscosity

[21] When viscosity does not depend on temper-
ature or melt fraction, the parameter Hv does not
affect the flow nor the diapir sinking velocity Vs.
This case is similar to several numerical experi-
ments carried by Daly and Raefsky [1985] with
the exception that in our model the sphere is
deformable. We find, as expected, that the diapir
sinking velocity quickly reaches a constant value
close to the Stokes velocity, V0, for a frictionless
sphere whose viscosity is small compared to the
surrounding viscosity h0 [Hadamard, 1911;
Rybczynski, 1911]:

V0 ¼
1

3

Drcgr
2
d

h0
: ð9Þ

[22] This is illustrated by the blue squares in
Figure 1 which correspond to a Newtonian case
with Hv = 7.5 � 10�8, Rb = 3 � 108, rd = 0.03 and
gT = 1. The small difference between the numerical
experiments and the theoretical value of V0 (around
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5%) can be explained by the side wall effect
[Chang, 1961]. This influence was confirmed by
the various experiments carried out for different
values of Rb with gT = 1.

[23] Additional features of this case are illustrated
by Figures 2a and 2b which display the dimen-
sionless viscous dissipation fv and the excess
potential temperature Tp, respectively. At each
stage fv inside the diapir is negligible because of
the much lower viscosity within the iron-rich diapir.
Outside the diapir, viscous dissipation is maximum
at the diapir’s poles and decreases rapidly toward
the diapir’s ‘‘equator’’ or with increasing distance rc
from the center of the diapir (Figure 2a). The
distribution of fv outside the diapir can be predicted
by using the analytical expression of the flow
outside a sinking frictionless sphere [Hadamard,
1911; Rybczynski, 1911]. This implies that fv �
h(k~rck�2Vsrdcosq)

2, where ~rc is a vector originating
at the diapir’s center and q = (~er, ~rc). As a conse-
quence, the maximum temperature increase is at the
diapir’s poles as well as along the tail left behind the
sinking diapir (Figure 2b) in good agreement with
Daly and Raefsky [1985].

[24] In the absence of viscous heating (Hv = 0) the
diapir’s potential excess temperature inevitably con-
verges toward 0 with time because of thermal diffu-
sion. On the contrary, when Hv > 0 we consistently
find a linear increase in the mean global potential
temperature with increasing sinking distance of the
diapir, regardless of any other parameters or rheolo-

gies. This linear relationship is the direct conse-
quence of the conversion of the diapir’s potential
energy into thermal energy via viscous heating. A
fraction of this thermal energy is transported from the
silicate mantle to the diapir by thermal diffusion,
leading to an increase in the diapir’s temperature with
time, as shown in Figure 2b.

[25] The increase of temperature due to viscous
dissipation can range from few Kelvins to few
thousands of Kelvins for a planet such as the Earth
(i.e., withH= 3000 km, h0 = 10

21 Pa s,DT= 1000K,
r0 = 3500 kg m�3), depending on the size rd of the
iron diapir.

2.2.2. Influence of Temperature-/
Melt-Dependent Viscosity

[26] Additional complexities occur when viscosity
is temperature- or melt-dependent (i.e., gT > 1).
Figure 3 displays three snapshots in a typical
evolution of a system with a Newtonian rheology
(rd = 0.03, Hv = 7.5 � 10�8, Rb = 3 � 108 and gT =
103). Similar to the constant viscosity case (gT = 1),

fv inside the diapir is negligible because of the
much lower viscosity within the iron-rich diapir
(Figures 3a–3c). In addition, fv at the earliest stage
(Figure 3a) compares well with the geometry and
the magnitude found for the constant viscosity case
(Figure 2a).

[27] However, as the diapir sinks, the higher-
temperature tail left behind induces a lower-
viscosity region (Figures 3e–3f and 3h–3i). This
low-viscosity tail breaks the symmetry between

Figure 2. Results of the numerical experiment (close
up view) for a Newtonian rheology, with Hv = 7.5 �
10�8, Rb = 3 � 108, rd = 0.03 and gT = 1.
(a) Dimensionless viscous dissipation and (b) potential
excess temperature for a dimensionless elapsed time t =
2.7 � 10�6.

Figure 1. Results from the numerical experiments:
dimensionless time evolution of diapir sinking velocities
for four cases. Red symbols correspond to power law
rheologies with n = 2 and sT = 105 (dimensionless).
Blue symbols correspond to Newtonian cases. Squares
indicate no temperature-dependent viscosity (gT = 1)
while circles represent temperature-dependent viscosity
with gT = 1000.
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the upper and lower hemispheres of the sinking
diapir and modifies the stress field, leading to a
change of the diapir’s shape from initially spherical
to a hemispherical cup. During this transition, fv
in the diapir’s upper hemispherical region dec-
reases significantly, while in the diapir’s lower
hemisphere region fv remains fairly constant
(Figures 3a, 3d, and 3g).

[28] To quantify the effect of temperature-/melt-
dependent viscosity on the diapir’s sinking velocity
we performed runs where the parameter gT in
equation (5) was systematically varied. The results
are shown in Figure 4 and indicate that the influ-
ence of gT on Vs can be described by a power law
relationship:

Vs

V0

¼ f gTð Þ ¼ g0:06T : ð10Þ

[29] This relatively weak influence of gT on Vs is
due to the very localized viscous heating and to the
domination of heat advection over heat diffusion in
our experiments (i.e., relatively high Péclet number).
Therefore the far field pressure drag is not signif-
icantly affected by the value of gT. This means that
localized viscosity variation due to temperature
or to the presence of silicate melt is not likely
to affect the diapir sinking velocity by more than
one order of magnitude. This is in good agreement
with previous numerical experiments by Daly and
Raefsky [1985].

2.2.3. Effect of Non-Newtonian Rheology

[30] As seen in the Newtonian cases at gT = 1, we
find for power law rheologies that the symmetry
between the upper and lower diapir hemispheres
is maintained. However, the stress dependence of
viscosity still modifies the shape of the diapir,
from initially spherical to a prolate spheroid
shape. During this transition, the diapir sinking
velocity increases by about 50%, as shown by the
red squares in Figure 1. This behavior was found
for various power law exponents, n, ranging from
1 to 3.5.

[31] Figure 5 displays three snapshots of a typical
evolution of the system for a power law viscous
rheology with temperature-dependent viscosity and
gT = 103. Although the viscous dissipation and
temperature fields compare qualitatively well with
the Newtonian case (Figure 3) three main differ-
ences can be noticed: (1) the maximum viscous

Figure 3. Results of the numerical experiment (close
up view) for a Newtonian rheology, with Hv = 7.5 �
10�8, Rb = 3 � 108, rd = 0.03, and gT = 1000. (a–c)
Dimensionless viscous dissipation, (d– f) potential
excess temperature, and (g– i) viscosity for three
different dimensionless elapsed times (t = 6.9 � 10�8,
t = 1.4 � 10�6, and t = 2.5 � 10�6).
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dissipation and sinking velocities are greater by
more than one order of magnitude than that of the
Newtonian case (compare Figures 5a–5c and Fig-
ures 3a–3c); (2) the viscosity decrease due to the
stress dependence extends up to several diapir radii
(Figures 5g–5i); (3) because of the combination of
stress- and temperature-dependent rheology, the
shape of the diapir transitions from spherical to a
prolate spheroidal cup (Figure 5).

2.3. Scaling Laws for Diapir Sinking
Velocities

[32] We determine scaling laws for the diapir
sinking velocity as a function of physical parame-
ters. Similar to Weinberg and Podlachikov [1994,
1995], we express the diapir’s terminal sinking
velocity using a modified Stokes velocity for a
frictionless fluid with an effective viscosity he:

Vs ¼
Drcgr

2
d

3he

f gTð Þ
S

; ð11aÞ

he ¼
h0 for n ¼ 1 or n > 1 and sc < sTð Þ
h0

sc

sT

	 
1�n

for s � sT

(
ð11bÞ

S ¼ ½1:7 1� n�2
� �

þ n�1
n; ð11cÞ

where sc = Drcgrd/3 is the characteristic stress
imposed by the diapir and S is an empirical
correction factor. The function f comes from
equation (10).

Figure 4. Normalized diapir terminal sinking velo-
cities as a function of the sensitivity of temperature-
dependent viscosity gT for Newtonian rheology. Sym-
bols represent seven numerical experiments. The solid
curve represents a power law fit (equation (10)).

Figure 5. Results of the numerical experiment (close
up view). The parameters are the same as in Figure 3
except for a power law rheology, with n = 2 and sT =
105. (a–c) Dimensionless viscous dissipation, (d–f)
potential excess temperature, and (g–i) viscosity for
three different dimensionless elapsed times (t = 1.3 �
10�8, t = 7.1 � 10�8, and t = 1.3 � 10�7).
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[33] As shown in Figure 6, equations (11) describe
well the results of our numerical experiments.

3. Melting and Metal-Silicate
Equilibration

[34] Thermal models of terrestrial planet formation
[Coradini et al., 1983; Sasaki and Nakazawa,
1986; Senshu et al., 2002] suggest that once the
planet has reached a critical size of about 2000 km
its radial thermal profile lies between its solidus
and its liquidus. In this section we will therefore
consider the case where metal diapirs sink through
a silicate mantle whose temperature is above its
solidus. In the following sections we develop a
simplified semianalytical model to describe the
dynamic behavior of the system as well as the
consequences on metal-silicate equilibration during
core formation.

3.1. Sinking Diapir Model

[35] On the basis of the results from the numerical
experiments (section 2.2) we make the following
assumptions in order to simplify the conservation
equations: (1) adiabatic heating and density differ-
ences due to temperature are negligible, (2) vis-
cosity variations due to the temperature or melt are
confined to narrow zones and do not affect the flow
significantly, and (3) the diapir shape always
remains spherical and its viscosity is small com-
pared to that of the surroundings.

[36] In addition, we now nondimensionalize the
conservation equations using the following charac-
teristic scales: Vs for velocity (equation (11)), rd for
distance, r0 for density, and he/gT for viscosity
(equation (11b)). An appropriate choice for the
characteristic temperature scale is D Te, the differ-
ence between the initial temperature of the diapir
and Tr, the temperature at which silicates undergo a
rheological transition where viscosity changes
abruptly by several orders of magnitude. This
transition corresponds to a critical melt fraction
of about 60–70% [Lejeune and Richet, 1995; Scott
and Kohlstedt, 2006].

[37] Using these new characteristic scales and
under the assumptions listed above, the conserva-
tion of mass (equation (1)) remains unchanged but
equations (2) and (3) simplify to:

rp�r � h _eij
� �

þ C~er ¼ 0; ð12Þ

and

DT

DT
¼ 1

PeT
r2T þPvfv: ð13Þ

[38] The two dimensionless numbers which appear
in equation (13) are a diapir thermal Péclet number:

PeT ¼ Vsrd

kT

; ð14Þ

and the second number expresses the efficiency of
viscous heating:

Pv ¼
Vshe

gT rdDTer0Cp

: ð15Þ

[39] Equation (12) is now parameter free, indicat-
ing that once the sinking velocity is determined, the
flow is known. Indeed, the solution of equations
(1) and (12) subject to the assumptions made can
be obtained analytically using a stream function
formulation y [Batchelor, 1967] in spherical axi-
symmetric coordinates:

U ¼ Ur;Uqð Þ ¼ 1

rsinq
1

r

@y
@q

;� @y
@r

� �
;

where r is the dimensionless radius starting at the
center of the diapir and q is the angle measured
from the diapir’s upper pole.

[40] Following Hadamard [1911] and Rybczynski
[1911] the flow inside and outside (past) the

Figure 6. Normalized terminal sinking velocity as a
function of the power law exponent n. Comparison
between the numerical experiments (circles) and the
analytical form of the diapir sinking velocity (solid
curve, equation (11)).
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spherical diapir is described by the two following
dimensionless stream functions yi and yo:

yi ¼ � 1

4
sin2qr2 r2 � 1

� �
;

and

yo ¼ � 1

2
sin2qr r � 1ð Þ:

[41] Using these analytical expressions is compu-
tationally inexpensive, and considering the flow
past the spherical diapir also allows a great saving
in computational time since the computational
domain is greatly reduced and restricted only to
the diapir plus a relatively small region around it.

[42] Equation (13) is solved by finite differences
on a regular grid, in spherical axisymmetric geom-
etry with the origin located at the center of the
diapir. The computational domain is r = [0.05, 3.5]
and q = [0, p]. To avoid numerical instabilities, the
small region between r = 0 and r = 0.05 is not
modeled. However, this corresponds to a very
small fraction of the diapir (�0.01%) and therefore
does not affect our results significantly. We impose
zero flux boundary conditions at all boundaries.
The numerical implementation of equation (13)
was successfully benchmarked for purely diffusive,
purely advective or mixed cases, against steady and
transient analytic solutions or against STAGYY.

3.2. Chemical Equilibration and Criteria
for the Presence of Efficient Silicate Melt

[43] In order to investigate the chemical equilibra-
tion processes between the iron diapir and the
surrounding silicate material, the above system of
equations is supplemented by Fick’s law, written
here in nondimensional form:

Dc
Dt

¼ 1

Pec
r2c; ð16Þ

where c is the concentration of a given chemical
element (e.g., Ni, Co) and Pec = Vsrd/kc is the
corresponding chemical Péclet number with kc
being the chemical diffusivity of a given chemical
element.

[44] As pointed out by Rubie et al. [2003], an
essential condition for enabling chemical equilibra-
tion between a liquid metal diapir and the sur-
rounding silicate material is the presence of silicate
melt in sufficient volume proportion, fm � fm

e . The

value of fm
e depends on various parameters, such as

the geometry of the crystals and their distribution
and orientation. For simplicity we consider that fm

e

corresponds to the critical melt fraction at which
the rheological transition in silicate occurs. In other
words, fm

e is reached when T = Tr (see section 3.1).
When fm � fm

e , the equivalent diffusion coeffi-
cient of the mixture of melt and crystals is con-
trolled by the diffusion coefficient of the melt
phase [see Crank, 1986, and references therein].
On the contrary, if fm < fm

e , chemical diffusion
processes are controlled by the very low chemical
diffusivities in the solid silicate and chemical
equilibration cannot be achieved in a reasonable
time [Karato and Murthy, 1997] (i.e., within 10–
100 Ma, the timescale of core formation for planets
such as the Earth or Mars suggested by geochem-
ical considerations [Kleine et al., 2004a, 2004b]).

[45] As previously mentioned, we assume the initial
temperature of the silicate surrounding the metal
diapir lies between the silicate solidus and liquidus
[Coradini et al., 1983; Sasaki and Nakazawa, 1986;
Senshu et al., 2002], and below Tr, thus fm

e > fm > 0.
Therefore metal silicate equilibration can only be
achieved if temperature increases with time so that

fm
e is reached. A quick inspection of equation (13)

indicates that this requirement is met when viscous
dissipation overcomes thermal diffusion, thus for
PvPeT > 1.

3.3. Comparison With the Full Numerical
Experiments

[46] To check if the three assumptions we make for
the sinking diapir model are reasonable, we per-
form a comparison between the numerical experi-
ments and the sinking diapir model for values of
PvPeT > 1.

[47] Figure 7 displays four snapshots corresponding
to four elapsed time or diapir sinking distance ds for
a numerical experiment with Pv = 0.7, PeT = 865
and Newtonian rheology with gT = 103. In addition,
we impose an abrupt viscosity decrease (h = hmin for
T > Tr) in order to mimic the rheological transition
observed in silicates (see section 2.1). At ds = 0.6 rd
(Figure 7a), silicate melt with fm � fm

e (in red) is
generated at the top of the diapir’s upper hemi-
sphere where viscous dissipation is maximum, as
previously observed (see Figures 3a and 5a). As the
diapir further sinks (Figure 7b), melt is also gener-
ated in the lower hemisphere and spreads around the
diapir. The diapir leaves behind at melt tail. When
ds = 5.2 rd (Figure 7c) the metal diapir is entirely
surrounded by silicate melt and this configuration
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does not further evolve for greater sinking distances
(Figure 7d). Note that having a rheological transi-
tion at T = Tr always limits the maximum temper-
ature to Tr in our experiments.

[48] Figure 8 displays the results of the semian-
alytical sinking diapir model with four snapshots
corresponding to the same diapir sinking distances
ds and for the same parameters and rheology as in
Figure 7. The generation and spreading of the
silicate melt zone are in good agreement with the
full numerical experiment. Moreover, similar to the
numerical experiments, we find that the tempera-
ture quickly converges to Tr because of the abrupt
viscosity decrease imposed at T = Tr.

[49] We performed additional comparisons be-
tween the full numerical experiments and the semi-
analytic sinking diapir model with values of PvPeT
ranging between 0 and 104. We find systematically
that silicate melt is produced when PvPeT > 1
while no melt is produced when PvPeT < 1. This
good agreement confirms that the assumptions
made for the sinking diapir model are reasonable

and provides a necessary condition for the presence
of melting at PvPeT > 1.

3.4. Melt Geometry

[50] The requirement PvPeT > 1, is only a lower
bound criteria for the presence of efficient melting.
In fact, a more precise criteria can be formulated
for the value of the parameter PvPeT accounting for
the melt geometry through the three following
requirements:

[51] 1. The partial silicate melt (with fm � fme)
should form a continuous layer, of thickness dm
surrounding the metal diapir.

[52] 2. dm should not be greater than a fraction of
the diapir’s radius, say � 0.1 rd, in order for our
scaling laws on Vs (equation (11)) to remain valid.

[53] 3. dm should be greater than the thickness of
the chemical boundary layer located at the interface
between the metal diapir and the silicate mantle so
that chemical equilibration can proceed efficiently.
This corresponds to a dm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcrd=Vs

p
.

[54] Note that only the third criteria is a ‘‘hard’’
one. Indeed, if the melt layer is discontinuous,
chemical equilibration can still proceed, however
it will be delayed. In addition, having dm > 0.1rd
also does not prevent chemical equilibration but
our sinking diapir model is no longer valid since it
falls outside the domain over which equation (11)
is valid.

[55] Using the sinking diapir model we explored
the parameter space of Pv = 0–106 and PeT =
10–104. The results are summarized in Table 1
which shows that depending on the value of
PeTPv, four categories can be distinguished

Figure 8. Results of the sinking diapir model with
Pv = 0.7, PeT = 865, n = 1, and gT = 103. The snapshots
correspond to four different sinking distances (ds) of the
metal diapir with the formation of silicate melt with fm

� fm
e (red). Black contours indicate the interface

between the diapir and the surrounding silicate mantle.

Figure 7. Results of the numerical experiment with
Pv = 0.7, PeT = 865, n = 1, and gT = 103. The snapshots
correspond to four different sinking distances (ds) of
the metal diapir with the formation of silicate melt with

fm � fm
e (red). Black contours indicate the interface

between the diapir and the surrounding silicate mantle.
The green dots indicate the location of the diapir center
of mass.
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according to the above melt criteria. Importantly,
we find that the three geometrical melting criteria
are met when

M ¼ PvPeT � 10� 100: ð17Þ

4. Metal-Silicate Equilibration During
Core Formation

[56] In this section, we derive analytical expres-
sions to determine the conditions under which a
metal diapir can equilibrate with the surrounding
silicate mantle during its descent. Following Rubie
et al. [2003] we focus this analysis on the interdif-
fusion of the moderately siderophile element Ni,
however it can be applied for any other chemical
species for which the physical parameters are
known.

4.1. Analytical Expression for Diapir Size,
Equilibration Distances, and Equilibration
Times

[57] We seek solutions of equations (13) and (16)
that meet the three following criteria: (1) chemical
equilibration (99%) between the diapir and the
surrounding silicate material; (2) chemical equili-
bration time within teq

max = zeq
max/Vs < 100 Ma, the

upper bound for the timing of core formation for
planets such as the Earth or Mars [Kleine et al.,
2004a, 2004b]; and (3) chemical equilibration
distance with zeq

max less than a few thousand
kilometers.

[58] Combining equations (14), (15) and (17)
yields general analytical solutions for the diapir’s

radius, req, that satisfy the melting criteria and
apply to both Newtonian (n = 1) and power law
(n > 1) rheologies:

req ¼
9S2Mh0kTDTer0CpgT

Drcgf gTgrð Þ½ 
2
Drcg
3sT

� �1�n
" # 1

nþ3

; ð18Þ

where gr represents the abrupt viscosity decrease at
the rheological transition. The total viscosity
variation due to temperature/melt, grgT, is ac-
counted for in equation (18) through the function f
(see equation (10)). Note that in equation (18) for
power law rheology, n is replaced by 1 if sc< sT.

[59] To approximate the solution of equation (16)
subject to the first criteria, we use the model
developed by Rubie et al. [2003, equation 36],
which yields an analytical expression for the equil-
ibration time teq (i.e., the time necessary for a diapir
of radius req to equilibrate with the surrounding
silicate mantle)

teq ¼
1

a
ln

0:01C0
m þ b=a

C0
m þ b=a

� �
; ð19Þ

where a and b are

a ¼ Vs

2req

Fm

Fm þ Fs=Dms

� 1

� �

b ¼ Vs

2req

FsC
0
s

Fm þ Fs=Dms

[60] Cm
0 = 32700 ppm and Cs

0 = 42 ppm are the
initial Ni concentration in the metal diapir and in
the silicate component, Dms = 28 is the metal-
silicate distribution coefficient. Fm and Fs are the
mass fraction of the equilibrated metal and silicate
components [Rubie et al., 2003]:

Fm ¼
rþDrcð Þr3eq

r0 þ drcð Þr3eq þ 3r2eqr0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kcreq=Vs

p

Fs ¼ 1� Fm:

[61] For the derivation of the expressions for Fm, a
and b the reader is referred to Rubie et al. [2003].

[62] Equation (19) was derived for centimeter-sized
iron droplets sinking through a silicate magma
ocean. However, it can be applied to a metal diapir
of greater size sinking through a solid or partially

Table 1. Results From the Sinking Diapir Model:
Silicate Melt Generation and Geometry Around the
Metal Diapira

PvPeT Silicate Melt Geometry
Validity of

Equation (11)

<1 no efficient melt generated valid
�1–10 disconnected melt pockets valid
�10–100 continuous thin melt layer valid
>�100 continuous thick melt layer not valid

a
This compilation was obtained for the parameter space Pv = 0 –

106 and PeT = 10 – 104. Four categories are considered according
the production of silicate melt and its geometry. The last category is the
only one for which equation (11) is not applicable, because of the
nonlocalization of low viscosity induced by the presence of the silicate
melt. See text for further details.
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molten silicate mantle, as long as equation (17) is
satisfied. This is indeed the case since equation (18)
meets this requirement, by definition.

[63] Finally, using equations (19) and (11) we
determine the equilibration distance

zeq ¼ Vsteq: ð20Þ

[64] Therefore, equations (18), (19) and (20) allow
one to determine analytically the conditions under
which Ni equilibration can be achieved during the
sinking of an iron-rich diapir through a partially
molten silicate mantle.

4.2. Implications for Core Formation

[65] The most uncertain physical parameter that
influences the chemical equilibration processes
between the sinking diapir and the silicate mantle
is the viscosity of the silicate material, h0. Indeed,
this parameter can vary by several orders of mag-
nitude depending on the temperature and melt
fraction present [Karato and Wu, 1993; Lejeune
and Richet, 1995; Scott and Kohlstedt, 2006].
Therefore, we have considered a plausible range
of h0 = 1010±3 Pa s [Karato and Murthy, 1997]
corresponding to a partially molten silicate mantle
(i.e., for temperatures between the solidus and the
critical melt fraction at which the rheological
transition occurs).

[66] As previously mentioned, we focus on metal-
silicate equilibration in a partially molten environ-
ment because this stage is likely to have occurred
in terrestrial planets such as the Earth or Mars as

suggested by accretional models [Coradini et al.,
1983; Sasaki and Nakazawa, 1986; Senshu et al.,
2002]

[67] The values for the remaining physical param-
eters used for the following calculation are listed in
Table 2. To estimate DTe we considered the tem-
perature difference between the solidus and
liquidus DTe for peridotite, which ranges between
�100–200 K [Zhang and Herzberg, 1994] for a
pressure range of 5–20 GPa. Assuming a linear
increase of the melt fraction, fm, with increasing
temperature DTe = fm

e DTsl can range between a
few Kelvin to �140 K. The chosen value within
this range depends on the assumed temperature of
the silicate mantle. Therefore we choose DTe =
25 K, as listed in Table 2, which falls within this
range. According to experimental work [Lejeune
and Richet, 1995; Scott and Kohlstedt, 2006] and
given the value of DTe, the viscosity decrease due
to the rheological transition is set to gr = 106 and
gT is assumed to be close to unity (see Table 2).

[68] Figure 9a shows req as a function of h0 for
Newtonian (solid line) and power law rheology
with sT = 104 Pa and n = 3.5 (dashed line). req
ranges between 0.1 to almost 100 m depending on
h0 and the rheology considered. Note that the range
of req could be even broader, and could possibly
reach kilometer sized values, depending on the
choice of the physical parameters that enter into
equation (18).

[69] The equilibration distance zeq displayed in
Figure 9b as a function of h0 indicates that a
�1–100 m sized metal diapir would equilibrate

Table 2. Values of the Physical Parameters Used to Calculate the Results Shown in Figure 9a

Parameter Value(s)/Range Unit Meaning

r0 3500 kg m�3 silicate density
Drc 4500 kg m�3 compositional density

contrast between metal and silicates
g 10 m s�2 gravity acceleration
Cp 1000 J kg�1 K�1 specific heat at constant pressure
kT 10�6 m2 s�1 thermal diffusivity
kc 10�8 m2 s�1 chemical diffusivity
h0 107–1013 Pa s silicate viscosity at T = T0
sT 104 MPa transition strees
DTe 25 K Tr � T0
n 1, 3.5 - exponent for stress-dependent viscosity
gT 1 - temperature sensitivity of the viscosity
gr 106 - viscosity jump at the rheological transition
M 50 - ‘‘efficient’’ melting criteria parameter

a
T0 is the initial temperature of the silicates surrounding the iron diapir. Tr is the temperature of the rheological transition at which viscosity

decreases abruptly by a factor gr. See text for further details.
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with the surrounding silicate mantle in a dis-
tance less than �7000 km for both Newtonian
and power law rheology, which satisfies our
second criteria.

[70] Finally, Figure 9c indicates that the time
necessary for these diapirs to equilibrate with the
surrounding silicate mantle is less than 1000 years,
well below teq

max.

[71] The analytical results displayed in Figures 9a–
9c show that negative diapirism is a plausible
scenario for core formation bounded by geochem-
ical and mineral physics constraints for a diapir
radius between 0.1 and 100 m. This range depends
on the viscosity of the silicates surrounding the
metal diapir which is poorly known.

[72] We considered uncertainties in other physical
parameters with kc being 2–3 orders of magni-
tude smaller than the value listed in Table 2,
DTe = 10–120 K and for various values of sT =
104 Pa to 107 Pa and n = 1 � 3.5. We find that
chemical equilibration remains possible for diapirs
with a radius ranging from a meter to a kilometer
in size.

[73] In addition to the partially molten scenario we
have considered colder scenarios in which the
silicate temperature T0 is below its solidus, leading
to much higher viscosities h0 and higher DTe. In
this cases, equations (18) and (20) imply an in-
crease of both req and zeq. As a consequence, it
becomes difficult for the diapirs to fully equilibrate
with the surrounding within reasonable distances
(i.e., zeq < 107 km). Note however that in these
colder scenarios the diapirs can partially equilibrate
with the surrounding silicates and therefore con-
tribute to the metal silicate equilibration processes
during core formation. The degree of partial equil-
ibration between the iron diapir and the surround-
ing silicates can be determined using the model by
Rubie et al. [2003].

[74] Note that we purposely did not consider addi-
tional complexities such as the depth/pressure
dependence of physical parameters such as kc or
DTe because they are not well constrained under
extreme P/T conditions. However, these influences
can easily be incorporated in the analytical expres-
sions derived in this study since equations (18) and
(19) should remain valid for a smooth change in
physical parameters with depth/pressure (e.g., h0,
gT, kc).

[75] So far, we focused on the ability of a single
metal diapir to equilibrate with the surrounding
which is a necessary condition for a global metal-
silicate equilibration during core formation by
negative diapirism.

[76] In order to extend these results for multiple
diapirs, we have estimated b, the volume fraction
of silicates that would equilibrate with sinking iron
diapirs, following Karato and Murthy [1997].
Assuming by simplicity that all the iron diapirs

Figure 9. Conditions for metal-silicate equilibration
during the sinking of the iron diapir for a plausible range
of partially molten silicate mantle viscosities. Both
Newtonian (solid lines) and power law rheologies
(dashed lines) are considered. (a) Radius of the diapir
obtained using equation (18), (b) equilibration distance
(equation (20)), and (c) equilibration time (equation
(19)) for a single diapir. We considered three criteria for
chemical equilibration between the metal diapir and the
surrounding silicates: (1) Chemical equilibration of Ni
between the iron diapir and the surrounding silicates up
to 99% (automatically satisfied by req, see equation
(18)). (2) Equilibration time teq less than 100 Ma, the
timescale of core formation as suggested by Kleine et al.
[2004a, 2004b]. (3) Equilibration distance zeq less than a
few thousand kilometers for a planet such as the Earth.
See text and Table 2 for further details.
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have the same size, req and a final metallic core

radius rcore = 3500 km, b � rcore

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcr�3

eq V
�1
s

q
as in

the work by Karato and Murthy [1997]. Using this
expression, the parameter values listed in Table 2
and the values for req displayed in Figure 9 we find
that b is always greater than 100% (i.e., complete
global metal silicate equilibration is achieved), thus
indicating that our results for a single diapir would
translate for multiple diapirs of identical size.

[77] Obviously, core formation by negative diapir-
ism implies the sinking of a large number of diapirs
of various sizes and therefore with their own ability
to equilibrate. Additional complexities might also
occur with the possibility of multiple interactions
between the nearby diapirs, including merging. All
these effects are not included in the simple calcu-
lation above. Nevertheless, the scaling laws we
derived can be used in the case of multiple diapirs
which may interact and merge during their sinking
[e.g., Senshu et al., 2002].

5. Conclusions

[78] We have investigated the dynamics of core
formation by negative diapirism using high-reso-
lution numerical modeling and analytical theory.
Our results show that the conversion of potential to
thermal energy via viscous heating generates a
temperature increase at the interface between the
diapir and the silicate mantle. This localized tem-
perature increase can generate sufficient silicate
melt fraction and locally increases the silicate
chemical diffusivity. As a result, chemical equili-
bration is enhanced during the sinking of the metal
diapir in a solid or partially molten silicate mantle.

[79] We derived general scaling laws for the diapir
terminal sinking velocity which describe well the
results of our numerical experiments for various
Newtonian and power law rheologies (equation (11)).
We subsequently used these scaling laws to derive
a simple semianalytical sinking diapir model which
reproduces well the results of our numerical
experiments. This diapir sinking model has pro-
vided an analytical expression for the radius of a
metal diapir that favors equilibration with the
surrounding silicate mantle (equation (18)).

[80] Using these analytical expressions together
with the equilibration model developed by Rubie
et al. [2003] (equation (19)), as well as our scaling
law for the diapir sinking velocity, we have shown
that negative diapirism is a plausible scenario for
core formation. All these analytical expressions can

easily be incorporated into accretional models to
monitor the chemical evolution of a growing ter-
restrial planet during the stages of core formation.

[81] We show that for a range of silicate viscosities
h0 = 1010±3 Pa s corresponding to a partially molten
silicate mantle, core formation with metal silicate
equilibration can be achieved within the timescales
suggested by geochemical constraints (i.e., less
than 100 Ma). Therefore negative diapirism can
contribute significantly to metal-silicate equilibra-
tion processes during core formation.
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