Observations of $S_{410}p$ and $S_{350}p$ phases at seismograph stations in California

Lev Vinnik,1 Yong Ren,2,3 Eleonore Stutzmann,2 Veronique Farra,2 and Sergey Kiselev1

Received 30 April 2009; revised 4 November 2009; accepted 2 December 2009; published 5 May 2010.

[1] We analyze a new set of seismic data from seismograph stations in California. This data set consists of nearly 5000 S receiver functions for 47 seismograph stations. As a rule, the stacked SRFs display a distinct $S_{410}p$ seismic phase (S wave converted to P at the 410 km discontinuity). The wave paths of $S_{410}p$ sample the upper mantle beneath California and the neighboring region of the Pacific. In northernmost California the $S_{410}p$ travel times are close to those of the IASP91 global model. Further south, $S_{410}p$ usually arrives about 2 s earlier than predicted by the IASP91 model. This early arrival can be explained either by an anomalously high V_p/V_s velocity ratio (1.9 in a 125 km thick layer of the upper mantle versus 1.8 in IASP91), by a depression of the 410 km discontinuity of 15 km, or by a combination of both effects with smaller amplitudes. We observe systematically $S_{350}p$ phase which is converted from a negative discontinuity (with a lower S velocity at the lower side) near a depth of 350 km. The observations of $S_{350}p$ are indicative of a low S velocity layer a few tens of kilometers thick atop the 410 km discontinuity beneath southern California and the neighboring oceanic region. Some receiver functions also display $S_{480}p$ phase, which is interpreted as evidence of an intermittent low-velocity layer in the transition zone.

1. Introduction

[2] The geologic history of western North America over the past 150 million years has been shaped by eastward subduction of oceanic tectonic plates [Atwater, 1989]. The major tectonic feature of California, the San Andreas fault, is the boundary between the Pacific and North American plates that evolved from a subduction boundary between the Farallon and the North American plates to the present transform fault. The San Andreas fault ends near the latitude of 40°N at the Mendocino triple junction where the North America, Pacific, and Gorda plates meet (Figure 1). Subduction of a remnant of the Farallon plate, the Juan de Fuca plate, continues north of 40°N.

[3] The upper mantle beneath California has been a focus of numerous seismic studies with techniques which include body wave travel-time tomography [e.g., Benz et al., 1992; Thurber et al., 2009], surface waves [e.g., Tanimoto and Sheldrake, 2002; Yang and Forsyth, 2006; Yang et al., 2008], and receiver functions [e.g., Gurrola and Minster, 1998; Chevrot et al., 1999; Vinnik et al., 1999; Simmons and Gurrola, 2000; Ramesh et al., 2002; Zandt et al., 2004]. The San Andreas fault separates regions with differing upper mantle velocities: the North American side is systematically slow relative to the Pacific side [Tanimoto and Sheldrake, 2002]. The SS phases from southern earthquakes arrive at coastal stations like SBC, PKD, SAO, and BRIB (Figure 1) much earlier than at equidistant stations in eastern California [Melbourne and Helmberger, 2001]. This difference implies that the coastal paths sample the upper mantle with a thick high-velocity lid, which becomes thin to the east, in qualitative agreement with the work of Tanimoto and Sheldrake [2002]. Lateral velocity variations in the upper mantle beneath California reach 10% for S waves [Yang and Forsyth, 2006] and are correlated with tectonics. In particular, the bend of the San Andreas fault near 35°N is responsible for the origin of the Transverse Range, and various seismic data reveal relatively high velocities beneath this range which are interpreted in terms of a sinking high-velocity mantle lithosphere. Another region of comparable complexity is the southern Great Valley and the Sierra Nevada mountains [Zandt et al., 2004].

[4] While the upper mantle at depths less than about 250 km is reasonably well sampled by previous studies, the structure at larger depths still is not known in sufficient detail. The discontinuities at depths of 400 ± 100 km on a regional scale are often investigated with P_s (P to S converted phases in P receiver functions, but the recordings of these phases suffer from reverberations in the lithosphere...
and large anelastic attenuation of \(S \) waves. Here, instead of \(Ps \) phases in \(P \) receiver functions, we use \(Sp \) (\(S \) to \(P \)) converted phases in \(S \) receiver functions (SRFs) [Farra and Vinnik, 2000]. The advantage of the \(S \) receiver functions lies not only in the early arrivals of the \(Sp \) phases relative to lithospheric reverberations, but also in the different effect of anelastic attenuation. The largest anelastic attenuation is observed in the upper mantle at depths less than about 300 km. The \(S_{410}p \) phase propagates at these depths as \(P \) wave, which is less attenuated than \(S \) wave. As the receiver function is the result of deconvolution by the parent wave (\(P \) and \(SV \) for the \(P \) and \(S \) receiver functions, respectively), the \(S_{410}p \) phase is amplified with respect to the \(P_{410}s \) phase from the same discontinuity. Under realistic assumptions on the quality factor \(Q \) in the upper mantle (\(Q_s = 50 \), \(Q_p = 2.2Q_s \)), the amplification factor of \(S_{410}p \) relative to \(P_{410}s \) at a period of 10 s is close to 2. Finally, the piercing points of \(S_{410}p \) are at a distance of several hundred kilometers from the station, and \(S_{410}p \) samples the oceanic upper mantle by observations on land.

Figure 1. Map of the study region with seismograph stations (triangles) and locations of the earthquakes (inset).

Figure 2. Sketch of the coordinate system.
We address the following issues: depth of the 410 km discontinuity, fine S velocity structure in the vicinity of this discontinuity, and Vp/Vs ratio in the upper mantle.

2. Method

[6] Calculation of the SRF [Farra and Vinnik, 2000] involves seismogram decomposition into SV, P, T, and M components (Figure 2). The SV axis corresponds to the principal S wave particle motion direction in the wave propagation plane. The angle between the SV axis and the radial direction is determined from the covariance matrix of the vertical and radial components of the S wave. The P axis is normal to SV in the same plane. The S wave is not recorded on the P component, and this makes the P component optimal for detecting Sp phases. T is normal to the wave propagation plane, and M is the principal S particle motion component in the plane containing the SV and T components. The angle \(\theta \) between the axes SV and M is controlled by the focal mechanism of the earthquake. The P component is deconvolved by the M component.

[7] In radially stratified isotropic Earth, the Sp converted phase is generated by the SV component of the incoming S wave. In case of azimuthal anisotropy or dipping interfaces, the Sp converted phase can also be generated by the SH component, but separation of these two effects requires observations in many azimuths, which is not the case in our data. In the SV-to-P converted phases the effect of the isotropic component of the medium is strongly dominant, and these phases present the basis of our study. To isolate the Sp phases generated by SV and optimize the signal-to-noise ratio, the individual P components of many events are stacked with weights depending on \(\theta \) and the level of noise. The result of stacking is the P component deconvolved by the SV component of the S wave and normalized to the amplitude of the SV component. The procedure involves evaluation of \(\sigma \), the root-mean-square (RMS) value of noise in the stack from noise in the individual receiver functions. The estimates of noise in the individual SRFs are usually obtained in the window from –60 to –20 s. This estimate of RMS is very consistent with that obtained by bootstrap resampling [Vinnik and Farra, 2007].

[8] To account for the difference in slowness between the S and Sp phases from deep discontinuities, the individual receiver functions should be stacked with appropriate moveout corrections. The accurate calculation of the correction requires the velocity model, the assumed depth of the discontinuity, and the slowness of S. For most upper mantle models S410p does not exist in the ray-theoretic limit at epicentral distances less than 79°. However, in actual seismic recordings and in the finite-frequency synthetics with a dominant period of several seconds, calculated with the reflectivity technique [Fuchs and Mueller, 1971], the signal of a smaller amplitude is observed at shorter distances (Figure 3), and part of our observations of the S410p phase is made at these distances (Table 1). To simplify the calculations of the moveout corrections, we use slant stacking of receiver functions, where the moveout correction is defined as the product of the trial slowness with respect to the S wave slowness (differential slowness) and the epicentral distance of the event with respect to the reference distance (differential distance). At the periods around 10 s and in the narrow range of the S wave slowness (between 12.3 s/° at a distance of 65° and 9.2 s/° at a distance of 90°), these moveout corrections are sufficiently accurate. The stack is calculated for the differential slownesses ranging from 0 to 1.2 s/°. In experiments with synthetics for global models like IASP91 [Kennett and Engdahl, 1991], the largest amplitude of S410p is obtained at a differential slowness around 0.5 s/°. A tilt of the converting interface or another form of lateral heterogeneity may change this value. Spe-
Table 1. List of the Dataa

<table>
<thead>
<tr>
<th>Stations</th>
<th>Baz (deg)</th>
<th>D (deg)</th>
<th>Ref D (deg)</th>
<th>Number of Recordings</th>
<th>S410p Time (s)</th>
<th>S410p Residual (s)</th>
<th>S350p</th>
<th>S450p</th>
</tr>
</thead>
<tbody>
<tr>
<td>YBH</td>
<td>297.9</td>
<td>76.5</td>
<td>79</td>
<td>45</td>
<td>-55.4</td>
<td>-0.9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>YBH</td>
<td>241.2</td>
<td>83.3</td>
<td>84</td>
<td>80</td>
<td>-52.8</td>
<td>-1.5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>YBH</td>
<td>134.3</td>
<td>81.5</td>
<td>84</td>
<td>35</td>
<td>-52.2</td>
<td>-0.8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ARC+ JCC</td>
<td>302.0</td>
<td>70.2</td>
<td>76</td>
<td>97</td>
<td>-56.8</td>
<td>+0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARC+ JCC</td>
<td>237.7</td>
<td>81.3</td>
<td>83</td>
<td>108</td>
<td>-54.3</td>
<td>-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORV</td>
<td>301.9</td>
<td>75.5</td>
<td>82</td>
<td>73</td>
<td>-52.0</td>
<td>+0.3</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ORV</td>
<td>239.2</td>
<td>81.1</td>
<td>81</td>
<td>140</td>
<td>-53.5</td>
<td>-0.6</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>ORV</td>
<td>136.7</td>
<td>80.5</td>
<td>82</td>
<td>56</td>
<td>-52.1</td>
<td>+0.2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HOPS</td>
<td>300.7</td>
<td>73.6</td>
<td>79</td>
<td>79</td>
<td>-55.6</td>
<td>-1.1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>HOPS</td>
<td>134.2</td>
<td>78.7</td>
<td>80</td>
<td>43</td>
<td>-57.0</td>
<td>-3.5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BAR+JCS</td>
<td>310.6</td>
<td>75.1</td>
<td>80</td>
<td>73</td>
<td>-56.2</td>
<td>-2.7</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BAR+JCS</td>
<td>236.8</td>
<td>80.0</td>
<td>82</td>
<td>75</td>
<td>-53.8</td>
<td>-1.5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>BAR+JCS</td>
<td>136.6</td>
<td>72.7</td>
<td>75</td>
<td>44</td>
<td>-56.9</td>
<td>+0.6</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

aBaz is back azimuth. Columns labeled Baz and S350p/ S410p are for the average and reference epicentral distances, respectively. Amplitude ratios of S350p/ S410p and S480p/S410p of at least 0.7 are marked by plus signs.
specifically, a tilt of 2° changes the differential slowness by 0.1 s/°.

3. Observations and Analysis of S_{410p}

[9] We have calculated more than 5000 S receiver functions from 46 stations in California (Table 1 and Figure 1). To optimize signal-to-noise ratio the records were low-pass-filtered with a corner frequency of 0.12 Hz. The individual receiver functions were stacked in a distance range from 65° to 90° in three back azimuth sectors: from 133° to 145°, from 231° to 239°, and from 297° to 311°. In each sector the receiver functions were stacked either for single stations or, if the number of recordings at a single station was small, for a few neighboring stations. The required number of the stacked receiver functions is in a range of several tens. Then the RMS value of noise is less than 0.01. The arrivals with the amplitudes of at least ±3 s are regarded as signals. For the normal amplitude distribution this threshold makes false detections unlikely (probability of 0.3%). The S_{p} arrival time is measured relative to the S wave arrival; in other words, the S_{p} arrival time is the difference in time between the arrivals of S_{p} and S. For our sign convention, negative polarity of the S_{p} phase corresponds to a positive discontinuity (with a higher S velocity at the lower side of the discontinuity).

[10] Every stack contains the S_{p} phase from the Moho (S_{mp}) with the largest amplitude at the 0 s/° differential slowness. S_{mp} (Figure 4) is seen as a negative pulse at a time around −3 s. The positive swing at a time around −10 s is mainly a combined effect of the sidelobe of S_{mp} and of the S_{p} phase from the boundary at a depth around 70 km between the high-velocity mantle lid and the underlying low S velocity zone. The S_{410p} phase is detected with confidence in almost every stack and is seen at several traces; the largest amplitude of S_{410p} as a rule is observed at a differential slowness between 0.2 and 1.0 s/°. Its largest amplitude in Figure 4 is at a differential slowness of 0.6 s/°, close to the theoretical value.

[11] In the distance range from 75° to 90°, the SKS seismic phase arrives within 30 s of S arrival time, and at around 83° they even arrive at the same time. There are three possible kinds of interaction between S and SKS: the contribution of SKS to the wave train is small relative to S, the contribution of S is small relative to SKS, and the contributions of S and SKS are comparable. In the first case the detected signal is S_{410p}, and in the second case this is SKS$410p$. In the third case no signal is detected because the waveform used for deconvolution is strongly different from both S and SKS. S_{410p} can be easily distinguished from SKS$410p$ because it arrives about 10 s later than SKS$410p$. In our receiver functions the only detected signal is S_{410p} with the implication that the S wave is dominant and the effect of interference between S and SKS is negligible.

![Figure 4](image-url)
Figure 4. Examples of stacked P components of SRFs. The origin of the time axis corresponds to the arrival of S. Arrivals of S_{410p} and S_{mp} are marked by vertical lines.

![Figure 5](image-url)
Figure 5. Examples of S_{410p} arrival time for a reference epicentral distance of (a) 80°, (b) 87°, and (c) 90°. The average epicentral distance for the set of stacked receiver functions is 81°. The time is practically independent of slowness for the reference distance of 87°.
Our first task is to measure the arrival time of the S\textsubscript{410}p phase with maximum accuracy. The detected signal is present in several traces of the stack, and the arrival time can differ between the traces by up to a few seconds (Figure 5). This effect may introduce an uncertainty in the measurement results, and it should be minimized. The dependence of the arrival time on differential slowness means that the average signal amplitude differs between the negative and positive differential distances. This dependence can be minimized by appropriate selection of the reference distance (the distance at which the moveout corrections change their sign). The optimum reference distance can be found by trial and error (Figure 5). It may differ by a few degrees from the average epicentral distance (Table 1). In Figure 5 the average distance is 81°, and the optimum reference distance is 87°. The optimum reference distance is larger because the amplitudes at the distances shorter than the critical distance of 79° are relatively small.

A standard error of our measurements of the S\textsubscript{410}p arrival time thus performed is less than ±0.5 s. Most arrivals of S\textsubscript{410}p are early with respect to IASP91 model [Kennett and Engdahl, 1991], with residuals that reach −3.5 s (Table 1). The histogram of the residuals (Figure 6a) demonstrates that most residuals are between −0.5 and −3.0 s.

We attribute the residual to the surface projection of the piercing point—the crossover of the raypath of S\textsubscript{410}p and the 410 km discontinuity. The shift of this projection relative to the seismograph station for several explored P and S velocity models changes from about 450 km at the epicentral distance of 90° to about 800 km at the epicentral distance of 79°. In the ray-theoretic limit S\textsubscript{410}p does not exist at epicentral distances shorter than 79°. Owing to the grazing incidence of the P wave at a depth of 410 km at the short distances, the location of the piercing point at these distances becomes highly uncertain, and S\textsubscript{410}p is formed in...
a very large region. For the present purposes, at epicentral distances less than 79° we plot the piercing points at a distance of 800 km. In the map thus compiled (Figure 7) the large (around -2 s) negative residuals are dominant in both California and the neighboring region of the Pacific. A cluster of small negative and positive residuals is present in the Pacific to the north of the seismograph network.

[15] There are a few possible reasons for the negative residuals. They can be an effect of lateral heterogeneity. If, for example, the S wave propagates mostly in a low-velocity upper mantle, whereas the P wave leg of the S410p wave path is in the high-velocity mantle, the arrivals of S410p are early. Then the lateral heterogeneity would produce negative and positive residuals in the same area for the opposite directions of wave propagation. This, however, is not observed for the nearly opposite back azimuths of around 305° and 140° (Figure 7). Moreover, lateral heterogeneity along the wave path may affect the differential slowness of the S phase. However, observations of a differential slowness of S410p that deviate significantly from the standard 0.5 s/° are practically absent in our data.

[16] The residuals can be explained by differences between the actual velocity profiles and IASP91 model. We tested two S velocity models: TNA [Grand and Helmberger, 1984] and YF [Yang and Forsyth, 2006] (Figure 8), proposed for western North America and southern California, respectively. Both models display lower velocities in the upper mantle than IASP91 and do not specify P velocities. In order to calculate the S410p arrival times we derived the corresponding P wave velocities by adopting the Vp/Vs velocity ratio of IASP91. Although the teleseismic S wave arrivals are delayed in TNA by several seconds relative to IASP91, the effect on the arrival time of S410p at a distance of around 80° is on the order of a fraction of a second (Figure 9). S velocities in the YF model are much lower than in TNA, but the absolute values of the residuals of S410p still are too small. Finally, the YF model with the elevated Vp/Vs ratio (1.9 versus ~1.8 in IASP91) in the depth interval from 85 to 200 km and the standard ratio elsewhere yields the observed residuals (around ~2 s). To conclude, the early arrivals of S410p can be caused by the anomalously high Vp/Vs ratio.

[17] An alternative reason for the early arrivals of S410p is the topography of the 410 km discontinuity. The travel-time effect dT of the perturbation of the interface depth dH is

\[dT = (pz_1 - pz_2)dH, \]

where \(pz_1 \) and \(pz_2 \) are the vertical slownesses of the incident and transmitted wave, respectively. For the slowness of 10.5 s/°, the perturbation of the Sp travel time is ~0.12 dH and that of the S travel-time is 0.01 dH. Therefore the perturbation of the Sp travel time relative to the S travel time is ~0.13 dH. For \(dH = 15 \) km, the perturbation of time is ~1.95 s. In other words, the residuals of ~2 s can be explained by a depression of ~15 km on the 410 km discontinuity.

4. Observations of S350p and S480p

[18] Seismic phases recorded in the vicinity of S410p are another target of our analysis. We employed two methods of analysis. In the first method we investigate the waveforms of S410p at each station and in each azimuthal sector. The stacked SV component of the receiver function consists of the main lobe and two sidelobes with opposite polarity. The amplitude ratio between the sidelobes and the main lobe is close to 0.4. The Sp phase from a boundary between two half-spaces should have practically the same form as the parent SV phase, except for the polarity.

[19] We inspected the amplitude ratio between the positive right-hand sidelobe of the S410p phase and its main
lobe for those receiver functions, where the $S410p$ amplitude exceeds the threshold of 3σ (see section 3), and the maximum of each amplitude is observed within the slowness range from 0 to 1.2 s/\degree. The largest amplitude in this slowness range is taken for the amplitude estimate. The results are presented in the histogram in Figure 6b and in Table 1.

[20] The histogram in Figure 6b is bimodal, with one maximum between 0.4 and 0.5 and the second maximum between 0.7 and 0.9. Examples of the receiver functions contributing to the first and second maxima are shown in Figures 4 and 10, respectively. We interpret the histogram maximum between 0.4 and 0.5 as mainly an effect of the sidelobe of $S410p$. In Table 1 we marked the receiver functions that contribute to the maximum between 0.7 and 0.9; the others either contribute to the first maximum or, sometimes, are too complicated for accurate measurements. Random noise cannot be the reason for the second maximum because the elevated amplitude ratio is observed systematically in three azimuths at the large group of stations. On a global scale this phenomenon is rare, only in about 10% of the data [Vinnik and Farra, 2007], and mostly in a specific group of continental regions. A difference in attenuation between the S and $S410p$ phases was tested as a possible explanation for the anomalously large amplitude of the sidelobe, with a negative result [Vinnik and Farra, 2007]. Moreover, there are examples of a large signal that arrives at the time appropriate for the sidelobe in the absence of the main lobe (see example in Figure 11h). The only plausible explanation for the second maximum that we can
suggest is the systematic presence of another phase interfering constructively with the sidelobe. This can be the S_p phase from the negative 350 km discontinuity, which in several other regions presents the upper bound of a thin low S velocity layer atop the 410 km discontinuity [Vinnik and Farra, 2002, 2007].

[21] The stations in Table 1 are sorted by latitude from north to south. It is easy to see that the large amplitude ratio is found at almost all southern stations, whereas at the northern stations such ratio is rare. Approximate geographical locations of the 350 km discontinuity corresponding to the data in Table 1 with a large ratio between the right side lobe and the main lobe of S_{410p} are also shown in Figure 12, and they display the same trend.

[22] Our interpretation is verified by synthetic seismograms (Figure 13). The synthetics were calculated with the reflectivity techniques [Fuchs and Mueller, 1971] for the standard IASP91 model and a modified IASP91 model with a low-velocity layer atop the 410 km discontinuity. The S velocity in the middle of the layer is 2.5% lower than in the standard model, and the V_p/V_s ratio is that of the IASP91 model. The synthetics were processed like the actual seismograms, and the receiver functions were stacked in the distance range from 75° to 85°. In the synthetic SRFs for the modified model the right-hand side lobe of S_{410p} is comparable in amplitude with S_{410p}, as in the examples in Figure 10. This model is not unique, but the approximate depth of the low-velocity layer and the S velocity reduction are constrained by the time and amplitude of the related S_{350p} phase. The label “S_{350p}” for this phase does not imply that the 350 km discontinuity is sharp and located precisely at a depth of 350 km, but it is within the range from 320 to 380 km.

[23] Another exotic arrival, S_{480p} (Figure 11), has the same positive polarity as S_{350p}, which implies a negative

![Figure 11. The same as Figure 10, but for S_{480p}.](image-url)
(with a lower S velocity at the lower side) 480 km discontinuity. As in the case of the 350 km discontinuity, the term “480 km” does not mean that the discontinuity is sharp and its depth is precisely 480 km. $S480p$ may interfere constructively with the left-hand side lobe of $S410p$, and Figure 11 demonstrates examples of the arrivals, where the signal is large relative to the RMS value of noise, comparable in amplitude with $S410p$, and is observed in the differential slowness range appropriate for a conversion depth of 480 km. Two examples (Figures 11g and 11h) are remarkable in the fact that $S410p$ is missing, and $S480p$ cannot be interpreted as a sidelobe of $S410p$. Some receiver functions demonstrate complicated wavefields, which suggest that the 480 km discontinuity may present part of a still unresolved structure in the transition zone.

[24] Another way of representing receiver functions is common conversion point stacking [Duerer and Sheehan, 1997], implemented for the S receiver functions by Wittlinger et al. [2004]. In this method Earth’s medium is divided into boxes 100 km \times 1000 km \times 5 km, where 100 and 1000 km correspond to the horizontal directions parallel and perpendicular to the azimuth of 135° (purple line in Figure 7), respectively, and 5 km is for the vertical direction. P component amplitudes of the SRFs are weighted as described in section 2 and summed for the Sp rays with the conversion points within the box. The sum is attributed to the center of the box. The number of rays in most of the boxes is more than 90. Migration is performed by using the YF model with the elevated Vp/Vs ratio between 85 and 220 km depths. The obtained image (Figure 14) demonstrates the arrivals from the 410 and 350 km discontinuities with comparable amplitudes. In agreement with the data in Table 1 and Figure 12, the largest amplitudes of $S350p$ are in the south of the section, while the signal practically disappears in the north. No systematic pattern is found for $S480p$.

5. Discussion and Conclusions

[25] We have found that in most cases the arrivals of $S410p$ are early, about 2 s earlier than in the standard IASP91 model. The early arrivals may have two reasons: anomalously high Vp/Vs ratio and a depressed 410 km discontinuity. There are independent indications that elevated Vp/Vs ratio may occur in the study region. Temperature variations in the mantle lead to variations of seismic velocities and of the related teleseismic travel-time residuals relative to the 1-D model. The expected slope of the regression line between the teleseismic S and P residuals for the standard Vp/Vs ratio is 2.7 [Vinnik et al., 1999]. However, the slope determined from the residuals at seismograph stations in North America is around 3.6 or more [Hales and Roberts, 1970; Wickens and Buchbinder, 1980; Romanowicz and Cara, 1980; Vinnik et al., 1999]. Velocities in active tectonic regions in the west of North America are lower than in the cratonic regions in the east, and the elevated slope of the regression line implies either a reduced Vp/Vs ratio in the east, an elevated Vp/Vs ratio in the west, or both. The elevated Vp/Vs ratio is usually attributed to high anelastic attenuation and the related relaxation of shear modulus. Melting can be responsible for a very high Vp/Vs ratio [Hammond and Humphreys, 2000].

[26] The issue of the depth of the 410 km discontinuity beneath California is controversial. At two stations in California the time difference between $P660s$ and $P410s$ is reduced by \sim0.6 s relative to IASP91 [Vinnik et al., 1999]. This effect can be caused by a depression of \sim5 km on the 410 km discontinuity. A reduced by \sim30 km thickness of the mantle transition zone was inferred from the P receiver functions of station PAS in California [Gurrola and Minster, 1999], but this estimate is questionable [Chevrot et al., 1999]. In the P receiver functions from a few stations in California there is no systematic deviation of the time difference between $P660s$ and $P410s$ from the standard value [Ramesh et al., 2002]. A reduction of thickness of the mantle transition zone beneath the Pacific and North...
This discontinuity corresponds mainly to the phase transition from olivine to wadsleyite with a positive Clapeyron slope of about 3 MPa/K [Gu et al., 1998; Song et al., 2004]. This discontinuity was attributed either to dehydration of subducted lithospheric plates [Revenaugh and Sipkin, 1994; Song et al., 2004; Jasbinsek and Dueker, 2007] or mantle plumes [Vinnik and Farra, 2002, 2007]. Our present observations favor the second hypothesis: a well-known hot spot (Baja Guadalupe, 27°N, 113°W) is located in the south of the study region (Figure 7), and the largest S350p phases are observed at the southernmost stations, in the vicinity of this hot spot. Of course water could be originally brought to the mantle in subduction zones and later transported by a plume to the 410 km discontinuity. In the northeastern United States the low-velocity layer [Song et al., 2004] can be associated with the Columbia River flood basalts and the related mantle plume [Vinnik and Farra, 2007]. The low velocity atop the 410 km discontinuity can alternatively be caused by carbonate with a low melting temperature [Presnall and Gudfinnsson, 2005].

Observations of the S480p phase in California which are indicative of a low S velocity layer in the transition zone were previously made with the same technique in several other regions, some of them related to hot spots and Mesozoic-Cenozoic LIPs: Iceland [Vinnik et al., 2005], Afar, Ethiopia [Vinnik et al., 2004], Cameroon and north China [Vinnik and Farra, 2006], and southern Africa [Vinnik et al., 2009]. A clear recording of S480p with the piercing point beneath the Baja Guadalupe hot spot has been obtained at station TUC in the west of the United States [Vinnik and Farra, 2006]. This layer beneath California and the Pacific margin can be related to the neighboring large-scale, low-velocity anomaly in the transition zone [Ritsema et al., 2004]. The origin of this layer requires further research, but its possible association with hot spots and low-velocity anomalies in the transition zone suggests a relation to elevated temperature.
Acknowledgments. The seismograms were obtained from the Berkeley Digital Seismic Network, the Southern California network, and IRIS DMC. L.V. and S.K. are partly supported by grant 07-05-00015 from the Russian Fund for Basic Research. S.K. was partly supported by the collaboration program between the Institut de Physique du Globe de Paris and the Institute of Physics of the Earth of the RAS, Moscow. The authors appreciate constructive comments from the section editor and two anonymous reviewers. This is IPGP contribution 2646.

References

