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Abstract

The Global Positioning System (GPS) uses accurate, stable atomic
clocks in satellites and on the ground to provide world-wide position and
time determination. These clocks have gravitational and motional fre-
quency shifts which are so large that, without carefully accounting for
numerous relativistic effects, the system would not work. This paper dis-
cusses the conceptual basis, founded on special and general relativity, for
navigation using GPS. Relativistic principles and effects which must be
considered include the constancy of the speed of light, the equivalence
principle, the Sagnac effect, time dilation, gravitational frequency shifts,
and relativity of synchronization. Experimental tests of relativity ob-
tained with a GPS receiver aboard the TOPEX/POSEIDON satellite will
be discussed. Recently frequency jumps arising from satellite orbit adjust-
ments have been identified as relativistic effects. These will be explained
and some interesting applications of GPS will be discussed.
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1 Introduction

The Global Positioning System (GPS) can be described in terms of three princi-
pal “segments”: a Space Segment, a Control Segment, and a User Segment. The
Space Segment consists essentially of 24 satellites carrying atomic clocks. (Spare
satellites and spare clocks in satellites exist.) There are four satellites in each of
six orbital planes inclined at 55◦ with respect to earth’s equatorial plane, dis-
tributed so that from any point on the earth, four or more satellites are almost
always above the local horizon. Tied to the clocks are timing signals that are
transmitted from each satellite. These can be thought of as sequences of events
in spacetime, characterized by positions and times of transmission. Associated
with these events are messages specifying the transmission events’ spacetime
coordinates; below I will discuss the system of reference in which these coordi-
nates are given. Additional information contained in the messages includes an
almanac for the entire satellite constellation, information about satellite vehicle
health, and information from which Universal Coordinated Time as maintained
by the U.S. Naval Observatory – UTC(USNO) – can be determined.

The Control Segment is comprised of a number of ground-based monitoring
stations, which continually gather information from the satellites. These data
are sent to a Master Control Station in Colorado Springs, CO, which analyzes
the constellation and projects the satellite ephemerides and clock behaviour
forward for the next few hours. This information is then uploaded into the
satellites for retransmission to users.

The User Segment consists of all users who, by receiving signals transmitted
from the satellites, are able to determine their position, velocity, and the time
on their local clocks.

The GPS is a navigation and timing system that is operated by the United
States Department of Defense (DoD), and therefore has a number of aspects to
it that are classified. Several organizations monitor GPS signals independently
and provide services from which satellite ephemerides and clock behavior can be
obtained. Accuracies in the neighborhood of 5–10 cm are not unusual. Carrier
phase measurements of the transmitted signals are commonly done to better
than a millimeter.

GPS signals are received on earth at two carrier frequencies, L1 (154 ×
10.23 MHz) and L2 (120×10.23 MHz). The L1 carrier is modulated by two types
of pseudorandom noise codes, one at 1.023 MHz – called the Coarse/Acquisition
or C/A-code – and an encrypted one at 10.23 MHz called the P-code. P-
code receivers have access to both L1 and L2 frequencies and can correct for
ionospheric delays, whereas civilian users only have access to the C/A-code.
There are thus two levels of positioning service available in real time, the Precise
Positioning Service utilizing P-code, and the Standard Positioning Service using
only C/A-code. The DoD has the capability of dithering the transmitted signal
frequencies and other signal characteristics, so that C/A-code users would be
limited in positioning accuracy to about ±100 meters. This is termed Selective
Availability, or SA. SA was turned off by order of President Clinton in May,
2000.
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Figure 1: Typical Allan deviations of Cesium clocks and quartz oscillators, plot-
ted as a function of averaging time τ .

The technological basis for GPS lies in extremely accurate, stable atomic
clocks. Figure 1 gives a plot of the Allan deviation for a high-performance
Cesium clock, as a function of sample time τ . If an ensemble of clocks is initially
synchronized, then when compared to each other after a time τ , the Allan
deviation provides a measure of the rms fractional frequency deviation among
the clocks due to intrinsic noise processes in the clocks. Frequency offsets and
frequency drifts are additional systematic effects which must be accounted for
separately. Also on Figure 1 is an Allan deviation plot for a Quartz oscillator
such as is typically found in a GPS receiver. Quartz oscillators usually have
better short-term stability performance characteristics than Cesium clocks, but
after 100 seconds or so, Cesium has far better performance. In actual clocks
there is a wide range of variation around the nominal values plotted in Figure 1.

The plot for Cesium, however, characterizes the best orbiting clocks in the
GPS system. What this means is that after initializing a Cesium clock, and
leaving it alone for a day, it should be correct to within about 5 parts in 1014,
or 4 nanoseconds. Relativistic effects are huge compared to this.

The purpose of this article is to explain how relativistic effects are accounted
for in the GPS. Although clock velocities are small and gravitational fields are
weak near the earth, they give rise to significant relativistic effects. These effects
include first- and second-order Doppler frequency shifts of clocks due to their
relative motion, gravitational frequency shifts, and the Sagnac effect due to
earth’s rotation. If such effects are not accounted for properly, unacceptably
large errors in GPS navigation and time transfer will result. In the GPS one
can find many examples of the application of fundamental relativity principles.
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These are worth careful study. Also, experimental tests of relativity can be
performed with GPS, although generally speaking these are not at a level of
precision any better than previously existing tests.

The principles of position determination and time transfer in the GPS can be
very simply stated. Let there be four synchronized atomic clocks that transmit
sharply defined pulses from the positions rj at times tj , with j = 1, 2, 3, 4 an
index labelling the different transmission events. Suppose that these four signals
are received at position r at one and the same instant t. Then, from the principle
of the constancy of the speed of light,

c2(t− tj)2 = |r− rj |2, j = 1, 2, 3, 4. (1)

where the defined value of c is exactly 299792458 m s−1. These four equations
can be solved for the unknown space-time coordinates {r, t} of the reception
event. Hence, the principle of the constancy of c finds application as the funda-
mental concept on which the GPS is based. Timing errors of one ns will lead to
positioning errors of the order of 30 cm. Also, obviously, it is necessary to specify
carefully the reference frame in which the transmitter clocks are synchronized,
so that Eq. (1) is valid.

The timing pulses in question can be thought of as places in the transmitted
wave trains where there is a particular phase reversal of the circularly polarized
electromagnetic signals. At such places the electromagnetic field tensor passes
through zero and therefore provides relatively moving observers with sequences
of events that they can agree on, at least in principle.
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2 Reference Frames and the Sagnac Effect

Almost all users of GPS are at fixed locations on the rotating earth, or else are
moving very slowly over earth’s surface. This led to an early design decision to
broadcast the satellite ephemerides in a model earth-centered, earth-fixed, ref-
erence frame (ECEF frame), in which the model earth rotates about a fixed axis
with a defined rotation rate, ωE = 7.2921151467× 10−5 rad s−1. This reference
frame is designated by the symbol WGS-84(G873) [19, 3]. For discussions of
relativity, the particular choice of ECEF frame is immaterial. Also, the fact the
the earth truly rotates about a slightly different axis with a variable rotation
rate has little consequence for relativity and I shall not go into this here. I shall
simply regard the ECEF frame of GPS as closely related to, or determined by,
the International Terrestrial Reference Frame established by the BIPM.

It should be emphasized that the transmitted navigation messages provide
the user only with a function from which the satellite position can be calculated
in the ECEF as a function of the transmission time. Usually, the satellite
transmission times tj are unequal, so the coordinate system in which the satellite
positions are specified changes orientation from one measurement to the next.
Therefore, to implement Eqs. (1), the receiver must generally perform a different
rotation for each measurement made, into some common inertial frame, so that
Eqs. (1) apply. After solving the propagation delay equations, a final rotation
must usually be performed into the ECEF to determine the receiver’s position.
This can become exceedingly complicated and confusing. A technical note [10]
discusses these issues in considerable detail.

Although the ECEF frame is of primary interest for navigation, many physi-
cal processes (such as electromagnetic wave propagation) are simpler to describe
in an inertial reference frame. Certainly, inertial reference frames are needed
to express Eqs. (1), whereas it would lead to serious error to assert Eqs. (1)
in the ECEF frame. A “Conventional Inertial Frame” is frequently discussed,
whose origin coincides with earth’s center of mass, which is in free fall with the
earth in the gravitational fields of other solar system bodies, and whose z-axis
coincides with the angular momentum axis of earth at the epoch J2000.0. Such
a local inertial frame may be related by a transformation of coordinates to the
so-called International Celestial Reference Frame (ICRF), an inertial frame de-
fined by the coordinates of about 500 stellar radio sources. The center of this
reference frame is the barycenter of the solar system.

In the ECEF frame used in the GPS, the unit of time is the SI second as
realized by the clock ensemble of the U.S. Naval Observatory, and the unit of
length is the SI meter. This is important in the GPS because it means that local
observations using GPS are insensitive to effects on the scales of length and time
measurements due to other solar system bodies, that are time-dependent.

Let us therefore consider the simplest instance of a transformation from an
inertial frame, in which the space-time is Minkowskian, to a rotating frame of
reference. Thus, ignoring gravitational potentials for the moment, the metric in
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an inertial frame in cylindrical coordinates is

− ds2 = −(c dt)2 + dr2 + r2dφ2 + dz2, (2)

and the transformation to a coordinate system {t′, r′, φ′, z′} rotating at the
uniform angular rate ωE is

t = t′, r = r′, φ = φ′ + ωEt′, z = z′. (3)

This results in the following well-known metric (Langevin metric) in the rotating
frame:

− ds2 = −
(

1− ω2
Er′2

c2

)
(cdt′)2 + 2ωEr′2dφ′dt′ + (dσ′)2, (4)

where the abbreviated expression (dσ′)2 = (dr′)2 + (r′dφ′)2 + (dz′)2 for the
square of the coordinate distance has been used.

The time transformation t = t′ in Eqs. (3) is deceivingly simple. It means
that in the rotating frame the time variable t′ is really determined in the un-
derlying inertial frame. It is an example of coordinate time. A similar concept
is used in the GPS.

Now consider a process in which observers in the rotating frame attempt
to use Einstein synchronization (that is, the principle of the constancy of the
speed of light) to establish a network of synchronized clocks. Light travels along
a null worldline, so we may set ds2 = 0 in Eq. (4). Also, it is sufficient for this
discussion to keep only terms of first order in the small parameter ωEr′/c. Then

(cdt′)2 − 2ωEr′2dφ′(cdt′)
c

− (dσ′)2 = 0, (5)

and solving for (cdt′) yields

cdt′ = dσ′ +
ωEr′2dφ′

c
. (6)

The quantity r′2dφ′/2 is just the infinitesimal area dA′
z in the rotating coordi-

nate system swept out by a vector from the rotation axis to the light pulse, and
projected onto a plane parallel to the equatorial plane. Thus, the total time
required for light to traverse some path is∫

path

dt′ =
∫

path

dσ′

c
+

2ωE

c2

∫
path

dA′
z. [light] (7)

Observers fixed on the earth, who were unaware of earth rotation, would use
just

∫
dσ′/c for synchronizing their clock network. Observers at rest in the

underlying inertial frame would say that this leads to significant path-dependent
inconsistencies, which are proportional to the projected area encompassed by
the path. Consider, for example, a synchronization process that follows earth’s
equator in the eastwards direction. For earth, 2ωE/c2 = 1.6227 × 10−21 s m−2
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9 Relativity in the Global Positioning System

and the equatorial radius is a1 = 6,378,137 m, so the area is πa2
1 = 1.27802 ×

1014 m2. Thus, the last term in Eq. (7) is

2ωE

c2

∫
path

dA′
z = 207.4 ns. (8)

From the underlying inertial frame, this can be regarded as the additional travel
time required by light to catch up to the moving reference point. Simple-minded
use of Einstein synchronization in the rotating frame gives only

∫
dσ′/c, and thus

leads to a significant error. Traversing the equator once eastward, the last clock
in the synchronization path would lag the first clock by 207.4 ns. Traversing the
equator once westward, the last clock in the synchronization path would lead
the first clock by 207.4 ns.

In an inertial frame a portable clock can be used to disseminate time. The
clock must be moved so slowly that changes in the moving clock’s rate due
to time dilation, relative to a reference clock at rest on earth’s surface, are
extremely small. On the other hand, observers in a rotating frame who attempt
this, find that the proper time elapsed on the portable clock is affected by earth’s
rotation rate. Factoring Eq. (4), the proper time increment dτ on the moving
clock is given by

(dτ)2 = (ds/c)2 = dt′2

[
1−

(
ωEr′

c

)2

− 2ωEr′2dφ′

c2dt′
−

(
dσ′

cdt′

)2
]

. (9)

For a slowly moving clock, (dσ′/cdt′)2 � 1, so the last term in brackets in
Eq. (9) can be neglected. Also, keeping only first order terms in the small
quantity ωEr′/c yields

dτ = dt′ − ωEr′2dφ′

c2
(10)

which leads to∫
path

dt′ =
∫

path

dτ +
2ωE

c2

∫
path

dA′
z. [portable clock] (11)

This should be compared with Eq. (7). Path-dependent discrepancies in the
rotating frame are thus inescapable whether one uses light or portable clocks to
disseminate time, while synchronization in the underlying inertial frame using
either process is self-consistent.

Eqs. (7) and (11) can be reinterpreted as a means of realizing coordinate
time t′ = t in the rotating frame, if after performing a synchronization process
appropriate corrections of the form +2ωE

∫
path

dA′
z/c2 are applied. It is remark-

able how many different ways this can be viewed. For example, from the inertial
frame it appears that the reference clock from which the synchronization pro-
cess starts is moving, requiring light to traverse a different path than it appears
to traverse in the rotating frame. The Sagnac effect can be regarded as arising
from the relativity of simultaneity in a Lorentz transformation to a sequence of
local inertial frames co-moving with points on the rotating earth. It can also
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be regarded as the difference between proper times of a slowly moving portable
clock and a Master reference clock fixed on earth’s surface.

This was recognized in the early 1980s by the Consultative Committee for
the Definition of the Second and the International Radio Consultative Com-
mittee who formally adopted procedures incorporating such corrections for the
comparison of time standards located far apart on earth’s surface. For the GPS
it means that synchronization of the entire system of ground-based and orbit-
ing atomic clocks is performed in the local inertial frame, or ECI coordinate
system [6].

GPS can be used to compare times on two earth-fixed clocks when a single
satellite is in view from both locations. This is the “common-view” method
of comparison of Primary standards, whose locations on earth’s surface are
usually known very accurately in advance from ground-based surveys. Signals
from a single GPS satellite in common view of receivers at the two locations
provide enough information to determine the time difference between the two
local clocks. The Sagnac effect is very important in making such comparisons,
as it can amount to hundreds of nanoseconds, depending on the geometry. In
1984 GPS satellites 3, 4, 6, and 8 were used in simultaneous common view
between three pairs of earth timing centers, to accomplish closure in perform-
ing an around-the-world Sagnac experiment. The centers were the National
Bureau of Standards (NBS) in Boulder, CO, Physikalisch-Technische Bundes-
anstalt (PTB) in Braunschweig, West Germany, and Tokyo Astronomical Ob-
servatory (TAO). The size of the Sagnac correction varied from 240 to 350 ns.
Enough data were collected to perform 90 independent circumnavigations. The
actual mean value of the residual obtained after adding the three pairs of time
differences was 5 ns, which was less than 2 percent of the magnitude of the
calculated total Sagnac effect [4].
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3 GPS Coordinate Time and TAI

In the GPS, the time variable t′ = t becomes a coordinate time in the rotating
frame of the earth, which is realized by applying appropriate corrections while
performing synchronization processes. Synchronization is thus performed in the
underlying inertial frame in which self-consistency can be achieved.

With this understanding, I next need to describe the gravitational fields
near the earth due to the earth’s mass itself. Assume for the moment that
earth’s mass distribution is static, and that there exists a locally inertial, non-
rotating, freely falling coordinate system with origin at the earth’s center of
mass, and write an approximate solution of Einstein’s field equations in isotropic
coordinates:

− ds2 = −
(

1 +
2V

c2

)
(cdt)2 +

(
1− 2V

c2

)
(dr2 + r2dθ2 + r2 sin2 θdφ2). (12)

where {r, θ, φ} are spherical polar coordinates and where V is the Newtonian
gravitational potential of the earth, given approximately by:

V = −GME

r

[
1− J2

(a1

r

)2

P2(cos θ)
]

. (13)

In Eq. (13), GME = 3.986004418 × 1014 m3 s−2 is the product of earth’s mass
times the Newtonian gravitational constant, J2 = 1.0826300 × 10−3 is earth’s
quadrupole moment coefficient, and a1 = 6.3781370 × 106 is earth’s equatorial
radius1. The angle θ is the polar angle measured downward from the axis
of rotational symmetry; P2 is the Legendre polynomial of degree 2. In using
Eq. (12), it is an adequate approximation to retain only terms of first order in
the small quantity V/c2. Higher multipole moment contributions to Eq. (13)
have very a small effect for relativity in GPS.

One additional expression for the invariant interval is needed: the trans-
formation of Eq. (12) to a rotating, ECEF coordinate system by means of
transformations equivalent to Eqs. (3). The transformations for spherical polar
coordinates are:

t = t′, r = r′, θ = θ′, φ = φ′ + ωEt′. (14)

Upon performing the transformations, and retaining only terms of order 1/c2,
the scalar interval becomes:

− ds2 = −

[
1 +

2V

c2
−

(
ωEr′ sin θ′

c

)2
]

(c dt′)2 + 2ωEr′2 sin2 θ′dφ′dt′

+
(

1− 2V

c2

)
(dr′2 + r′2dθ′2 + r′2 sin2 θ′dφ′2). (15)

1WGS-84(G873) values of these constants are used in this article.
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To the order of the calculation, this result is a simple superposition of the metric,
Eq. (12), with the corrections due to rotation expressed in Eq. (4). The metric
tensor coefficient g′00 in the rotating frame is

g′00 = −

[
1 +

2V

c2
−

(
ωEr′ sin θ′

c

)2
]
≡ −

(
1 +

2Φ
c2

)
, (16)

where Φ is the effective gravitational potential in the rotating frame, which in-
cludes the static gravitational potential of the earth, and a centripetal potential
term.

The Earth’s geoid. In Eqs. (12) and (15), the rate of coordinate time
is determined by atomic clocks at rest at infinity. The rate of GPS coordinate
time, however, is closely related to International Atomic Time (TAI), which is
a time scale computed by the International Bureau of Weights and Measures
(BIPM) in Paris on the basis of inputs from hundreds of primary time standards,
hydrogen masers, and other clocks from all over the world. In producing this
time scale, corrections are applied to reduce the elapsed proper times on the
contributing clocks to earth’s geoid, a surface of constant effective gravitational
equipotential at mean sea level in the ECEF.

Universal Coordinated Time (UTC) is another time scale, which differs from
TAI by a whole number of leap seconds. These leap seconds are inserted every
so often into UTC so that UTC continues to correspond to time determined
by earth’s rotation. Time standards organizations that contribute to TAI and
UTC generally maintain their own time scales. For example, the time scale
of the U.S. Naval Observatory, based on an ensemble of Hydrogen masers and
Cs clocks, is denoted UTC(USNO). GPS time is steered so that, apart from
the leap second differences, it stays within 100 ns UTC(USNO). Usually, this
steering is so successful that the difference between GPS time and UTC(USNO)
is less than about 40 ns. GPS equipment cannot tolerate leap seconds, as such
sudden jumps in time would cause receivers to lose their lock on transmitted
signals, and other undesirable transients would occur.

To account for the fact that reference clocks for the GPS are not at infinity,
I shall consider the rates of atomic clocks at rest on the earth’s geoid. These
clocks move because of the earth’s spin; also, they are at varying distances from
the earth’s center of mass since the earth is slightly oblate. In order to proceed
one needs a model expression for the shape of this surface, and a value for the
effective gravitational potential on this surface in the rotating frame.

For this calculation, I use Eq. (15) in the ECEF. For a clock at rest on earth,
Eq. (15) reduces to

− ds2 = −
(

1 +
2V

c2
− ω2

Er′2 sin2 θ′

c2

)
(c dt′)2, (17)

with the potential V given by Eq. (13). This equation determines the radius r′

of the model geoid as a function of polar angle θ′. The numerical value of Φ0
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can be determined at the equator where θ′ = π/2 and r′ = a1. This gives

Φ0

c2
= −GME

a1c2
− GMEJ2

2a1c2
− ω2

Ea2
1

2c2

= −6.95348× 10−10 − 3.764× 10−13 − 1.203× 10−12

= −6.96927× 10−10. (18)

There are thus three distinct contributions to this effective potential: a simple
1/r contribution due to the earth’s mass; a more complicated contribution from
the quadrupole potential, and a centripetal term due to the earth’s rotation.
The main contribution to the gravitational potential arises from the mass of the
earth; the centripetal potential correction is about 500 times smaller, and the
quadrupole correction is about 2000 times smaller. These contributions have
been divided by c2 in the above equation since the time increment on an atomic
clock at rest on the geoid can be easily expressed thereby. In recent resolutions
of the International Astronomical Union [1], a “Terrestrial Time” scale (TT)
has been defined by adopting the value Φ0/c2 = 6.969290134× 10−10. Eq. (18)
agrees with this definition to within the accuracy needed for the GPS.

From Eq. (15), for clocks on the geoid,

dτ = ds/c = dt′
(

1 +
Φ0

c2

)
. (19)

Clocks at rest on the rotating geoid run slow compared to clocks at rest at
infinity by about seven parts in 1010. Note that these effects sum to about
10,000 times larger than the fractional frequency stability of a high-performance
Cesium clock. The shape of the geoid in this model can be obtained by setting
Φ = Φ0 and solving Eq. (16) for r′ in terms of θ′. The first few terms in a power
series in the variable x′ = sin θ′ can be expressed as

r′ = (6356742.025 + 21353.642 x′2 + 39.832 x′4 + 0.798 x′6 + 0.003 x′8) m. (20)

This treatment of the gravitational field of the oblate earth is limited by the
simple model of the gravitational field. Actually, what I have done is estimate
the shape of the so-called “reference ellipsoid”, from which the actual geoid is
conventionally measured.

Better models can be found in the literature of geophysics [18, 9, 15]. The
next term in the multipole expansion of the earth’s gravity field is about a
thousand times smaller than the contribution from J2; although the actual shape
of the geoid can differ from Eq. (20) by as much as 100 meters, the effects of
such terms on timing in the GPS are small. Incorporating up to 20 higher zonal
harmonics in the calculation affects the value of Φ0 only in the sixth significant
figure.

Observers at rest on the geoid define the unit of time in terms of the proper
rate of atomic clocks. In Eq. (19), Φ0 is a constant. On the left side of Eq. (19),
dτ is the increment of proper time elapsed on a standard clock at rest, in terms
of the elapsed coordinate time dt. Thus, the very useful result has emerged,
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that ideal clocks at rest on the geoid of the rotating earth all beat at the same
rate. This is reasonable since the earth’s surface is a gravitational equipotential
surface in the rotating frame. (It is true for the actual geoid whereas I have
constructed a model.) Considering clocks at two different latitudes, the one
further north will be closer to the earth’s center because of the flattening –
it will therefore be more redshifted. However, it is also closer to the axis of
rotation, and going more slowly, so it suffers less second-order Doppler shift.
The earth’s oblateness gives rise to an important quadrupole correction. This
combination of effects cancels exactly on the reference surface.

Since all clocks at rest on the geoid beat at the same rate, it is advantageous
to exploit this fact to redefine the rate of coordinate time. In Eq. (12) the rate of
coordinate time is defined by standard clocks at rest at infinity. I want instead
to define the rate of coordinate time by standard clocks at rest on the surface
of the earth. Therefore, I shall define a new coordinate time t′′ by means of a
constant rate change:

t′′ = (1 + Φ0/c2)t′ = (1 + Φ0/c2)t. (21)

The correction is about seven parts in 1010 (see Eq. (18)).
When this time scale change is made, the metric of Eq. (15) in the earth-fixed

rotating frame becomes

− ds2 = −
(

1 +
2(Φ− Φ0)

c2

)
(cdt′′)2 + 2ωEr′2 sin2 θ′dφ′dt′′

+
(

1− 2V

c2

)
(dr′2 + r′2dθ′2 + r′2 sin2 θ′dφ′2), (22)

where only terms of order c−2 have been retained. Whether I use dt′ or dt′′ in
the Sagnac cross term makes no difference since the Sagnac term is very small
anyway. The same time scale change in the non-rotating ECI metric, Eq. (12),
gives

− ds2 = −
(

1 +
2(V − Φ0)

c2

)
(cdt′′)2 +

(
1− 2V

c2

)
(dr2 + r2dθ2 + r2 sin2 θdφ2).

(23)
Eqs. (22) and Eq. (23) imply that the proper time elapsed on clocks at rest on
the geoid (where Φ = Φ0) is identical with the coordinate time t′′. This is the
correct way to express the fact that ideal clocks at rest on the geoid provide all
of our standard reference clocks.
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15 Relativity in the Global Positioning System

4 The Realization of Coordinate Time

We are now able to address the real problem of clock synchronization within
the GPS. In the remainder of this paper I shall drop the primes on t′′ and just
use the symbol t, with the understanding that unit of this time is reference to
UTC(USNO) on the rotating geoid, but with synchronization established in an
underlying, locally inertial, reference frame. The metric Eq. (23) will henceforth
be written

− ds2 = −
(

1 +
2(V − Φ0)

c2

)
(cdt)2 +

(
1− 2V

c2

)
(dr2 + r2dθ2 + r2 sin2 θdφ2).

(24)
The difference (V −Φ0) that appears in the first term of Eq. (24) arises because
in the underlying earth-centered locally inertial (ECI) coordinate system in
which Eq. (24) is expressed, the unit of time is determined by moving clocks in
a spatially-dependent gravitational field.

It is obvious that Eq. (24) contains within it the well-known effects of time
dilation (the apparent slowing of moving clocks) and frequency shifts due to
gravitation. Due to these effects, which have an impact on the net elapsed
proper time on an atomic clock, the proper time elapsing on the orbiting GPS
clocks cannot be simply used to transfer time from one transmission event to
another. Path-dependent effects must be accounted for.

On the other hand, according to General Relativity, the coordinate time
variable t of Eq. (24) is valid in a coordinate patch large enough to cover the
earth and the GPS satellite constellation. Eq. (24) is an approximate solution
of the field equations near the earth, which include the gravitational fields due
to earth’s mass distribution. In this local coordinate patch, the coordinate
time is single-valued. (It is not unique, of course, because there is still gauge
freedom, but Eq. (24) represents a fairly simple and reasonable choice of gauge.)
Therefore, it is natural to propose that the coordinate time variable t of Eqs. (24)
and (22) be used as a basis for synchronization in the neighborhood of the earth.

To see how this works for a slowly moving atomic clock, solve Eq. (24) for
dt as follows. First factor out (cdt)2 from all terms on the right-hand side:

− ds2 = −
[
1 +

2(V − Φ0)
c2

−
(

1− 2V

c2

)
dr2 + r2dθ2 + r2 sin2 θdφ2

(cdt)2

]
(cdt)2.

(25)
I simplify by writing the velocity in the ECI coordinate system as

v2 =
dr2 + r2dθ2 + r2 sin2 θdφ2

dt2
. (26)

Only terms of order c−2 need be kept, so the potential term modifying the
velocity term can be dropped. Then, upon taking a square root, the proper
time increment on the moving clock is approximately

dτ = ds/c =
[
1 +

(V − Φ0)
c2

− v2

2c2

]
dt. (27)
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Finally, solving for the increment of coordinate time and integrating along the
path of the atomic clock,∫

path

dt =
∫

path

dτ

[
1− (V − Φ0)

c2
− v2

2c2

]
. (28)

The relativistic effect on the clock, given in Eq. (27), is thus corrected by
Eq. (28).

Suppose for a moment there were no gravitational fields. Then one could pic-
ture an underlying non-rotating reference frame, a local inertial frame, unattached
to the spin of the earth, but with its origin at the center of the earth. In this
non-rotating frame, a fictitious set of standard clocks is introduced, available
anywhere, all of them being synchronized by the Einstein synchronization proce-
dure, and running at agreed upon rates such that synchronization is maintained.
These clocks read the coordinate time t. Next, one introduces the rotating earth
with a set of standard clocks distributed around upon it, possibly roving around.
One applies to each of the standard clocks a set of corrections based on the
known positions and motions of the clocks, given by Eq. (28). This generates a
“coordinate clock time” in the earth-fixed, rotating system. This time is such
that at each instant the coordinate clock agrees with a fictitious atomic clock
at rest in the local inertial frame, whose position coincides with the earth-based
standard clock at that instant. Thus, coordinate time is equivalent to time that
would be measured by standard clocks at rest in the local inertial frame [7].

When the gravitational field due to the earth is considered, the picture is
only a little more complicated. There still exists a coordinate time that can be
found by computing a correction for gravitational redshift, given by the first
correction term in Eq. (28).
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5 Relativistic Effects on Satellite Clocks

For atomic clocks in satellites, it is most convenient to consider the motions
as they would be observed in the local ECI frame. Then the Sagnac effect
becomes irrelevant. (The Sagnac effect on moving ground-based receivers must
still be considered.) Gravitational frequency shifts and second-order Doppler
shifts must be taken into account together. In this section I shall discuss in detail
these two relativistic effects, using the expression for the elapsed coordinate
time, Eq. (28). The term Φ0 in Eq. (28) includes the scale correction needed in
order to use clocks at rest on the earth’s surface as references. The quadrupole
contributes to Φ0 in the term −GMEJ2/2a1 in Eq. (28); there it contributes a
fractional rate correction of −3.76×10−13. This effect must be accounted for in
the GPS. Also, V is the earth’s gravitational potential at the satellite’s position.
Fortunately, the earth’s quadrupole potential falls off very rapidly with distance,
and up until very recently its effect on satellite vehicle (SV) clock frequency has
been neglected. This will be discussed in a later section; for the present I only
note that the effect of earth’s quadrupole potential on SV clocks is only about
one part in 1014, and I neglect it for the moment.

Satellite orbits. Let us assume that the satellites move along Keplerian
orbits. This is a good approximation for GPS satellites, but poor if the satellites
are at low altitude. This assumption yields relations with which to simplify
Eq. (28). Since the quadrupole (and higher multipole) parts of the earth’s
potential are neglected, in Eq. (28) the potential is V = −GME/r. Then the
expressions can be evaluated using what is known about the Newtonian orbital
mechanics of the satellites. Denote the satellite’s orbit semimajor axis by a and
eccentricity by e. Then the solution of the orbital equations is as follows [13]:
The distance r from the center of the earth to the satellite in ECI coordinates
is

r = a(1− e2)/(1 + e cos f). (29)

The angle f , called the true anomaly, is measured from perigee along the orbit
to the satellite’s instantaneous position. The true anomaly can be calculated
in terms of another quantity E called the eccentric anomaly, according to the
relationships

cos f =
cos E − e

1− e cos E
,

sin f =
√

1− e2
sinE

1− e cos E
.

(30)

Then, another way to write the radial distance r is

r = a(1− e cos E). (31)

To find the eccentric anomaly E, one must solve the transcendental equation

E − e sinE =

√
GME

a3
(t− tp), (32)
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where tp is the coordinate time of perigee passage.
In Newtonian mechanics, the gravitational field is a conservative field and

total energy is conserved. Using the above equations for the Keplerian orbit,
one can show that the total energy per unit mass of the satellite is

1
2
v2 − GME

r
= −GME

2a
. (33)

If I use Eq. (33) for v2 in Eq. (28), then I get the following expression for the
elapsed coordinate time on the satellite clock:

∆t =
∫

path

dτ

[
1 +

3GME

2ac2
+

Φ0

c2
− 2GME

c2

(
1
a
− 1

r

)]
. (34)

The first two constant rate correction terms in Eq. (34) have the values:

3GME

2ac2
+

Φ0

c2
= +2.5046× 10−10 − 6.9693× 10−10 = −4.4647× 10−10. (35)

The negative sign in this result means that the standard clock in orbit is beating
too fast, primarily because its frequency is gravitationally blueshifted. In order
for the satellite clock to appear to an observer on the geoid to beat at the chosen
frequency of 10.23 MHz, the satellite clocks are adjusted lower in frequency so
that the proper frequency is:[

1− 4.4647× 10−10
]
× 10.23 MHz = 10.229 999 995 43 MHz. (36)

This adjustment is accomplished on the ground before the clock is placed in
orbit.

Figure 2 shows the net fractional frequency offset of an atomic clock in a
circular orbit, which is essentially the left side of Eq. (35) plotted as a function
of orbit radius a, with a change of sign. Five sources of relativistic effects
contribute in Figure 2. The effects are emphasized for several different orbit
radii of particular interest. For a low earth orbiter such as the Space Shuttle,
the velocity is so great that slowing due to time dilation is the dominant effect,
while for a GPS satellite clock, the gravitational blueshift is greater. The effects
cancel at a ≈ 9545 km. The Global Navigation Satellite System Galileo, which
is currently being designed under the auspices of the European Space Agency,
will have orbital radii of approximately 30,000 km.

There is an interesting story about this frequency offset. At the time of
launch of the NTS-2 satellite (23 June 1977), which contained the first Cesium
atomic clock to be placed in orbit, it was recognized that orbiting clocks would
require a relativistic correction, but there was uncertainty as to its magnitude
as well as its sign. Indeed, there were some who doubted that relativistic effects
were truths that would need to be incorporated [5]! A frequency synthesizer
was built into the satellite clock system so that after launch, if in fact the
rate of the clock in its final orbit was that predicted by general relativity, then
the synthesizer could be turned on, bringing the clock to the coordinate rate
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Figure 2: Net fractional frequency shift of a clock in a circular orbit.

necessary for operation. After the Cesium clock was turned on in NTS-2, it
was operated for about 20 days to measure its clock rate before turning on the
synthesizer [11]. The frequency measured during that interval was +442.5 parts
in 1012 compared to clocks on the ground, while general relativity predicted
+446.5 parts in 1012. The difference was well within the accuracy capabilities
of the orbiting clock. This then gave about a 1% verification of the combined
second-order Doppler and gravitational frequency shift effects for a clock at 4.2
earth radii.

Additional small frequency offsets can arise from clock drift, environmental
changes, and other unavoidable effects such as the inability to launch the satellite
into an orbit with precisely the desired semimajor axis. The navigation message
provides satellite clock frequency corrections for users so that in effect, the
clock frequencies remain as close as possible to the frequency of the U.S. Naval
Observatory’s reference clock ensemble. Because of such effects, it would now
be difficult to use GPS clocks to measure relativistic frequency shifts.

When GPS satellites were first deployed, the specified factory frequency
offset was slightly in error because the important contribution from earth’s
centripetal potential (see Eq. (18)) had been inadvertently omitted at one stage
of the evaluation. Although GPS managers were made aware of this error in
the early 1980s, eight years passed before system specifications were changed to
reflect the correct calculation [2]. As understanding of the numerous sources of
error in the GPS slowly improved, it eventually made sense to incorporate the
correct relativistic calculation.
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The eccentricity correction. The last term in Eq. (34) may be integrated
exactly by using the following expression for the rate of change of eccentric
anomaly with time, which follows by differentiating Eq. (32):

dE

dt
=

√
GME/a3

1− e cos E
. (37)

Also, since a relativistic correction is being computed, ds/c ' dt, so∫ [
2GME

c2

(
1
r
− 1

a

)]
ds

c
' 2GME

c2

∫ (
1
r
− 1

a

)
dt

=
2GME

ac2

∫
dt

(
e cos E

1− e cos E

)
=

2
√

GMEa

c2
e (sinE − sinE0)

= +
2
√

GMEa

c2
e sinE + constant. (38)

The constant of integration in Eq. (38) can be dropped since this term is lumped
with other clock offset effects in the Kalman filter computation of the clock
correction model. The net correction for clock offset due to relativistic effects
that vary in time is

∆tr = +4.4428× 10−10e
√

a sinE
s√
m

. (39)

This correction must be made by the receiver; it is a correction to the coordinate
time as transmitted by the satellite. For a satellite of eccentricity e = 0.01, the
maximum size of this term is about 23 ns. The correction is needed because
of a combination of effects on the satellite clock due to gravitational frequency
shift and second-order Doppler shift, which vary due to orbit eccentricity.

Eq. (39) can be expressed without approximation in the alternative form

∆tr = +
2r · v

c2
, (40)

where r and v are the position and velocity of the satellite at the instant of
transmission. This may be proved using the expressions (30, 31, 32) for the
Keplerian orbits of the satellites. This latter form is usually used in implemen-
tations of the receiver software.

It is not at all necessary, in a navigation satellite system, that the eccen-
tricity correction be applied by the receiver. It appears that the clocks in the
GLONASS satellite system do have this correction applied before broadcast. In
fact historically, this was dictated in the GPS by the small amount of computing
power available in the early GPS satellite vehicles. It would actually make more
sense to incorporate this correction into the time broadcast by the satellites;
then the broadcast time events would be much closer to coordinate time – that
is, GPS system time. It may now be too late to reverse this decision because of
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the investment that many dozens of receiver manufacturers have in their prod-
ucts. However, it does mean that receivers are supposed to incorporate the
relativity correction; therefore, if appropriate data can be obtained in raw form
from a receiver one can measure this effect. Such measurements are discussed
next.
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6 TOPEX/POSEIDON Relativity Experiment

Recently, a report distributed by the Aerospace Corporation [14] claimed that
the correction expressed in Eqs. (38) and (39) would not be valid for a highly
dynamic receiver – e.g., one in a highly eccentric orbit. This is a conceptual
error, emanating from an apparently official source, which would have serious
consequences. The GPS modernization program involves significant redesign
and remanufacturing of the Block IIF satellites, as well as a new generation
of satellites that is now on the drawing boards – the Block IIR replenishment
satellites. These satellites are capable of autonomous operation, that is, they
can be operated independently of the ground-based control segment for up to
180 days. They are to accomplish this by having receivers on board that deter-
mine their own position and time by listening to the other satellites that are in
view. If the conceptual basis for accounting for relativity in the GPS, as it has
been explained above, were invalid, the costs of opening up these satellites and
reprogramming them would be astronomical.

There has been therefore considerable controversy about this issue. As a
consequence, it was proposed by William Feess of the Aerospace Corporation
that a measurement of this effect be made using the receiver on board the
TOPEX satellite. The TOPEX satellite carries an advanced, six-channel GPS
receiver. With six data channels available, five of the channels can be used to
determine the bias on the local oscillator of the TOPEX receiver with some
redundancy, and data from the sixth channel can be used to measure the ec-
centricity effect on the sixth SV clock. Here I present some preliminary results
of these measurements, which are to my knowledge the first explicit measure-
ments of the periodic part of the combined relativistic effects of time dilation
and gravitational frequency shift on an orbiting receiver.

A brief description of the pseudorange measurement made by a receiver
is needed here before explaining the TOPEX data. Many receivers work by
generating a replica of the coded signal emanating from the transmitter. This
replica, which is driven through a feedback shift register at a rate matching the
Doppler-shifted incoming signal, is correlated with the incoming signal. The
transmitted coordinate time can be identified in terms of a particular phase
reversal at a particular point within the code train of the signal. When the
correlator in the receiver is locked onto the incoming signal, the time delay
between the transmission event and the arrival time, as measured on the local
clock, can be measured at any chosen instant.

Let the time as transmitted from the jth satellite be denoted by t′j . After
correcting for the eccentricity effect, the GPS time of transmission would be
t′j + (∆tr)j . Because of SA (which was in effect for the data that were chosen),
frequency offsets and frequency drifts, the satellite clock may have an additional
error bj so that the true GPS transmission time is tj = t′j + (∆tr)j − bj .

Now the local clock, which is usually a free-running oscillator subject to var-
ious noise and drift processes, can be in error by a large amount. Let the mea-
sured reception time be t′R and the true GPS time of reception be tR = t′R− bR.
The possible existence of this local clock bias is the reason why measurements
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from four satellites are needed for navigation, as from four measurements the
three components of the receiver’s position vector, and the local clock bias, can
be determined. The raw difference between the time of reception of the time tag
from the satellite, and the time of transmission, multiplied by c, is an estimate
of the geometric range between satellite and receiver called the pseudorange [22]:

ρj = c(t′R − t′j) = c [(tR + bR)− (tj + bj − (∆tr)j)] . (41)

On the other hand the true range between satellite and receiver is

|rR(tR)− rj(tj)| = c(tR − tj). (42)

Combining Eqs. (41)and (42) yields the measurement equation for this experi-
ment:

|rR(tR)− rj(tj)| − ρj + cbR − cbj + c(∆tr)j = 0. (43)

The purpose of the TOPEX satellite is to measure the height of the sea. This
satellite has a six-channel receiver on board with a very good quartz oscillator
to provide the time reference. A radar altimeter measures the distance of the
satellite from the surface of the sea, but such measurements play no role in the
present experiment. The TOPEX satellite has orbit radius 7,714 km, an orbital
period of about 6745 seconds, and an orbital inclination of 66.06◦ to earth’s
equatorial plane. Except for perturbations due to earth’s quadrupole moment,
the orbit is very nearly circular, with eccentricity being only 0.000057. The
TOPEX satellite is almost ideal for analysis of this relativity effect. The trajec-
tories of the TOPEX and GPS satellites were determined independently of the
on-board clocks, by means of Doppler tracking from ≈ 100 stations maintained
by the Jet Propulsion Laboratory (JPL).

The receiver is a dual frequency C/A- and P-code receiver from which both
code data and carrier phase data were obtained. The dual-frequency measure-
ments enabled us to correct the propagation delay times for electron content
in the ionosphere. Close cooperation was given by JPL and by William Feess
in providing the dual-frequency measurements, which are ordinarily denied to
civilian users, and in removing the effect of SA at time points separated by 300
seconds during the course of the experiment.

The following data were provided through the courtesy of Yoaz Bar-Sever of
JPL for October 22–23, 1995:

• ECI center-of-mass position and velocity vectors for 25 satellites, in the
J2000 Coordinate system with times in UTC. Data rate is every 15 min-
utes; accuracy quoted is 10 cm radial, 30 cm horizontal.

• ECI position and velocity vectors for the TOPEX antenna phase center.
Data rate is every minute in UTC; accuracy quoted is 3 cm radial and
10 cm horizontal.

• GPS satellite clock data for 25 satellites based on ground system observa-
tions. Data rate is every 5 minutes, in GPS time; accuracy ranges between
5 and 10 cm.
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• TOPEX dual frequency GPS receiver measurements of pseudorange and
carrier phase for 25 satellites, a maximum of six at any one time. The
data rate is every 10 seconds, in GPS time.

During this part of 1995, GPS time was ahead of UTC by 10 seconds. GPS
cannot tolerate leap seconds so whenever a leap second is inserted in UTC,
UTC falls farther behind GPS time. This required high-order interpolation
on the orbit files to obtain positions and velocities at times corresponding to
times given, every 300 seconds, in the GPS clock data files. When this was
done independently by William Feess and myself we agreed typically to within
a millimeter in satellite positions.

The L1 and L2 carrier phase data was first corrected for ionospheric delay.
Then the corrected carrier phase data was used to smooth the pseudorange data
by weighted averaging. SA was compensated in the clock data by courtesy of
William Feess. Basically, the effect of SA is contained in both the clock data
and in the pseudorange data and can be eliminated by appropriate subtraction.
Corrections for the offset of the GPS SV antenna phase centers from the SV
centers of mass were also incorporated.

The determination of the TOPEX clock bias is obtained by rearranging
Eq. (43):

|rR(tR)− rj(tj)| − ρj − cbj + c∆tr = −cbR. (44)

Generally, at each time point during the experiment, observations were obtained
from six (sometimes five) satellites. The geometric range, the first term in
Eq. (44), was determined by JPL from independent Doppler tracking of both
the GPS constellation and the TOPEX satellite. The pseudorange was directly
measured by the receiver, and clock models provided the determination of the
clock biases cbj in the satellites. The relativity correction for each satellite can
be calculated directly from the given GPS satellite orbits. Because the receiver
is a six-channel receiver, there is sufficient redundancy in the measurements to
obtain good estimates of the TOPEX clock bias and the rms error in this bias
due to measurement noise. The resulting clock bias is plotted in Figure 3.

The rms deviation from the mean of the TOPEX clock biases is plotted in
Figure 4 as a function of time. The average rms error is 29 cm, corresponding
to about one ns of propagation delay. Much of this variation can be attributed
to multipath effects.

Figure 3 shows an overall frequency drift, accompanied by frequency adjust-
ments and a large periodic variation with period equal to the orbital period.
Figure 3 gives our best estimate of the TOPEX clock bias. This may now be
used to measure the eccentricity effects by rearranging Eq. (43):

|rR(tR)− rj(tj)| − ρj − cbj + cbR = −c∆tr. (45)

Strictly speaking, in finding the eccentricity effect this way for a particular
satellite, one should not include data from that satellite in the determination
of the clock bias. One can show, however, that the penalty for this is simply to
increase the rms error by a factor of 6/5, to 35 cm. Figure 5 shows the measured
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Figure 3: TOPEX clock bias in meters determined from 1,571 observations.

eccentricity effect for SV nr. 13, which has the largest eccentricity of the satellites
that were tracked, e = 0.01486. The solid curve in Figure 5 is the theoretically
predicted effect, from Eq. (39). While the agreement is fairly good, one can see
some evidence of systematic bias during particular passes, where the rms error
(plotted as vertical lines on the measured dots) is significantly smaller than the
discrepancies between theory and experiment. For this particular satellite, the
rms deviation between theory and experiment is 22 cm, which is about 2.2% of
the maximum magnitude of the effect, 10.2 m.

Similar plots were obtained for 25 GPS satellites that were tracked during
this experiment. Rather than show them one by one, it is interesting to plot
them on the same graph by dividing the calculated and measured values by
eccentricity e, while translating the time origin so that in each case time is
measured from the instant of perigee passage. We plot the effects, not the
corrections. In this way, Figure 6 combines the eccentricity effects for the five
satellites with the largest eccentricities. These are SV’s nr. 13, 21, 27, 23, and
26. In Figure 6 the systematic deviations between theory and experiment tend
to occur for one satellite during a pass; this “pass bias” might be removable
if we understood better what the cause of it is. As it stands, the agreement
between theory and experiment is within about 2.5%.
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Figure 4: Rms deviation from mean of TOPEX clock bias determinations.

7 Doppler Effect

Since orbiting clocks have had their rate adjusted so that they beat coordinate
time, and since responsibility for correcting for the periodic relativistic effect due
to eccentricity has been delegated to receivers, one must take extreme care in
discussing the Doppler effect for signals transmitted from satellites. Even though
second-order Doppler effects have been accounted for, for earth-fixed users there
will still be a first-order (longitudinal) Doppler shift, which has to be dealt
with by receivers. As is well known, in a static gravitational field coordinate
frequency is conserved during propagation of an electromagnetic signal along
a null geodesic. If one takes into account only the monopole and quadrupole
contributions to earth’s gravitational field, then the field is static and one can
exploit this fact to discuss the Doppler effect.

Consider the transmission of signals from rate-adjusted transmitters orbiting
on GPS satellites. Let the gravitational potential and velocity of the satellite
be V (rj) ≡ Vj , and vj , respectively. Let the frequency of the satellite trans-
mission, before the rate adjustment is done, be f0 = 10.23 MHz. After taking
into account the rate adjustment discussed previously, it is straightforward to
show that for a receiver of velocity vR and gravitational potential VR (in ECI
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Figure 5: Comparison of predicted and measured eccentricity effect for SV
nr. 13.

coordinates), the received frequency is

fR = f0

[
1 +

−VR + v2
R/2 + Φ0 + 2GME/a + 2Vj

c2

]
(1−N · vR/c)
(1−N · vj/c)

, (46)

where N is a unit vector in the propagation direction in the local inertial frame.
For a receiver fixed on the earth’s rotating geoid, this reduces to

fR = f0

[
1 +

2GME

c2

(
1
a
− 1

r

)]
(1−N · vR/c)
(1−N · vj/c)

. (47)

The correction term in square brackets gives rise to the eccentricity effect. The
longitudinal Doppler shift factors are not affected by these adjustments; they
will be of order 10−5 while the eccentricity effect is of order e× 10−10.
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Figure 6: Generic eccentricity effect for five satellites.

8 Crosslink Ranging

Consider next the process of transferring coordinate time from one satellite clock
to another by direct exchange of signals. This will be important when “Au-
tonav” is implemented. The standard atomic clock in the transmitter satellite
suffers a rate adjustment, and an eccentricity correction to get the coordinate
time. Then a signal is sent to the second satellite which requires calculating a
coordinate time of propagation possibly incorporating a relativistic time delay.
There is then a further transformation of rate and another “e sinE” correc-
tion to get the atomic time on the receiving satellite’s clock. So that the rate
adjustment does not introduce confusion into this analysis, I shall assume the
rate adjustments are already accounted for and use the subscript ‘S’ to denote
coordinate time measurements using rate-adjusted satellite clocks.

Then, let a signal be transmitted from satellite nr. i, at position ri and
having velocity vi in ECI coordinates, at satellite clock time T

(i)
S , to satellite

nr. j, at position rj and having velocity vj . The coordinate time at which this
occurs, apart from a constant offset, from Eq. (38), will be

T (i) = T
(i)
S +

2
√

GMai

c2
ei sinEi. (48)

The coordinate time elapsed during propagation of the signal to the receiver
in satellite nr. j is in first approximation l/c, where l is the distance between
transmitter at the instant of transmission, and receiver at the instant of recep-
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tion: ∆T = T (j) − T (i) = l/c. The Shapiro time delay corrections to this will
be discussed in the next section. Finally, the coordinate time of arrival of the
signal is related to the time on the receiving satellite’s adjusted clock by the
inverse of Eq. (48):

T
(j)
S = T (j) −

2
√

GMaj

c2
ej sinEj . (49)

Collecting these results, we get

T
(j)
S = T

(i)
S +

l

c
−

2
√

GMaj

c2
ej sinEj +

2
√

GMai

c2
ei sinEi. (50)

In Eq. (50) the distance l is the actual propagation distance, in ECI coordinates,
of the signal. If this is expressed instead in terms of the distance |∆r| = |rj(ti)−
ri(ti)| between the two satellites at the instant of transmission, then

l = |∆r|+ ∆r · vj

c
. (51)

The extra term accounts for motion of the receiver through the inertial frame
during signal propagation. Then Eq. (50) becomes

T
(j)
S = T

(i)
S +

|∆r|
c

− 2
√

GMa2

c2
ej sinEj +

2
√

GMai

c2
ei sinEi +

∆r · vj

c2
. (52)

This result contains all the relativistic corrections that need to be considered
for direct time transfer by transmission of a time-tagged pulse from one satellite
to another. The last term in Eq. (52) should not be confused with the correction
of Eq. (40).
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9 Frequency Shifts Induced by Orbit Changes

Improvements in GPS motivate attention to other small relativistic effects that
have previously been too small to be explicitly considered. For SV clocks, these
include frequency changes due to orbit adjustments, and effects due to earth’s
oblateness. For example, between July 25 and October 10, 2000, SV43 occupied
a transfer orbit while it was moved from slot 5 to slot 3 in orbit plane F. I will
show here that the fractional frequency change associated with a change da in
the semi-major axis a (in meters) can be estimated as 9.429× 10−18da. In the
case of SV43, this yields a prediction of −1.77 × 10−13 for the fractional fre-
quency change of the SV43 clock which occurred 25 July 2000. This relativistic
effect was recently measured very carefully [12]. Another orbit adjustment on
October 10, 2000 should have resulted in another fractional frequency change
of +1.75 × 10−13, which has not yet been measured carefully. Also, earth’s
oblateness causes a periodic fractional frequency shift with period of almost 6
hours and amplitude 0.695× 10−14. This means that quadrupole effects on SV
clock frequencies are of the same general order of magnitude as the frequency
breaks induced by orbit changes. Thus, some approximate expressions for the
frequency effects on SV clock frequencies due to earth’s oblateness are needed.
These effects will be discussed with the help of Lagrange’s planetary perturba-
tion equations.

Five distinct relativistic effects, discussed in Section 5, are incorporated into
the System Specification Document, ICD-GPS-200 [2]. These are:

• the effect of earth’s mass on gravitational frequency shifts of atomic ref-
erence clocks fixed on the earth’s surface relative to clocks at infinity;

• the effect of earth’s oblate mass distribution on gravitational frequency
shifts of atomic clocks fixed on earth’s surface;

• second-order Doppler shifts of clocks fixed on earth’s surface due to earth
rotation;

• gravitational frequency shifts of clocks in GPS satellites due to earth’s
mass;

• and second-order Doppler shifts of clocks in GPS satellites due to their
motion through an Earth-Centered Inertial (ECI) Frame.

The combination of second-order Doppler and gravitational frequency shifts
given in Eq. (27) for a clock in a GPS satellite leads directly to the following
expression for the fractional frequency shift of a satellite clock relative to a
reference clock fixed on earth’s geoid:

∆f

f
= −1

2
v2

c2
− GME

rc2
− Φ0

c2
, (53)

where v is the satellite speed in a local ECI reference frame, GME is the product
of the Newtonian gravitational constant G and earth’s mass M , c is the defined
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speed of light, and Φ0 is the effective gravitational potential on the earth’s
rotating geoid. The term Φ0 includes contributions from both monopole and
quadrupole moments of earth’s mass distribution, and the effective centripetal
potential in an earth-fixed reference frame such as the WGS-84(837) frame,
due to earth’s rotation. The value for Φ0 is given in Eq. (18), and depends
on earth’s equatorial radius a1, earth’s quadrupole moment coefficient J2, and
earth’s angular rotational speed ωE.

If the GPS satellite orbit can be approximated by a Keplerian orbit of semi-
major axis a, then at an instant when the distance of the clock from earth’s
center of mass is r, this leads to the following expression for the fraction fre-
quency shift of Eq. (53):

∆f

f
= −3GME

2ac2
− Φ0

c2
+

2GME

c2

[
1
r
− 1

a

]
. (54)

Eq. (54) is derived by making use of the conservation of total energy (per unit
mass) of the satellite, Eq. (33), which leads to an expression for v2 in terms
of GME/r and GME/a that can be substituted into Eq. (53). The first two
terms in Eq. (54) give rise to the “factory frequency offset”, which is applied to
GPS clocks before launch in order to make them beat at a rate equal to that of
reference clocks on earth’s surface. The last term in Eq. (54) is very small when
the orbit eccentricity e is small; when integrated over time these terms give rise
to the so-called “e sinE” effect or “eccentricity effect”. In most of the following
discussion we shall assume that eccentricity is very small.

Clearly, from Eq. (54), if the semi-major axis should change by an amount
δa due to an orbit adjustment, the satellite clock will experience a fractional
frequency change

δf

f
= +

3GMEδa

2c2a2
. (55)

The factor 3/2 in this expression arises from the combined effect of second-order
Doppler and gravitational frequency shifts. If the semi-major axis increases, the
satellite will be higher in earth’s gravitational potential and will be gravitation-
ally blue-shifted more, while at the same time the satellite velocity will be
reduced, reducing the size of the second-order Doppler shift (which is generally
a red shift). The net effect would make a positive contribution to the fractional
frequency shift.

Although it has long been known that orbit adjustments are associated with
satellite clock frequency shifts, nothing has been documented and up until re-
cently no reliable measurements of such shifts have been made. On July 25,
2000, a trajectory change was applied to SV43 to shift the satellite from slot F5
to slot F3. A drift orbit extending from July 25, 2000 to October 10, 2000 was
used to accomplish this move. A “frequency break” was observed but the cause
of this frequency jump was not initially understood. Recently, Marvin Epstein,
Joseph Fine, and Eric Stoll [12] of ITT have evaluated the frequency shift of
SV43 arising from this trajectory change. They reported that associated with
the thruster firings on July 25, 2000 there was a frequency shift of the Rubidium
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clock on board SV43 of amount

δf

f
= −1.85× 10−13 (measured). (56)

Epstein et al. [12] suggested that the above frequency shift was relativistic
in origin, and used precise ephemerides obtained from the National Imagery
and Mapping Agency to estimate the frequency shift arising from second-order
Doppler and gravitational potential differences. They calculated separately the
second-order Doppler and gravitational frequency shifts due to the orbit change.
The NIMA precise ephemerides are expressed in the WGS-84 coordinate frame,
which is earth-fixed. If used without removing the underlying earth rotation,
the velocity would be erroneous. They therefore transformed the NIMA precise
ephemerides to an earth-centered inertial frame by accounting for a (uniform)
earth rotation rate.

The semi-major axes before and after the orbit change were calculated by
taking the average of the maximum and minimum radial distances. Speeds
were calculated using a Keplerian orbit model. They arrived at the following
numerical values for semi-major axis and velocity:

07/22/00 : a = 2.656139556× 107 m; v = 3.873947951× 103 m s−1,

07/30/00 : a = 2.654267359× 107 m; v = 3.875239113× 103 m s−1.

Since the semi-major axis decreased, the frequency shift should be negative.
The prediction they made for the frequency shift, which was based on Eq. (53),
was then

δf

f
= −1.734× 10−13, (57)

which is to be compared with the measured value, Eq. (56). This is fairly
compelling evidence that the observed frequency shift is indeed a relativistic
effect.

Lagrange perturbation theory. Perturbations of GPS orbits due to
earth’s quadrupole mass distribution are a significant fraction of the change in
semi-major axis associated with the orbit change discussed above. This raises
the question whether it is sufficiently accurate to use a Keplerian orbit to de-
scribe GPS satellite orbits, and estimate the semi-major axis change as though
the orbit were Keplerian. In this section, we estimate the effect of earth’s
quadrupole moment on the orbital elements of a nominally circular orbit and
thence on the change in frequency induced by an orbit change. Previously, such
an effect on the SV clocks has been neglected, and indeed it does turn out to be
small. However, the effect may be worth considering as GPS clock performance
continues to improve.

To see how large such quadrupole effects may be, we use exact calcula-
tions for the perturbations of the Keplerian orbital elements available in the
literature [13]. For the semi-major axis, if the eccentricity is very small, the
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dominant contribution has a period twice the orbital period and has ampli-
tude 3J2a

2
1 sin2 i0/(2a0) ≈ 1658 m. WGS-84(837) values for the following ad-

ditional constants are used in this section: a1 = 6.3781370 × 106 m; ωE =
7.291151467 × 10−5 s−1; a0 = 2.656175 × 107 m, where a1 and a0 are earth’s
equatorial radius and SV orbit semi-major axis, and ωE is earth’s rotational
angular velocity.

The oscillation in the semi-major axis would significantly affect calculations
of the semi-major axis at any particular time. This suggests that Eq. (33) needs
to be reexamined in light of the periodic perturbations on the semi-major axis.
Therefore, in this section we develop an approximate description of a satellite
orbit of small eccentricity, taking into account earth’s quadrupole moment to
first order. Terms of order J2 × e will be neglected. This problem is non-
trivial because the perturbations themselves (see, for example, the equations for
mean anomaly and altitude of perigee) have factors 1/e which blow up as the
eccentricity approaches zero. This problem is a mathematical one, not a physical
one. It simply means that the observable quantities – such as coordinates and
velocities – need to be calculated in such a way that finite values are obtained.
Orbital elements that blow up are unobservable.

Conservation of energy. The gravitational potential of a satellite at
position (x, y, z) in equatorial ECI coordinates in the model under consideration
here is

V (x, y, z) = −GME

r

(
1− J2a

2
1

r2

[
3z2

2r2
− 1

2

])
. (58)

Since the force is conservative in this model (solar radiation pressure, thrust,
etc. are not considered), the kinetic plus potential energy is conserved. Let ε
be the energy per unit mass of an orbiting mass point. Then

ε = constant =
v2

2
+ V (x, y, z) =

v2

2
− GME

r
+ V ′(x, y, z), (59)

where V ′(x, y, z) is the perturbing potential due to the earth’s quadrupole po-
tential. It is shown in textbooks [13] that, with the help of Lagrange’s planetary
perturbation theory, the conservation of energy condition can be put in the form

ε = −GME

2a
+ V ′(x, y, z), (60)

where a is the perturbed (osculating) semi-major axis. In other words, for the
perturbed orbit,

v2

2
− GME

r
= −GME

2a
. (61)

On the other hand, the net fractional frequency shift relative to a clock at rest
at infinity is determined by the second-order Doppler shift (a red shift) and a
gravitational redshift. The total relativistic fractional frequency shift is

∆f

f
= −v2

2
− GME

r
+ V ′(x, y, z). (62)
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The conservation of energy condition can be used to express the second-order
Doppler shift in terms of the potential. Since in this paper we are interested
in fractional frequency changes caused by changing the orbit, it will make no
difference if the calculations use a clock at rest at infinity as a reference rather
than a clock at rest on earth’s surface. The reference potential cancels out to
the required order of accuracy. Therefore, from perturbation theory we need
expressions for the square of the velocity, for the radius r, and for the perturb-
ing potential. We now proceed to derive these expressions. We refer to the
literature [13] for the perturbed osculating elements. These are exactly known,
to all orders in the eccentricity, and to first order in J2. We shall need only the
leading terms in eccentricity e for each element.

Perturbation equations. First we recall some facts about an unperturbed
Keplerian orbit, which have already been introduced (see Section 5). The ec-
centric anomaly E is to be calculated by solving the equation

E − e sinE = M = n0(t− t0), (63)

where M is the “mean anomaly” and t0 is the time of passage past perigee, and

n0 =
√

GME/a3. (64)

Then, the perturbed radial distance r and true anomaly f of the satellite are
obtained from

r = a(1− e cos E), (65)

cos f =
cos E − e

1− e cos E
, sin f =

√
1− e2

sinE

1− e cos E
. (66)

The observable x, y, z-coordinates of the satellite are then calculated from the
following equations:

x = r(cos Ω cos(f + ω)− cos i sinΩ sin(f + ω)), (67)
y = r(sinΩ cos(f + ω) + cos i cos Ω sin(f + ω)), (68)
z = r(sin i sin(f + ω)), (69)

where Ω is the angle of the ascending line of nodes, i is the inclination, and ω
is the altitude of perigee. By differentiation with respect to time, or by using
the conservation of energy equation, one obtains the following expression for the
square of the velocity:

v2 =
GME

a

1 + e cos E

1− e cos E
. (70)

In these expressions v2 and r−1 are observable quantities. The combination
e cos E, where E is the eccentric anomaly, occurs in both of these expressions.
To derive expressions for v2 and r−1 in the perturbed orbits, expressions for the
perturbed elements a, e, E are to be substituted into the right-hand sides of
the Keplerian equations for E, r, and v2. Therefore, we need the combination
e cos E in the limit of small eccentricity.
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Perturbed eccentricity. To leading order, from the literature [13] we have
for the perturbed eccentricity the following expression:

e = e0 +
3J2a

2
1

2a2
0

[(
1− 3

2
sin2 i0

)
cos f +

1
4

sin2 i0 cos(2ω0 + f)

+
7
12

sin2 i0 cos(2ω0 + 3f)
]
, (71)

where e0 is a constant of integration.

Perturbed eccentric anomaly. The eccentric anomaly is calculated from
the equation

E = M + e sinE, (72)

with perturbed values for M and e. Expanding to first order in e gives the
following expression for cos E:

cos E = cos M − e sinM sinE, (73)

and multiplying by e yields

e cos E = e cos M − e2 sinM sinE ≈ e cos M. (74)

We shall neglect higher order terms in e. The perturbed expression for mean
anomaly M can be written as

M = M0 + ∆M/e0, (75)

where we indicate explicitly the terms in e−1
0 ; that is, the quantity M0 contains

all terms which do not blow up as e → 0, and ∆M/e0 contains all the other
terms. The perturbations of M are known exactly but we shall only need the
leading order terms, which are

∆M/e0 = −3J2a
2
1

2e0a2
0

[(
1− 3

2
sin2 i0

)
sin f − 1

4
sin2 i0 sin(2ω0 + f)

+
7
12

sin2 i0 sin(2ω0 + 3f)
]
, (76)

and so for very small eccentricity,

e cos E = e cos M0 −∆M sinM0. (77)

Then after accounting for contributions from the perturbed eccentricity and the
perturbed mean anomaly, after a few lines of algebra we obtain the following
for e cos E:

e cos E = e0 cos E0 +
3J2a

2
1

2a2
0

(
1− 3

2
sin2 i0

)
+

5J2a
2
1

4a2
0

sin2 i0 cos 2(ω0 + f), (78)
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where the first term is the unperturbed part. The perturbation is a constant,
plus a term with twice the orbital period.

Perturbation in semi-major axis. From the literature, the leading terms
in the perturbation of the semi-major axis are

a = a0 +
3J2a

2
1

2a0
sin2 i0 cos 2(ω0 + f), (79)

where a0 is a constant of integration. The amplitude of the periodic term is
about 1658 meters.

Perturbation in radius. We are now in position to compute the per-
turbation in the radius. From the expression for r, after combining terms we
have

r = a0(1− e0 cos E0) + ∆a−∆(e cos E)

= a0(1− e0 cos E0)−
3J2a

2
1

2a0

(
1− 3

2
sin2 i0

)
+

J2a
2
1

4a0
sin2 i0 cos 2(ω0 + f). (80)

The amplitude of the periodic part of the perturbation in the observable radial
distance is only 276 meters.

Perturbation in the velocity squared. The above results, after substi-
tuting into Eq. (70), yield the expression

v2

2
=

GME

2a0
(1 + 2e0 cos E0) +

3GMEJ2a
2
1

a3
0

(
1− 3

2
sin2 i0

)
+

GMEJ2a
2
1

2a3
0

sin2 i0 cos 2(ω0 + f). (81)

Perturbation in GME/r. The above expression for the perturbed r yields
the following for the monopole contribution to the gravitational potential:

− GME

r
= −GME

a0
(1 + e0 cos E0)−

3GMEJ2a
2
1

2a3
0

(
1− 3

2
sin2 i0

)
+

GMEJ2a
2
1 sin2 i0

4a3
0

cos 2(ω0 + f). (82)

Evaluation of the perturbing potential. Since the perturbing potential
contains the small factor J2, to leading order we may substitute unperturbed
values for r and z into V ′(x, y, z), which yields the expression

V ′(x, y, z) = −GMEJ2a
2
1

2a3
0

(
1− 3

2
sin2 i0

)
− 3GMEJ2a

2
1 sin2 i0

4a3
0

cos 2(ω0 + f).

(83)

Living Reviews in Relativity (2003-1)
http://www.livingreviews.org

http://www.livingreviews.org


37 Relativity in the Global Positioning System

Conservation of energy. It is now very easy to check conservation of en-
ergy. Adding kinetic energy per unit mass to two contributions to the potential
energy gives

ε =
v2

2
− GME

r
+ V ′ = −GME

2a0
− GMEJ2a

2
1

2a3
0

(
1− 3

2
sin2 i0

)
. (84)

This verifies that the perturbation theory gives a constant energy. The extra
term in the above equation, with J2 in it, can be neglected. This is because
the nominal inclination of GPS orbits is such that the factor (1 − 3 sin2 i0/2)
is essentially zero. The near vanishing of this factor is pure coincidence in the
GPS. There was no intent, in the original GPS design, that quadrupole effects
would be simpler if the orbital inclination were close to 55◦. However, because
this term is negligible, numerical calculations of the total energy per unit mass
provide a means of evaluating the quantity a0.

Calculation of fractional frequency shift. The fractional frequency
shift calculation is very similar to the calculation of the energy, except that the
second-order Doppler term contributes with a negative sign. The result is

∆f

f
= − v2

2c2
− GME

c2r
+

V ′

c2

= −3GME

2a0c2
− 2GME

c2a0
e0 cos E0 −

7GMEJ2a
2
1

2a3
0c

2

(
1− 3

2
sin2 i0

)
−GMEJ2a

2
1 sin2 i0

a3
0c

2
cos 2(ω0 + f). (85)

The first term, when combined with the reference potential at earth’s geoid,
gives rise to the “factory frequency offset”. The seond term gives rise to the
eccentricity effect. The third term can be neglected, as pointed out above. The
last term has an amplitude

GMEJ2a
2
1 sin2 i0

a3
0c

2
= 6.95× 10−15, (86)

which may be large enough to consider when calculating frequency shifts pro-
duced by orbit changes. Therefore, this contribution may have to be considered
in the future in the determination of the semi-major axis, but for now we neglect
it.

The result suggests the following method of computing the fractional fre-
quency shift: Averaging the shift over one orbit, the periodic term will average
down to a negligible value. The third term is negligible. So if one has a good esti-
mate for the nominal semi-major axis parameter, the term −3GME/2a0c

2 gives
the average fractional frequency shift. On the other hand, the average energy
per unit mass is given by ε = −GME/2a0. Therefore, the precise ephemerides,
specified in an ECI frame, can be used to compute the average value for ε; then
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the average fractional frequency shift will be

∆f

f
= 3ε/c2. (87)

The last periodic term in Eq. (85) is of a form similar to that which gives rise
to the eccentricity correction, which is applied by GPS receivers. Considering
only the last periodic term, the additional time elapsed on the orbiting clock
will be given by

δtJ2 =
∫

path

dt

[
−GMEJ2a

2
1 sin2 i0

a3
0c

2
cos(2ω0 + 2nt)

]
, (88)

where to a sufficient approximation we have replaced the quantity f in the
integrand by n =

√
GME/a3

0; n is the approximate mean motion of GPS satel-
lites. Integrating and dropping the constant of integration (assuming as usual
that such constant time offsets are lumped with other contributions) gives the
periodic relativistic effect on the elapsed time of the SV clock due to earth’s
quadrupole moment:

δtJ2 = −

√
GME

a3
0

J2a
2
1 sin2 i0
2c2

sin(2ω0 + 2nt). (89)

The correction that should be applied by the receiver is the negative of this
expression,

δtJ2(correction) =

√
GME

a3
0

J2a
2
1 sin2 i0
2c2

sin(2ω0 + 2nt). (90)

The phase of this correction is zero when the satellite passes through earth’s
equatorial plane going northwards. If not accounted for, this effect on the
SV clock time would give rise to a peak-to-peak periodic navigational error in
position of approximately 2c× δtJ2 = 1.43 cm.

These effects were considered by Ashby and Spilker [9], pp. 685–686, but in
that work the effect of earth’s quadrupole moment on the term GME/r was not
considered; the present calculations supercede that work.

Numerical calculations. Precise ephemerides were obtained for SV43
from the web site “ftp://sideshow.jpl.nasa.gov/pub/gipsy_products/2000/
orbits” at the Jet Propulsion Laboratory. These are expressed in the J2000
ECI frame. Computer code was written to compute the average value of ε for
one day and thence the fractional frequency shift relative to infinity before and
after each orbit change. The following results were obtained:

07/22/00 : a = (2.65611575× 107 ± 69) m,

07/30/00 : a = (2.65423597× 103 ± 188) m,

10/07/00 : a = (2.65418742× 107 ± 95) m,

10/12/00 : a = (2.65606323× 107 ± 58) m.
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Therefore, the fractional frequency change produced by the orbit change of July
25 is calculated to be

∆f

f
= −1.77× 10−13, (91)

which agrees with the measured value to within about 3.3%. The agreement is
slightly better than that obtained in [12], perhaps because they did not consider
contributions to the energy from the quadrupole moment term.

A similar calculation shows that the fractional frequency shift of SV43 on
October 10, 2001 should have been

∆f

f
= +1.75× 10−13. (92)

This shift has not yet been measured accurately.
On March 9, 2001, SV54’s orbit was changed by firing the thruster rockets.

Using the above procedures, I can calculate the fractional frequency change
produced in the onboard clocks. The result is

03/07/01 : a = (2.65597188× 107 ± 140) m,

03/11/01 : a = (2.65359261× 107 ± 108) m.

Using Eq. (55) yields the following prediction for the fractional frequency change
of SV54 on March 9, 2001:

∆f

f
= −2.24× 10−13 ± 0.02× 10−13. (93)

The quoted uncertainty is due to the combined uncertainties from the determi-
nation of the energy per unit mass before and after the orbit change. These
uncertainties are due to neglecting tidal forces of the sun and moon, radiation
pressure, and other non-gravitational forces.

Summary. We note that the values of semi-major axis reported by Epstein
et al. [12] differ from the values obtained by averaging as outlined above, by 200–
300 m. This difference arises because of the different methods of calculation.
In the present calculation, an attempt was made to account for the effect of
earth’s quadrupole moment on the Keplerian orbit. It was not necessary to
compute the orbit eccentricity. Agreement with measurement of the fractional
frequency shift was only a few percent better than that obtained by differencing
the maximum and minimum radii. This approximate treatment of the orbit
makes no attempt to consider perturbations that are non-gravitational in nature,
e.g., solar radiation pressure. The work was an investigation of the approximate
effect of earth’s quadrupole moment on the GPS satellite orbits, for the purpose
of (possibly) accurate calculations of the fractional frequency shifts that result
from orbit changes.

As a general conclusion, the fractional frequency shift can be estimated to
very good accuracy from the expression for the “factory frequency offset”.

δf

f
= +

3GMEδa

2c2a2
. (94)
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10 Secondary Relativistic Effects

There are several additional significant relativistic effects that must be consid-
ered at the level of accuracy of a few cm (which corresponds to 100 picoseconds
of delay). Many investigators are modelling systematic effects down to the mil-
limeter level, so these effects, which currently are not sufficiently large to affect
navigation, may have to be considered in the future.

Signal propagation delay. The Shapiro signal propagation delay may be
easily derived in the standard way from the metric, Eq. (23), which incorporates
the choice of coordinate time rate expressed by the presence of the term in Φ0/c2.
Setting ds2 = 0 and solving for the increment of coordinate time along the path
increment dσ =

√
dr2 + r2dθ2 + r2 sin2 θdφ2 gives

dt =
1
c

[
1− 2V

c2
+

Φ0

c2

]
dσ. (95)

The time delay is sufficiently small that quadrupole contributions to the poten-
tial (and to Φ0) can be neglected. Integrating along the straight line path a
distance l between the transmitter and receiver gives for the time delay

∆tdelay =
Φ0

c2

l

c
+

2GME

c3
ln

[
r1 + r2 + l

r1 + r2 − l

]
, (96)

where r1 and r2 are the distances of transmitter and receiver from earth’s cen-
ter. The second term is the usual expression for the Shapiro time delay. It is
modified for GPS by a term of opposite sign (Φ0 is negative), due to the choice
of coordinate time rate, which tends to cancel the logarithm term. The net
effect for a satellite to earth link is less than 2 cm and for most purposes can
be neglected. One must keep in mind, however, that in the main term l/c, l is
a coordinate distance and further small relativistic corrections are required to
convert it to a proper distance.

Effect on geodetic distance. At the level of a few millimeters, spatial
curvature effects should be considered. For example, using Eq. (23), the proper
distance between a point at radius r1 and another point at radius r2 directly
above the first is approximately∫ r2

r1

dr

[
1 +

GME

c2r

]
= r2 − r1 +

GME

c2
ln

(
r2

r1

)
. (97)

The difference between proper distance and coordinate distance, and between
the earth’s surface and the radius of GPS satellites, is approximately
4.43 ln(4.2) mm ≈ 6.3 mm. Effects of this order of magnitude would enter, for
example, in the comparison of laser ranging to GPS satellites, with numerical
calculations of satellite orbits based on relativistic equations of motion using
coordinate times and coordinate distances.
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Phase wrap-up. Transmitted signals from GPS satellites are right circu-
larly polarized and thus have negative helicity. For a receiver at a fixed location,
the electric field vector rotates counterclockwise, when observed facing into the
arriving signal. Let the angular frequency of the signal be ω in an inertial
frame, and suppose the receiver spins rapidly with angular frequency Ω which is
parallel to the propagation direction of the signal. The antenna and signal elec-
tric field vector rotate in opposite directions and thus the received frequency
will be ω + Ω. In GPS literature this is described in terms of an accumula-
tion of phase called “phase wrap-up”. This effect has been known for a long
time [17, 20, 21, 24], and has been experimentally measured with GPS receivers
spinning at rotational rates as low as 8 cps. It is similar to an additional Doppler
effect; it does not affect navigation if four signals are received simultaneously by
the receiver as in Eqs. (1). This observed effect raises some interesting questions
about transformations to rotating, spinning coordinate systems.

Effect of other solar system bodies. One set of effects that has been
“rediscovered” many times are the redshifts due to other solar system bodies.
The Principle of Equivalence implies that sufficiently near the earth, there can
be no linear terms in the effective gravitational potential due to other solar
system bodies, because the earth and its satellites are in free fall in the fields of
all these other bodies. The net effect locally can only come from tidal potentials,
the third terms in the Taylor expansions of such potentials about the origin of
the local freely falling frame of reference. Such tidal potentials from the sun,
at a distance r from earth, are of order GM�r2/R3 where R is the earth-sun
distance [8]. The gravitational frequency shift of GPS satellite clocks from such
potentials is a few parts in 1016 and is currently neglected in the GPS.
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11 Applications

The number of applications of GPS have been astonishing. It would take sev-
eral paragraphs just to list them. Accurate positioning and timing, other than
for military navigation, include synchronization of power line nodes for fault
detection, communications, VLBI, navigation in deep space, tests of fundamen-
tal physics, measurements on pulsars, tests of gravity theories, vehicle tracking,
search and rescue, surveying, mapping, and navigation of commercial aircraft,
to name a few. These are too numerous to go into in much detail here, but
some applications are worth mentioning. Civilian applications have overtaken
military applications to the extent that SA was turned off in May of 2000.

The Nobel-prizewinning work of Joseph Taylor and his collaborators [16, 23]
on the measurement of the rate of increase of the binary pulsar period depended
on GPS receivers at the Arecibo observatory, for transferring UTC from the U.S.
Naval Observatory and NIST to the local clock. Time standards around the
world are compared using GPS in common-view; with this technique SA would
cancel out, as well as do many sources of systematic errors such as ionospheric
and tropospheric delays. Precise position information can assist in careful hus-
bandry of natural resources, and animal and vehicle fleet tracking can result in
improved efficiency. Precision agriculture makes use of GPS receivers in real-
time application of pesticides or fertilizers, minimizing waste. Sunken vessels or
underwater ruins with historically significant artifacts can be located using the
GPS and archeologists can return again and again with precision to the same lo-
cation. Monster ore trucks or earth-moving machines can be fitted with receivers
and controlled remotely with minimal risk of collision or interference with other
equipment. Disposable GPS receivers dropped through tropical storms transmit
higher resolution measurements of temperature, humidity, pressure, and wind
speed than can be obtained by any other method; these have led to improved
understanding of how tropical storms intensify. Slight movements of bridges or
buildings, in response to various loads, can be monitored in real time. Relative
movements of remote parts of earth’s crust can be accurately measured in a
short time, contributing to better understanding of tectonic processes within
the earth and, possibly, to future predictions of earthquakes. With the press of
a button, a lost hiker can send a distress signal that includes the hikers’ location.

These and many other creative applications of precise positioning and timing
are leading to a rapid economic expansion of GPS products and services. Over
50 manufacturers produce more than 350 different GPS products for commercial,
private, and military use. The number of receivers manufactured each year is in
excess of two million, and different applications are continually being invented.
Recent marketing studies predict that sales of GPS equipment and services will
grow to over $34 billion by 2006. Revenue for the European Galileo system is
projected to be 10 billion Euros per year.
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12 Conclusions

The GPS is a remarkable laboratory for applications of the concepts of special
and general relativity. GPS is also valuable as an outstanding source of ped-
agogical examples. It is deserving of more scrutiny from relativity experts. It
is particularly important to confirm that the basis for synchronization is on a
firm conceptual foundation. A number of other agencies have expressed interest
in establishing alternatives to the GPS, since this system is under the military
control.

Plans are being made by several countries to put laser-cooled clock(s) having
stabilities of 5×10−14/

√
τ and accuracies of 1×1016, on the International Space

Station. This will open up additional possibilities for testing relativity as well
as for making improvements in GPS and in other potential navigational satellite
systems.
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