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Probability
Consider a manifold 921, with a notion of volume. For any A C 9,
V(A) = / do
4 = |,

A volumetric probability is a function f that to any .4 C 9t asso-
ciates its probability

P(A) = /Advf

Example: If 9 is a metric manifold endowed with some coordi-
nates {x!,...,x"},then dv = \/detgdx' A--- Adx",and

P(A) = /Adxl/\---/\dx” Vdetg f = /AdxlA---Adx”f

Warning, the volumetric probability f is an invariant, the probabil-
ity density f isnot (it is a density).



A basic operation with volumetric probabilities is their product,

(f-9)(®) = = f(P)g(®) |,

v

where v = [, dv f(P) g(P).

Example: Two planes make two estimations of the geographical
coordinates of a shipwrecked man, represented by the two volu-
metric probabilities f(¢p,A) and g(¢, A). The volumetric proba-
bility that combines these two pieces of information is

| B fle,A)8(e,A)
(f-8)(w,A) = [dS(e,A) f(o,7) (0, A)




This operation of product of volumetric probabilities extends to
the following case:

e there is a volumetric probability f(P) defined on a first
manifold 9,

e there is another volumetric probability ¢(Q) defined on a
second manifold 91,

e there is an application P — Q = Q(P) from M into N.

Then, the basic operation is




Inverse Problems

In a typical inverse problem, there is:
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e aset of model parameters {m!, m?,...,m"},

e a set of observable parameters {0',0?,...,0"},

e arelation o' = o' (m',m?,...,m") predicting the out-

come of the possible observations.

The model parameters are coordinates on the model parameter
manifold 91, while the observable parameters are coordinates
over the observable parameter manifold O . Points on 91 are
denoted M, M/, ... while pointson O are denoted O, 0/, ...

Then the relation above is written| M +— O = O(M)




The three basic elements of a typical inverse problem are:

e some a priori information on the model parameters,
represented by a volumetric probability ppior (M) de-
fined over 9,

e some experimental information obtained on the observ-
able parameters, represented by a volumetric probabil-
ity oops(O) defined over O,

e the ‘forward modeling’ relation M +— O = O(M)
that we have just seen.

This leads to

Ppost(M) — % pprior<M) Oobs(O(M) ),

where v is a normalization constant.



Example I: Sampling

e Sample the a priori volumetric probability pprior (M),
to obtain (many) random models M;, My, ...

e For each model M;, solve the forward modeling
problem, O; = 0;(M;) .

e Give to each model M; a probability of ‘survival’
proportional to ogps( O;(M;) ) .

e The surviving models My, My, ... are samples of
the a posteriori volumetric probability

ppost(M) — % Pprior(M) Oobs( O(M) )



Example II: Least-squares

e The model parameter manifold may be a linear space, with
vectors denoted m, m’, ..., and the a priori information may
have the Gaussian form

pprior<m) = k exp ('% (m — mprior)t Cﬁil (m - mprior))

e The observable parameter manifold may be a linear space,
with vectors denoted o,0/,..., and the information brought
by measurements may have the Gaussian form

Uobs<0) = k exp ('% (0 - Oobs>t Co-1 (0 - Oobs))

e The forward modeling relation becomes, with these notations,

o = o(m)



Then, the posterior volumetric probability for the model
parameters is

Ppost(m) = k exp(—S(m)) ,

where the misfit function S(m) is the sum of squares

2S5(m) = (m— mprior)t Cﬁil (m — mprior)

+ (o(m) — Oobs)t Cf;l (o(m) — ogps)




The maximum likelihood model is the model m maxi-
mizing Ppost(m) . It is also the model minimizing S(m) .
It can be obtained using a quasi-Newton algorithm,
myiq1 = my — H;ql Yn
where the Hessian of S is
H, =1+C,0.Clo, ,

and the gradient of S is

Yn = Cw0;, Cyl (0(my) — 0gps ) + (my, — Mprior )
Here, the tangent linear operator O, is defined via

o(m,+dém) = o(my,)+0,om+...



As we have seen, the model m, at which the algo-
rithm converges maximizes the posterior volumetric

probability ppost(m).

To estimate the posterior uncertainties: the covari-
ance operator of the Gaussian volumetric probability

that is tangent to ppost(m) at me, is H! C,|
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