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Probability
Consider a manifold M , with a notion of volume. For any A ⊂ M ,

V(A) =
∫
A

dv .

A volumetric probability is a function f that to any A ⊂ M asso-
ciates its probability

P(A) =
∫
A

dv f .

Example: If M is a metric manifold endowed with some coordi-
nates {x1, . . . , xn} , then dv =

√
det g dx1 ∧ · · · ∧ dxn , and

P(A) =
∫
A

dx1 ∧ · · · ∧ dxn √
det g f︸ ︷︷ ︸ =

∫
A

dx1 ∧ · · · ∧ dxn f .

Warning, the volumetric probability f is an invariant, the probabil-
ity density f is not (it is a density).



A basic operation with volumetric probabilities is their product,

( f · g)(P) =
1
ν

f (P) g(P) ,

where ν =
∫
M dv f (P) g(P) .

Example: Two planes make two estimations of the geographical
coordinates of a shipwrecked man, represented by the two volu-
metric probabilities f (ϕ, λ) and g(ϕ, λ) . The volumetric proba-
bility that combines these two pieces of information is

( f · g)(ϕ, λ) =
f (ϕ, λ) g(ϕ, λ)∫

dS(ϕ, λ) f (ϕ, λ) g(ϕ, λ)
.



This operation of product of volumetric probabilities extends to
the following case:

• there is a volumetric probability f (P) defined on a first
manifold M ,

• there is another volumetric probability ϕ(Q) defined on a
second manifold N ,

• there is an application P !→ Q = Q(P) from M into N .

Then, the basic operation is

g(P) =
1
ν

f (P)ϕ( Q(P) ) .

where ν =
∫
M dv(P) f (P)ϕ( Q(P) ) .



Inverse Problems
In a typical inverse problem, there is:

• a set of model parameters {m1, m2, . . . , mn} ,

• a set of observable parameters {o1, o2, . . . , on} ,

• a relation oi = oi(m1, m2, . . . , mn) predicting the out-
come of the possible observations.

The model parameters are coordinates on the model parameter
manifold M , while the observable parameters are coordinates
over the observable parameter manifold O . Points on M are
denoted M, M′, . . . while points on O are denoted O, O′, . . .
Then the relation above is written M "→ O = O(M)



The three basic elements of a typical inverse problem are:

• some a priori information on the model parameters,
represented by a volumetric probability ρprior(M) de-
fined over M ,

• some experimental information obtained on the observ-
able parameters, represented by a volumetric probabil-
ity σobs(O) defined over O ,

• the ‘forward modeling’ relation M !→ O = O(M)
that we have just seen.

This leads to

ρpost(M) =
1
ν

ρprior(M) σobs( O(M) ) ,

where ν is a normalization constant.



Example I: Sampling
• Sample the a priori volumetric probability ρprior(M) ,
to obtain (many) random models M1 , M2, . . .

• For each model Mi , solve the forward modeling
problem, Oi = Oi(Mi) .

• Give to each model Mi a probability of ‘survival’
proportional to σobs( Oi(Mi) ) .

• The surviving models M1′ , M2′ , . . . are samples of
the a posteriori volumetric probability

ρpost(M) =
1
ν

ρprior(M) σobs( O(M) ) .



This operation of product of volumetric probabilities extends to
the following case:

• there is a volumetric probability f (P) defined on a first
manifold M ,

• there is another volumetric probability ϕ(Q) defined on
a second manifold N ,

• there is an application P #→ Q = Q(P) from M into N .

Then, the basic operation is

g(P) =
1
ν

f (P)ϕ( Q(P) ) .

where ν =
∫
M dv(P) f (P)ϕ( Q(P) ) .

Example II: Least-squares
• The model parameter manifold may be a linear space, with
vectors denoted m, m′, . . . , and the a priori information may
have the Gaussian form

ρprior(m) = k exp
(

- 1
2 (m−mprior)t Cm

-1 (m−mprior)
)

.

• The observable parameter manifold may be a linear space,
with vectors denoted o, o′, . . . , and the information brought
by measurements may have the Gaussian form

σobs(o) = k exp
(

- 1
2 (o− oobs)t Co

-1 (o− oobs)
)

.

• The forward modeling relation becomes, with these notations,

o = o(m) .



Then, the posterior volumetric probability for the model
parameters is

ρpost(m) = k exp(−S(m) ) ,

where the misfit function S(m) is the sum of squares

2 S(m) = (m−mprior)t Cm
-1 (m−mprior)

+ (o(m)− oobs)t Co
-1 (o(m)− oobs) .



Then, the posterior volumetric probability for the model
parameters is

ρpost(m) = k exp(−S(m) ) ,

where the misfit function S(m) is the sum of squares

2 S(m) = (m−mprior)t Cm
-1 (m−mprior)

+ (o(m)− oobs)t Co
-1 (o(m)− oobs) .

The maximum likelihood model is the model m maxi-
mizing ρpost(m) . It is also the model minimizing S(m) .
It can be obtained using a quasi-Newton algorithm,

mn+1 = mn −H-1
n γn ,

where the Hessian of S is

Hn = I + Cm Ot
n C-1

o On ,

and the gradient of S is

γn = Cm Ot
n C-1

o ( o(mn)− oobs ) + ( mn −mprior ) .

Here, the tangent linear operator On is defined via

o( mn + δm ) = o(mn) + On δm + . . .



The maximum likelihood model is the model m max-
imizing ρpost(m) . It is also the model minimizing
S(m) . It can be obtained using a quasi-Newton algo-
rithm,

mn+1 = mn −H-1
n γn ,

where the Hessian of S is

Hn = I + Cm Ot
n C-1

o On ,

and the gradient of S is

γn = Cm Ot
n C-1

o ( o(mn)−oobs )+ ( mn−mprior ) .

Here, the tangent linear operator On is defined via

o( mn + δm ) = o(mn) + On δm + . . .

As we have seen, the model m∞ at which the algo-
rithm converges maximizes the posterior volumetric
probability ρpost(m) .

To estimate the posterior uncertainties: the covari-
ance operator of the Gaussian volumetric probability
that is tangent to ρpost(m) at m∞ is H-1∞ Cm .



References

Tarantola, A., 2004, Inverse Problem Theory and Model
Parameter Estimation, SIAM.

Mosegaard, K., and Tarantola, A., 2002, Probabilistic
Approach to Inverse Problems, International Handbook
of Earthquake & Engineering Seismology, Part A., pp.
237–265, Academic Press.

Material on Inverse Problems is available at the web
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