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Stabilizing the Empirical Green Function Analysis: Development

of the Projected Landweber Method

by Martin Vallée*

Abstract The empirical Green function approach is a very useful tool to study
the seismic source properties when we are not able to model the propagation accu-
rately. One of the problems of implementing the method, however, arises from the
usual instability of the deconvolution inherent to the approach. Starting from the
projected Landweber method introduced in seismology by Bertero et al. (1997), we
propose to stabilize the process by taking into account physical constraints on the
result of the deconvolution, which is in this case the relative source time function.
Compared with Bertero et al.’s method, we add a new constraint that imposes that
the area of the relative source time functions, which represents the seismic moment
ratio, has to remain the same for all stations. We show how to take into account this
important constraint in the framework of the projected Landweber method. Then, we
illustrate with a synthetic example how this constraint is useful to model the earth-
quake kinematic process. Finally, we apply this technique to the very large 23 June
2001 Peru earthquake (Mw 8.4), for which we infer an along-trench rupture length
of about 180 km. We image a high moment release 60-km-long zone 150 km away
from the hypocenter.

Introduction

Knowledge of the seismic source requires modeling the
propagation between the source and the receiver. Although
simple teleseismic body waves (P and SH direct waves) can
be precisely and deterministically estimated, most parts of
the seismograms cannot, and that is why it is sometimes very
helpful to use a smaller event to image the propagation be-
tween the source and the receiver. This approach was first
proposed by Hartzell (1978). It was subsequently used and
developed by Mueller (1985), Fukuyama and Irikura (1986),
Mori and Frankel (1990), Ammon et al. (1993), Velasco et
al. (1994), Courboulex et al. (1997a), and Ihmlé (1996). The
idea is to deconvolve the mainshock from the smaller event,
called the empirical Green function (EGF), to obtain a rela-
tive source time function (RSTF) at each considered station.
The durations of each RSTF are then examined to retrieve
some interesting properties regarding the extent and rupture
velocity of the event. Information on the amplitude and
shape of the RSTF is less easy to use, however, because it is
more sensitive to the deconvolution process. We propose
here a deconvolution method that takes into account various
physical constraints of the RSTF to stabilize the deconvolu-
tion. The resulting RSTF is more reliable, and we are able to
model it completely. The method is based on the projected
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Landweber method, introduced in seismology by Bertero et
al. (1997), to which we have added an important constraint:
the area of the RSTF, which represents the scalar moment of
the earthquake, has to remain the same at all stations. We
first outline the physical constraints on the RSTFs. Then, we
detail how to compute the deconvolution. Finally, we illus-
trate, first with two synthetic examples and then with the
23 June 2001 Peru earthquake (Mw 8.4), the usefulness of
the method.

Method

EGF Analysis

We recall here the theory of the EGF analysis to derive
the physical constraints existing on the RSTFs. We start from
the representation theorem (e.g., Aki and Richards, 1980) to
express the spectral displacement Ui(x,x) due to a discon-
tinuity on a surface S represented by the moment density
tensor mpq:

r r 2r rU ( x ,x) � m (n ,x)G ( x ,n ,x)d n, (1)i pq ip,q��
S

where Gip,q denotes the spatial derivative of the Green func-
tion. We note 0 the hypocenter and we assume that ther

n
Green function Gip is the same for all the points of the fault
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except for a phase shift • ( � 0) due to the varyingr r rk n n
distance between source and receiver (far-field approxima-
tion). We obtain

rU ( x ,x) �i (2)
r rrr r �i k (n�n ) 2r • 0�ik G ( x ,n ,x) m (n ,x)e d n.q ip 0 pq��

S

We assume now that the earthquake has a constant mecha-
nism, that is, mpq can be written

r rm (n ,x) � M Mf(n ,x), (3)pq pq

where

• M is a unit tensor independent of and x
r
n

• M is the scalar moment
• f ( ,t), the inverse Fourier transform of f ( ,x), is a causal,r r

n n
positive scalar function, monotonically increasing over
[0D], where D is the (unknown) duration of the source,
and constant elsewhere

Thus the time derivative of f obeys the following properties:

� 0 if 0 � t � Drḟ (n ,t) . (4)�� 0 elsewhere

Moreover, because of the use the scalar moment M, ḟ has
the property

�
r 2ḟ (n ,t)dtd n � 1. (5)� ��

�� S

For a large earthquake of moment M1, we have

1 rU ( x ,x) �i

r rrr r �i k (n�n ) 2r • 0�M M ik G ( x ,n ,x) f(n ,x)e d n.pq 1 q ip 0 ��
S

(6)

If we can find, at the same location, a similar but smaller
earthquake of scalar moment M0, f ( ,x) can be approxi-r

n
mated by

r r
d(n � n )r r r 0f(n ,x) � d(n � n )TF(H(t)) � , (7)0 ix

where TF(H(t)) is the Fourier transform of the Heaviside
function, which leads to

M0 r0 r rU ( x ,x) � �M ik G ( x ,n ,x). (8)i pq q ip 0ix

Therefore, by deconvolving equation (6) from equation (8),
we obtain the RSTF, defined as Fh in the equations:

r rM r1 r �i k (n�n ) 2• 0F (x) � ix f(n ,x)e d n. (9)h ��M S0

We now write as x• /v�, where v�, the phase velocity,r rk u
and , the wave propagation direction, are assumed con-ru
stant. This assumption compels us to study separately each
wave type in the EGF analysis. We can then return to the
time domain:

M1 r r r 2˙ rF (t) � f (n ,t � u • (n � n )/v )d n. (10)h 0 ���M S0

The use of surface waves theoretically adds some complex-
ity to this method because they are dispersive, and therefore
v� should be treated as a frequency-dependent parameter.
This suggests that we should remain in the frequency domain
of equation (9) and consider separately each frequency for
a given phase velocity, as done by Ihmlé (1996) and Ihmlé
and Ruegg (1997). According to global models, however,
phase velocities do not vary significantly in the frequency
range under consideration (0.01 Hz � f � 0.1 Hz), except
for the very low frequencies. Moreover, the precise deter-
mination of these variations requires precise knowledge of
the structure at the source, which is not always available.
For these reasons, we shall assume, as did Ammon et al.
(1993), that the use of an average phase velocity is a rea-
sonable choice.

Equation (10) is interesting because it relates an obser-
vation to the spatiotemporal characteristics of the source
ḟ( ,t), without any complications due to the wave propa-r
n

gation between source and receiver. Even if we only know
ḟ( ,t) by its integral on the fault, the use of different stationsr
n

and/or different waves (and therefore the modification of
and v� in equation 10) will allow us to retrieve someru

information about ḟ( ,t) itself.r
n

Because of the properties of the function ḟ, the RSTF is
a positive, bounded-support function. The RSTF may be
acausal, but we usually assume a propagating rupture, that
is ḟ( ,t) � 0 for t � � � 0�/vr, where the rupture velocityr r r

n n n
vr is here assumed constant for clarity. The RSTF can then
be acausal only if the rupture velocity is faster than the wave
velocity. Even in this case, the RSTF is acausal only for
stations where the propagation vector satisfiesru

r r r rr�n � n �/v � u • (n � n )/v � 0. (11)0 r 0 �

The duration of the RSTF will also depend on the position
of the station, the phase, and the rupture velocity but will of
course remain bounded. Using equation (5), we note a final
property of the RSTF:
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� �M1 r˙ rF (t)dt � f(n ,t � uh� �� �
�� M S ��0

Mr r 12• (n � n )/v )dtd n � . (12)0 � M0

This integral value is independent of the stations or the wave
type used in the deconvolutions and is equal to the relative
moment between the mainshock and the EGF.

In the derivation of equation (10), we have specified the
usual conditions on use of the EGF analysis. The three main
restrictions are that (1) we must find a much smaller earth-
quake than the mainshock so that equation (7) is verified;
(2) the mechanism and location must be similar—when there
is some difference between both events, it is possible to cor-
rect for these effects (Ihmlé, 1996), but it adds some com-
plexity to the procedure; and (3) the mainshock must have
a constant mechanism so that the Green function may be
assumed to be consistent over the whole source zone.

None of these conditions can be fully met, and we can-
not avoid the errors introduced in the empirical determina-
tion of the Green function. The classical problem arises be-
cause these errors then appear in a division process
(deconvolution) and can lead to unstable and erroneous re-
sults. We describe, in the next section, our approach to re-
ducing this instability by accounting for these physical con-
straints on the RSTF.

Development of the Projected Landweber Method

The most commonly applied technique to reduce de-
convolution instability is the water-level method. The idea
is to perform a spectral division but to stabilize the denom-
inator, that is, the spectrum of the EGF, by fixing a minimal
value equal to this water level. By doing this, we avoid the
inexact high amplitudes for some frequencies due to divi-
sions by zero or very low values in the EGF spectrum. This
method has been extensively used in EGF analysis (e.g., Ve-
lasco et al., 1994; Courboulex et al., 1997b; Schwartz,
1999). When this technique is used, we usually can identify
some nonphysical features, that is, features not compatible
with assumptions described in the previous section, in the
obtained RSTFs:

1. There are some negative parts.
2. There is some acausal signal, that is, some signal arrives

before the assumed beginning of the source time function
(this is not theoretically impossible but can only happen
when equation 11 is verified).

3. There is some signal after the assumed duration of the
source time functions.

4. The area of the source time function, the relative moment
between the mainshock and the EGF, is different from
one station to another.

Incompatibilities (1) and (2) are sometimes addressed,
for example by Courboulex (1997a), who considered the de-
convolution as an inverse problem and could therefore re-

duce the parameter space to physical values only. However,
by doing so, deconvolution becomes a complex process, not
easy to use in a global analysis. Another approach was used
by Velasco et al. (2000) based on an iterative deconvolution
technique proposed by Kikuchi and Kanamori (1982). The
idea is to look in the RSTFs for common contributions and
then strip successively these contributions from the RSTFs
until a complete explanation of the RSTFs is reached. The
positivity constraint is simply imposed to the RSTFs.

Various methods can be implemented to solve a con-
strained inverse problem, such as constrained least-squares
algorithms (Lawson and Hanson, 1974) or conjugate gradi-
ent methods. We have selected here the approach of Bertero
et al. (1997), who have developed a simple method to ad-
dress conditions 1, 2, and 3 based on the Landweber method.
It was shown by Bertero et al. (1995) that the latter was
slower but more accurate than conjugate gradient methods.

The main principles of the Landweber method are as
follows: The problem is to identify the RSTF Fh verifying

1 0U � U * F , (13)h

where U1 and U0 are the mainshock and EGF waveform,
respectively. Because of various unavoidable approxima-
tions, equation (13) generally does not have an exact solu-
tion, and we therefore seek an Fh verifying

0 1�U * F � U � � minimum, (14)h

which is equivalent to solving

0* ;0 0* 1U * U * F � U * U (15)h

(e.g., Bertero, 1989), where U0* is the adjoint operator of
U0. Because U0 is simply a convolution operator, we have
U0*(t) � U0(�t)∀t � �. Equation (15) can thus be written

0 1 0F � F � U (�t) * (U � U * F ), (16)h h h

which leads to the following iterative process:

(n�1) (n) 0 1 0 (n)F � F � U (�t) * (U � U * F ). (17)h h h

Practically, the process is convergent only if a relaxation
parameter s is added to equation (17):

(n�1) (n) 0 1 0 (n)F � F � sU (�t) * (U � U * F ). (18)h h h

In the Landweber method, the relaxation parameter must
satisfy s � 2/(supx|U0(x)|)2 and is classically chosen to
equal 1/(supx|U0(x)|)2. If used directly in the form of equa-
tion (18), this iterative process yields results similar to the
water-level technique. However, a simple modification im-
poses some physical constraints on the RSTF. Suppose that
we know that the RSTF belongs to some closed and convex
set C. Then equation (18) can be modified as follows:
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(n�1) (n) 0 1 0 (n)F � P (F � sU (�t) * (U � U * F )), (19)h C h h

where PC denotes the metric projection on C. In the absence
of noise, is shown to converge, but only weakly, toward(n)Fh

the expected solution of

0 1�U * F � U � � minimum, F � C. (20)h h

Bertero et al. (1997) defined C as the set of nonnegative
causal functions that are zero for t � D. But, in fact, we can
be even more restrictive and let C be the set of nonnegative
causal functions that are zero for t � D and for which the
integral over [0D] is equal to M1/M0. We thus meet condi-
tions 1, 2, 3, and 4. Figure 13 in Bertero et al.’s (1997) article
shows how the equal moment constraint is important: when
it is not used, the resulting moments can differ by as much
as a factor of 2 depending on the stations. This discrepancy
forbids completely the real modeling of the source time
functions, and the only available information is the relative
duration at each station.

It can be immediately verified that the newly defined
set that we call Cm is closed and convex. We now must
define the projection PCm itself in order to compute equation
(19). Given a function h, it can be shown that PCm(h) can be
naturally computed, that is, we essentially add a proper, ad-
ditive constant to h to derive PCm(h) from h. The proof, omit-
ted here, is based on the work of Youla and Webb (1982)
and proceeds by showing, given a function h � L2(�), that
PCm verifies

�

I � �h � P (h)� � (h(t)Cm �
��

2� P (h)(t)) dt � minimum. (21)Cm

We describe here only how this projection can be computed.
Suppose that

D

P (h(t))dt � M�, (22)��
0

where P� is defined by

h(t) if h(t)�0
P h(t) � (23)� �0 elsewhere.

We define the function gk as

M /M � M�1 0g (t) � h(t) � k , (24)k D

with k being a positive real number. We now consider

D

I � P (g (t))dt, (25)k � k�
0

and by successive approximations, we define an estimation
of k0, the value of k having minimum magnitude such that

sgn(M /M � I ) � �sgn(M /M � M�), (26)1 0 k 1 0

where sgn is the sign function [∀x � 0, sgn(x) � 1; ∀x �
0, sgn(x) � �1]. PCm is then approximated by

M� � M /M1 0P h(t) � k if t � [0D]� 0� ��DP h(t) �Cm �0 elsewhere.
(27)

Given PCm, the computation procedure is again com-
pletely similar of the one of Bertero et al. (1997): we start
from � 0, compute equation (18) in the frequency do-(0)Fh

main, and come back to the time domain to use PCm as de-
fined by equations (19) and (27). We then obtain and(1)Fh

repeat the operation, transforming into the frequency domain
to compute again equation (18) and so on. Lastly, we offer
a few words about the stopping rules of the procedure. In
the real case of noisy data, it has been numerically shown
(Piana and Bertero, 1997) that scheme (19) is semiconver-
gent, that is, it approaches the solution before diverging
again. However, the minimum seems very flat, and good
results are obtained after a few hundred iterations.

Application to Synthetic Examples

Test of the Stability of the Method

To demonstrate the usefulness of this equal moment
constraint, we investigate a classic, unilateral rupture on a
straight fault. The rupture is assumed to occur on a 120-km-
long, vertical, west–east–trending fault with a rupture veloc-
ity of 3 km/sec. Slip occurs instantaneously, and the slip
distribution on the fault has a triangular shape, with the max-
imum occuring at the center of the fault (Fig. 1). The mo-
ment ratio between the mainshock and the EGF is chosen to
be 1000. As the EGF, we choose a real signal, which is the
Love-wave field of an Mw 5.8 earthquake that occurred on
the North Anatolian fault on 13 September 1999 and was
recorded at Incorporated Research Institutes for Seismology
(IRIS) station MA2 (Fig. 2). Assuming a phase velocity of
4 km/sec, we can immediately compute the RSTFs at differ-
ent azimuths from the event. We compute them in the three
most interesting azimuths: the perpendicular direction (i.e.,
south or north), the directive direction (east), and the anti-
directive direction (west). In this simple case, the effect of
the directivity is simply a compaction or an extension of the
absolute source time function (i.e., the source time function
in the perpendicular direction). Source time functions have
a width of 40 sec in the perpendicular direction, 10 sec in
the directive direction, and 70 sec in the antidirective direc-
tion (Fig. 1). By convolution of these three synthetic source
time functions with the EGF signal, we obtain synthetic
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Figure 1. Source model used in the synthetic example: the hypocenter is located at
the western extremity of the fault and rupture propagates toward the east at 3 km/sec.
Slip occurs instantaneously at each point of the fault; thus the RSTFs observed at various
azimuths all have the same triangular shape. The RSTFs are shown for the three con-
sidered azimuths, assuming a phase velocity equal to 4 km/sec.
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Figure 2. EGF used in the synthetic example. The EGF is a real earthquake ocurring
on the North Anatolian fault, recorded at IRIS station MA2. This signal is convolved
with the synthetic RSTFs to obtain the synthetic mainshocks. To test the deconvolution
techniques, we have added some colored noise to this signal.
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Figure 3. Results obtained in the antidirective direction for the three deconvolution
techniques considered in the synthetic case: (1) constrained moment method, (2) Ber-
tero et al.’s (1997) method, and (3) classical water-level method. Plain lines refer to
technique 1, dashed lines to technique 2, and dash-dotted lines to technique 3. (a) For
techniques 1 and 2, the misfit between the real mainshocks and the reconstituted main-
shock obtained by reconvolution of the RSTF with the EGF, as a function of the allowed
duration of the RSTF. The vertical ticks indicate the time after which there is no more
improvement of the reconstituted mainshock. (b) For techniques 1 and 2, the evolution
of the obtained seismic moment as a function of the allowed duration of the RSTF. (c)
The preferred RSTF for techniques 1 and 2, as well as the RSTF obtained by technique
3. The preferred RSTFs are the RSTFs constrained to the durations indicated by the
vertical ticks in (a) and (b). The thick line is the real RSTF. The origin time of the
RSTFs is fixed at 40 sec. (d) A comparison between the real mainshock (thick line) and
the reconstituted mainshock for the preferred RSTFs with technique 1 (thin line).

mainshock waveforms, presented in Figures 3d, 4d, and 5d.
Let us now consider the inverse problem; the RSTFs and
mainshock waveforms that we have obtained here will be
referred to as the real waveforms.

We now examine how well we are able to retrieve the
relative source time functions, given the mainshock and EGF
signals, using different deconvolution techniques. To con-
sider a more realistic case, we have corrupted the real EGF
used to compute the synthetic waveforms: a colored noise,
different for each station, having a similar spectral shape as
the EGF, was added to the real EGF. The relative level of
noise is about 25%. Deconvolution techniques are tested
with these noisy EGFs. We use our version of the Landweber
method, which takes into account not only causality, posi-
tivity, and finite duration of the RSTFs but also the fact that
the moment ratio between the mainshock and EGF is 1000.
We use 500 iterations of scheme (18), and we use the pro-

jected equation (19) only once in every 10 iterations. This
is a way to accelerate the procedure (Piana and Bertero,
1997). We present in Figures 3(a–d), 4(a–d), and 5(a–d) for
each of the three directions (a) the misfit between the real
mainshocks and the reconstituted mainshock obtained by re-
convolution of the RSTF with the EGF, as a function of the
allowed duration of the RSTF—this misfit is a good indicator
of the quality of the obtained deconvolution; (b) the evolu-
tion of the obtained seismic moment as a function of the
allowed duration of the RSTF; (c) the preferred RSTF; and
(d) a comparison between the real mainshock and the recon-
stituted mainshock for the preferred RSTF. We present in
parallel the corresponding results with Bertero et al.’s (1997)
technique, which takes into account only three physical con-
straints: causality, positivity, and finite duration. The pre-
ferred RSTFs are also compared (Figs. 3c, 4c, and 5c) with
the RSTF obtained by the classical water-level method.
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Figure 4. Results obtained, in the perpendicular direction, for the three deconvo-
lution techniques considered in the synthetic case. Notations and panels as in Figure
3. For clarity, the scale in (c) is different from Figure 3c. In this direction, the recon-
struction of RSTF with technique 1 is very close to the real RSTF.

We notice that the durations are correctly retrieved
whatever technique is used but that the amplitudes are not
reliable when we do not impose the moment. Our con-
strained moment deconvolution gives better results than the
other techniques: reconstruction of the RSTFs is very good
in the antidirective and perpendicular directions. Only in the
directive direction, where the noise added to the EGF was
high at low frequencies, is the moment release peak not com-
pletely retrieved.

Realistic Test with Differences in Location and Focal
Mechanism: A Peru Synthetic Case

Our second synthetic example is even more realistic: we
propose to compute synthetic mainshock waveforms by con-
volution between synthetic source time functions and a real
EGF and then to use our deconvolution method with another
EGF. This approach is close to the real case in which there
are always some differences in focal mechanism and loca-
tion between the EGF and the mainshock.

We use earthquakes that occurred close to the 23 June
2001 Peru earthquake, which will give an insight for the next
section dedicated to this earthquake. We select two EGFs:
the first one is an Mw 5.8 earthquake that occurred on 3
August 2000, and the second is an Mw 6.7 earthquake that
occurred on 26 June 2001 (the same earthquake that we will

use as the EGF in the next section). Both selected waveforms
are presented in Figure 6. The locations and timings of these
two events are retrieved from the International Seismologi-
cal Center bulletin, which reveals a 40-km location differ-
ence between the hypocenters of the two events. According
to the Harvard Centroid Moment Tensor (CMT), the 3 Au-
gust 2000 and 26 June 2001 event mechanisms have strike,
dip, and rake equal to 309�, 29�, and 66� and 314�, 19�, and
75�, respectively. We use the same three RSTFs as in the
previous example and convolve them with the Love-wave
field of the Mw 5.8 event. The resulting synthetic mainshocks
are presented in Figures 7d, 8d, and 9d.

We now examine how well we are able to retrieve the
initial RSTFs using the Mw 6.7 event as an EGF. We must
take into account the nonzero duration of the chosen EGF.
Because the source time function of this event is close to a
4-sec-long triangle (SOUM, 2001), we apply a 2-sec shift to
the waveforms so that the source time function is now cen-
tered at the time 0 sec. We also apply a 80-sec high-pass
filter to both EGF and mainshock waveforms to suppress the
unreliable frequencies below the instrument low-pass cutoff.
We then use the same three methods as before: the classical
water-level approach, Bertero et al.’s (1997) approach, and
our approach, in which the relative moment is constrained
to the moment ratio between the mainshock and EGF. To
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Figure 5. Results obtained, in the directive direction, for the three deconvolution
techniques considered in the synthetic case. Notations and panels as in Figure 3. For
clarity, the scale in (c) is different from Figure 3c. In this direction, all techniques
underestimate the moment release peak of the real RSTF.
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Figure 6. Love waves recorded at station
FDF (Martinique, Carribean Sea) for two earth-
quakes occurring in the southeast Peru subduc-
tion zone: (a) an MW 5.8 event occurring on 3
August 2000 and (b) an MW 6.7 event occur-
ring on 26 June 2001. The first waveform will
then be convolved with synthetic source time
functions to obtain synthetic mainshocks,
whereas the second waveform will be used to
estimate our ability to retrieve the synthetic
source time functions.

determine this moment ratio, we use Harvard CMT inferred
values. This implies that our synthetic mainshock has a mo-
ment equal to 6.55 � 1020 N m (taking into account the
1000 N m RSTF used to compute the mainshock) and the
selected EGF a moment equal to 1.4 � 1019 N m, yielding
a moment ratio equal to 46.7.

Results are presented in Figures 7, 8, and 9 in a similar
manner to the first synthetic case. Figure 7 shows the anti-
directive direction. The water-level method can only be used
to identify the apparent duration of the earthquake (70 sec).
The large negative parts, as well as the erroneous amplitudes,
would make a real inversion of the RSTFs very difficult. The
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Figure 7. Results obtained in the antidirective direction for the Peru synthetic case,
with the three deconvolution techniques. Notations and panels as in Figure 3. The con-
strained moment method gives a very good reconstruction of the source time function.
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Figure 8. Results obtained in the perpendicular direction for the Peru synthetic case,
with the three deconvolution techniques. Notations and panels as in Figure 3.
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Figure 9. Results obtained in the directive direction for the Peru synthetic case,
with the three deconvolution techniques. Notations and panels as in Figure 3. The
quality of reconstruction is not as good as in the two other tests because the source
time function has a much higher frequency content.

Bertero et al. (1997) method is more efficient, but the am-
plitudes are not well estimated. Our approach gives a RSTF
very close to the real one. The obtained RSTF can therefore
be used in an inversion of the earthquake rupture process.
Similar conclusions can be drawn from the observation of
Figure 8, which simulates the case of a rupture propagation
observed in the perpendicular direction.

The directive case (Fig. 9) does not give results as re-
liable as before, even for the constrained moment method.
This is mainly due to the fact that the frequencies considered
are much higher than before (the RSTF is now 10-sec long).
These high frequencies are more sensitive to the differences
between the two selected earthquakes and are also closer to
the corner frequency of the EGF.

These synthetic tests show that the constrained moment
method is an efficient technique to retrieve the RSTFs. As
could be predicted, the main limitation concerns the higher
frequency content of the RSTFs (around and above 0.1 Hz).
We now apply this technique to infer the source process of
the Peru mainshock (23 June 2001, Mw 8.4) and to compare
our results with other source studies of this event.

Application to the 23 June 2001 Peru Earthquake

The 23 June 2001 Peru earthquake (Mw 8.4) is the larg-
est earthquake of the Harvard CMT catalog, that is, the larg-

est earthquake since 1976. A complete report of the earth-
quake can be found in Tavera et al. (2002); they estimated
the aftershock zone to be a rectangle of 160 km � 370 km
(along trench), which is located almost completely southeast
of the hypocenter. Three days after the earthquake, the Mw

6.7 aftershock that we used in the previous analysis occurred
in the mainshock rupture zone. Its thrust focal mechanism
is similar to the mainshock mechanism (which has a strike,
dip, and rake equal to 310�, 18�, and 63� according to the
Harvard CMT), and this event is therefore selected as an EGF
of the mainshock. We use the method detailed in the pre-
vious sections to infer the main rupture properties of this
major event. The along-trench rupture dimension is domi-
nant in such a large subduction earthquake, and we therefore
limit our study to a line source analysis along this direction.

Constrained RSTFs

According to the Harvard CMT, the mainshock moment
is 4.67 � 1021 N m and the moment of the selected EGF is
1.4 � 1019 N m, yielding a ratio of 333. We will therefore
constrain the RSTFs to respect this value in our deconvolu-
tion method. The deconvolutions are systematically tested
with all stations of the IRIS-Geoscope networks, which re-
corded both events. We consider both Rayleigh-wave and
Love-wave windows, but because of their higher quality, we
finally select only RSTFs coming from Love waves. Since
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Figure 10. Transverse components of the EGF for the four stations used in the Peru
earthquake analysis. The name of each station is indicated in the upper left-hand corner
of each panel. The origin time is the origin time of the EGF (i.e., 26 June 2001,
04:18:32). The selected Love-wave window for each station is denoted by the two
vertical bars, and the average horizontal velocities are given for the beginning and end
of each window. The signals will be tapered later to zero at each extremity of the
windows (and the selected waveforms will then be similar to these of Fig. 6).

we model the event as a line source, we choose to restrict
our analysis to azimuths close to the fault strike; hence, we
only consider stations that have an azimuth around 120� or
around 300�. Stations at other azimuths are in fact more sen-
sitive to along-dip details of the rupture, which are not mod-
eled in a simple line source analysis. To be selected, RSTFs
must respect the following criteria: (1) when reconvolved by
the EGF, they yield a good fit to the real mainshock wave-
forms; and (2) the flat level of the misfit function (see, for
example, Figs. 7a, 8a, and 9a) can be identified. With these
criteria, we select two stations in the southeast direction
(SHEL and SUR) and two stations in the northwest direction
(KDAK and HDC). The EGF signals can be seen in Figure
10 and the Love-wave windows for the mainshock in Figures
11d,h and 12d,h.

We present in Figures 11 and 12, in a similar way as in
previous figures, the results provided by our deconvolution
method. Stations SHEL and SUR do not have a clear flat
level of the misfit function (Fig. 11), but the use of longer
and more complex RSTFs would have provided a fit im-
provement of at most 10%. Moreover, the examination of
longer RSTFs shows that the dominant feature of the RSTFs,
that is, a main pulse with 50-sec duration, remains constant.
Stations KDAK and HDC have a clear flat level (Fig. 12),

and the corresponding RSTF can therefore be easily iden-
tified.

To suppress the unreliable high frequencies of the
RSTFs (Figs. 11 and 12), we do not use a low-pass filter,
because it would affect both the positivity and the area of
the RSTFs. We instead smooth the RSTFs with a cutoff fre-
quency equal to 0.05 Hz. Velasco et al. (1994) have shown
that for a rupture longer than about 100 km, frequencies
higher than about 0.05 Hz are not reliable because of the
finite duration of the EGF and the intrarupture surface wave
dispersion. Figure 13 presents the smoothed RSTFs, which
will now be used to infer the rupture process of the large
Peru earthquake.

Interpretation in Terms of Line Source

The shape of the RSTFs confirms immediately that rup-
ture propagated toward the southeast: the RSTFs are shorter
and more impulsive at stations SUR and SHEL compared to
stations KDAK and HDC. This is consistent with the after-
shock zone of the earthquake or with the kinematic models
of ERI (2001) and Sladen and Madariaga (2002). To retrieve
more quantitatively the rupture properties of this earthquake,
we model it as a line source. We have not investigated a
two-dimensional source modeling (as defined by Olson and
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Figure 11. Results for the Peru earthquake, with the three deconvolution tech-
niques. The two selected directive stations, SHEL and SUR, are represented with the
same notations as in Figure 3. In both cases, we select a 60-sec global duration, because
little improvement (around 10%) is gained by longer and more complex RSTFs. Note
that the RSTF moments vary significantly when this constraint is not imposed (panels
b and f). The high frequencies of the constrained RSTFs (panels c and g) are not reliable,
because they are on the order of the corner frequency of the EGF (0.3–0.5 Hz). We will
smooth them when fitting the RSTFs with a line source model (Fig. 13).

Apsel [1982] or Hartzell and Heaton [1983]) because the
reliable frequencies of our analysis are too low to precisely
image the along-dip propagation of the rupture. We deter-
mine after a few tests that the maximum rupture length L is
300 km, and we locate the hypocenter 60 km away from the
northwestern end of the rupture. Observation of the antidi-
rective RSTFs shows that they consist of two main features:
a low-energy pulse during the first 80 sec and a larger pulse
centered around 100 sec. We thus propose the following

parametrization: the moment per unit width Ml is retrieved
for each point of the line source, whereas the rupture velocity
vr and the duration of Ml, noted d, can only take two different
values, one for each of the main pulses. We assume a tri-
angular moment rate time function Tr(Ml, d, t), so the syn-
thetic RSTF F̃h for a given azimuth h is defined by

L xcos(h � h )FF̃ (t) � Tr M (x),d(x),t � T(x) � dx, (28)h l� � �
0 v�
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Figure 12. Results for the Peru earthquake, with the three deconvolution tech-
niques. The two selected antidirective stations, KDAK and HDC, are shown with the
same notations as in Figure 3. In both cases, we select a 120-sec global duration,
because no improvement is obtained by a longer and more complex RSTF (panels a
and e). The high frequencies of the constrained RSTF (panels c and g) are not reliable,
because they are on the order of the corner frequency of the EGF (0.3–0.5 Hz). We will
smooth them when fitting the RSTFs with a line-source model (Fig. 13).

where T is the onset time (depending on the rupture velocity
model) and hF is the fault azimuth, approximated here at
122�. The phase velocity of Love waves v� is averaged to
4.4 km/sec (Ammon et al., 1993). We discretize the fault in
30-km-long segments, so the synthetic RSTFs are described
with 15 parameters (11 parameters for Ml and 2 parameters
for both d and vr). vr is constrained to be slower than the
Rayleigh-wave velocity, which is here considered equal to
3.5 km/sec (but we checked that higher rupture velocities
were not needed to explain the RSTFs). To find the optimal
combination of the parameters, we minimize the relation

N D
˜Misfit � |F (t) � F (t)|dt, (29)� hi hi�

0i�1

where N is the number of stations and D the maximum du-
ration of the RSTFs. This inverse problem is solved by the
neighborhood algorithm (NA) proposed by Sambridge
(1999). We do not develop here the principles of this
method. Details are fully explained in Sambridge’s article,
and applications to source studies can be found in Marson-
Pidgeon et al. (2000) or Vallée et al. (2003).
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Figure 13. Selected RSTFs for the 23 June
2001 Peru earthquake. The thick lines are the
real RSTFs, obtained by our constrained decon-
volution. The thin lines are the synthetics re-
lated to the line source analysis of the main-
shock (Fig. 14). Names and azimuths of the
stations are specified inside each subfigure.
Both data and synthetics have been smoothed
with a cutoff frequency equal to 20 sec.

We show in Figure 13 the comparison between syn-
thetic and observed RSTFs and in Figure 14 the source mod-
els found by the inversion. We present models obtained for
Ml and vr as well as the absolute source time function. We
only present the average value of the rupture velocity be-
cause its values on each subfault are not well resolved, partly
due to the well-known trade-off with duration d. Conse-
quently, the duration d is not well resolved either (Ihmlé,
1998). As in Vallée et al. (2003), the standard errors on the
parameters are evaluated by the use of a number of inde-
pendent runs of the NA. The principle moment release zone
is located 150 km away from the hypocenter. This is con-
sistent with the kinematic model defined by ERI (2001);
however, our resolution of the rupture extension is better
than that derived from the body waves used in the latter
model. This is because the slow phase velocity of the surface
waves, as well as their horizontal propagation direction, is
more efficient for imaging the lateral extension of the source.

If we assume a fault width of 120 km and a rigidity of
4.8 � 1010 N m�2 (Vs � 4 km/sec and q � 3000 kg/m3 at
30 km depth), the slip approaches about 15 m on the high
moment release portion of the fault. This is significantly
higher than the maximum slip determined by ERI (8 m).
However, the use of body waves alone is known to under-
estimate the global moment (Ekström, 1989). The total rup-
ture lasted about 90 sec, and the mean rupture velocity is
estimated to 2.9 km/sec. This application to this very large
earthquake confirms the usefulness of our constrained
method for imaging the large features of the source process.

Discussion and Conclusions

In this article, we have proposed a new method for sta-
bilizing the EGF technique. Classically, EGF analysis is more
reliable when used to identify the RSTF durations at various
azimuths from the source. This gives an estimate of the
length and mean rupture velocity of the event but brings little
information about the locations and sizes of the main mo-
ment release zones. Moreover, the determination of these
durations often depends on the interpretation of the author:
when the end of the rupture is poorly defined, or when the
RSTFs have a large negative part, different choices are pos-
sible. It would be more robust to rely on a global fit of the
shape of the RSTFs, but this requires that they have suffi-
ciently high quality.

We show here that the quality of the RSTFs is greatly
improved if we take into account various physical con-
straints. The usefulness of the positivity, causality, and
bounded duration constraints has already been shown by
Bertero et al. (1997). In this study, we demonstrate that an-
other physical constraint is particularly important: the area
of the RSTFs, which is equal to the moment ratio between
the mainshock and EGF, must remain the same at all stations.
Moreover, this constraint can easily be included in the same
projected Landweber algorithm as the one introduced by
Bertero et al. (1997).

Examples in synthetic and semireal cases show that the
RSTFs are more reliable when we use the equal moment
constraint defined in this study. Thus, in the case of real
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Figure 14. Line source modeling of the main-
shock. Top Line source model for the moment per
unit width. The thick line is the mean model of 10
independent runs of the NA. The two thin lines rep-
resent the extremal models (mean model �3 times
the standard error). The hypocenter is denoted by a
star. We have also represented the inferred mean
value for the average rupture velocity, as well as its
uncertainty (defined as 3 times the standard error).
Bottom Absolute source time function corresponding
to the the mean line source model presented in (a).

source analysis, we can directly infer the rupture properties
by a fit of the RSTF waveforms. Our modeling of the large
23 June 2001 Peru earthquake reveals that its rupture prop-
agated toward the southeast at about 2.9 km/sec and lasted
about 90 sec. The inferred rupture length is about 180 km,
and a zone of high moment release is well identified 150 km
away from the hypocenter.
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