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S U M M A R Y
As soon as an earthquake starts, the rupture and the propagation of seismic waves redistribute
masses within the Earth. This mass redistribution generates in turn a long-range perturbation
of the Earth gravitational field, which can be recorded before the arrival of the direct seismic
waves. The recent first observations of such early signals motivate the use of the normal mode
theory to model the elastogravity perturbations recorded by a ground-coupled seismometer or
gravimeter. Complete modelling by normal mode summation is challenging due to the very
large difference in amplitude between the prompt elastogravity signals and the direct P-wave
signal. We overcome this problem by introducing a two-step simulation approach. The normal
mode approach enables a fast computation of elastogravity signals in layered self-gravitating
Earth models. The fast and accurate computation of gravity perturbations indicates instrument
locations where signal detection may be achieved, and may prove useful in the implementation
of a gravity-based earthquake early warning system.

Key words: Time variable gravity; Transient deformation; Numerical solutions; Theoretical
seismology.

1 I N T RO D U C T I O N

During and after large earthquakes, changes in the gravitational
field of the Earth arise from a redistribution of internal masses,
at the Earth surface and in depth. Static changes have been re-
ported from before to long after great earthquakes such as the 2003
M8.0 Tokachi-oki earthquake, using data recovered by ground-
based superconducting gravimeters (Imanishi 2004). The satel-
lite mission GRACE (Tapley et al. 2004) also recorded gravity
changes following the 2004 M9.0–9.3 Sumatra–Andaman earth-
quake (Han et al. 2006), the 2010 M8.8 Maule earthquake (Han
et al. 2010; Heki & Matsuo 2010) and the 2011 M9.1 Tohoku-oki
earthquake (Matsuo & Heki 2011). In terms of modelling, Okubo
(1991, 1992) developed analytical expressions of the static grav-
ity changes due to a point dislocation and faulting of a rectangu-
lar finite plane, buried in a homogeneous half-space medium. Sun
et al. (2009) later developed the coseismic Green’s functions of
gravity changes in a spherically symmetric Earth model, at the

deformed Earth surface and in space. De Linage et al. (2009)
modelled the static perturbation of the gravitational potential in-
duced by the Sumatra–Andaman earthquake, using normal mode
summation.

In addition to static gravity effects, time-dependent density per-
turbations due to seismic waves induce a dynamic long-range per-
turbation of the gravitational field, during the seismic rupture. Pieces
of evidence of such transient perturbations, observed before the ar-
rival of the direct seismic waves following the M9.1 Tohoku-oki
earthquake, have been recently reported in Montagner et al. (2016)
and Vallée et al. (2017). Harms et al. (2015) first derived an an-
alytical solution of dynamic gravity changes generated by a point
dislocation in a homogeneous full-space model. Harms (2016) later
provided a dynamic solution of gravity perturbations produced by
a dislocation buried in a homogeneous half-space. While that study
does not account for the Earth’s sphericity and neglects self-gravity
effects, it can predict perturbations to distances up to hundreds of
kilometres from the epicentre. However, neglecting the coupling
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between gravity and elasticity prevents applying those solutions to
simulate data recorded by ground-coupled inertial sensors.

Gravity perturbations ahead of the seismic waves indeed act in
turn as body forces that induce additional deformation of the elastic
Earth (Heaton 2017; Vallée et al. 2017). A ground-based seismome-
ter therefore records a gravity-induced inertial motion in addition to
the gravity perturbation before the first seismic wave arrival: we re-
fer to the overall signal as prompt elastogravity perturbation. Vallée
et al. (2017) computed the elastogravity signals induced by the
Tohoku earthquake in a layered, non-self-gravitating Earth model,
using a three-stage procedure based on the AXITRA code (Cotton
& Coutant 1997). Numerical solutions for the propagation of elastic
waves in layered self-gravitating Earth models have been developed
since the introduction of normal mode theory in seismology (Alter-
man et al. 1959; Takeuchi & Saito 1972; Chaljub & Valette 2004;
Al-Attar & Woodhouse 2008) and offer a potential direct access to
the elastogravity signals. However, none of the previous modelling
work based on normal mode theory including self-gravitation has
given attention to the part of the seismograms that precedes the first
direct P-wave arrival. The purpose of this paper is to fill that gap.
We show that the task is not trivial, due to the very large difference
in amplitude between the prompt elastogravity signals and the direct
P-wave signal. To overcome the challenge, we introduce a two-step
simulation approach.

Normal mode simulations validate the aforementioned analytical
formulations when self-gravitation is ignored, reproduce the nu-
merical results from Vallée et al. (2017) while assessing the role of
self-gravitation and enable a faster computation of both the gravity
perturbation and the induced motion.

2 E L A S T O G R AV I T Y R E S P O N S E O F A
S E I S M O M E T E R

2.1 Fundamental equations

Let ρ0 and φ0 denote the initial density distribution and gravitational
potential of a spherically symmetric Earth model. Let also denote
the corresponding gravitational acceleration

g0 = −∇φ0 = −∂φ0

∂r
er = − g0 er , (1)

where er is the upward unit vector. The gravitational potential obeys
Poisson’s equation

∇2φ0 = ∂2φ0

∂r 2
+ 2

r

∂φ0

∂r
= 4πGρ0, (2)

where G is Newton’s gravitational constant.
Let us consider the displacement field s due to a point source f .

Hereafter, the 1 subscript refers to the perturbed state of a parameter,
and the L and E superscripts describe Lagrangian and Eulerian rep-
resentations, respectively. In a self-gravitating Earth, the displace-
ment field generated by seismic wave propagation induces gravity
perturbations g1, which in turn disturb the displacement field:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ0 s̈ = ∇ · σ1
E + ρ E

1 g0 + f + ρ0 g1
E,

∇2φ E
1 = ∇ · g1

E = 4πG ρ E
1 ,

ρ E
1 = − ∇ · (ρ0 s),

(3)

where σ1
E denotes the perturbed stress tensor and f the point

source, f = −M·∇δ(r − rs) H (t − ts) with M the moment tensor

of the source and H the Heaviside step function (Dahlen & Tromp
1998).

In eq. (3) above, we assume a hydrostatic initial stress. We do
not consider the effect of the Earth’s rotation, due to its negligible
influence on prompt elastogravity signals in the studied frequency
range (2.0–30.0 mHz). According to section 4.4 of Dahlen & Tromp
(1998), the Coriolis force can indeed be neglected for periods much
shorter than 1 d. Simulations with geocentric correction included
do not lead to significantly different results, thus Earth’s ellipticity
is also neglected.

Topography and 3-D heterogeneity effects are also neglected in
what follows. Their effects on prompt elastogravity signals should
however be limited, since the gravity perturbations are not expected
to be greatly affected by local heterogeneities. Indeed, the gravity
perturbations originate from the volume average, weighted by the
distance to the instrument, of the time-dependent density changes
due to seismic waves:

φ E
1 (r, t) = G

∫
V

ρ0(x) ∇ · s(x, t)

‖ r − x ‖ d 3x

+ G

∫
V

s(x, t) · ∇ρ0(x)

‖ r − x ‖ d 3x, (4)

where the first term represents the volumetric density perturbation
due to dilatation and compression, and the second term gives the per-
turbation due to the displacement of pre-existing density gradients.
The integration over a large volume thus lowers the significance of
locally perturbed elastic fields.

2.2 Response of a seismometer

We aim to model the complete elastogravity response of a seis-
mometer to an earthquake, prior to the first direct seismic wave
arrival (here a ‘direct’ wave denotes a wave that originates at the
earthquake source, in contrast to waves induced by the gravity per-
turbations). Following Dahlen & Tromp (1998), the response of a
recording instrument must account for gravitational effects in ad-
dition to the inertial acceleration of its housing. Thus, we write the
momentum equation of its sensing element ξ̈ = F + g1

L , where ξ

represents the displacement of the sensing element, F the electrome-
chanical feedback and g1

L the perturbed gravitational acceleration.
The instrument displacement ξ can be decomposed into two terms,
ξ = s + ν , with s the displacement of the ground below the sta-
tion and ν the displacement of the sensing element with respect
to the instrument housing. Adjusting F such that the sensing ele-
ment does not move relatively to its housing (ν = 0) , the instrument
records

F = ξ̈ − g1
L = s̈ − (

g1
E + s · ∇g0

)
. (5)

From eqs (1) and (2), the gradient of the gravitational acceleration
can be written as

∇g0 = (4πGρ0 − 2g0/r ) er . (6)

The three different terms in eq. (5) account respectively for (1)
the ground motion, including the gravity-induced ground motion
before P-wave arrival time, (2) the gravity perturbation and (3)
the coupling to the static gravity field (apparent surface-mass per-
turbation and free-air gradient). It will be shown that the cou-
pling terms are negligible compared to the gravity perturbation
and the induced motion, and the recording can be approximated as
F � s̈ − g1

E .
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Normal mode modeling of prompt gravity signal 937

Figure 1. Vertical gravity perturbations g1 induced by the M9.1 Tohoku earthquake at INU (top panel) and MDJ (bottom panel) locations, computed in
a homogeneous solid sphere. Red lines represent perturbations computed through a straightforward normal mode summation. Black dotted lines represent
perturbations computed with an indirect, integration approach. Seismograms are truncated at P-wave arrival time.

3 N O R M A L M O D E S I M U L AT I O N S O F
E L A S T O G R AV I T Y S I G NA L S

3.1 Spherical-harmonic decomposition

To compute the prompt elastogravity response of the Earth to an
earthquake, we use a spherical-harmonic representation of the dis-
placement vector s and the gravitational potential φ (Pekeris &
Jarosch 1958; Alterman et al. 1959):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s�m =
[
U(r ) er + V(r ) k−1 ∇1

− W(r ) k−1 (er × ∇1)
]
Y�m(θ, ϕ) ,

φ�m = P(r ) Y�m(θ, ϕ) ,

(7)

where Y�m is the spherical harmonic of a given (n, �, m) mode and
k =

√
�(� + 1) . ∇1 and (er × ∇1) are the surface gradient and curl

on the sphere:

{ ∇1 = eθ ∂θ + eφ (sin θ )−1 ∂ϕ,

(er × ∇1) = − eθ (sin θ )−1 ∂ϕ + eφ ∂θ .
(8)

eθ and eφ are the unit vectors pointing into south and east directions,
respectively. U(r ), V(r ), W(r ) and P(r ) are radial eigenfunctions
and only depend on the radial position, and describe respectively the
radial and the two transverse displacements, and the gravitational
potential.

3.2 Numerical parameters

In the following sections, we adopt a self-gravitating isotropic
PREM model with no ocean, and compute its eigenfrequencies and
eigenfunctions using the Mineos package (Woodhouse 1988). Over-
tones are summed up to �= 2695 and 200 mHz, and progressively
tapered from 100 to 200 mHz.

In order to validate the analytical solutions, we also compute
the free oscillations of a non-self-gravitating, homogeneous solid
sphere of density 2700 kg/m3, P-wave velocity α= 6.4 km/s and
S-wave velocity β = 3.7 km/s (Takeuchi & Saito 1972). Overtones
are summed up to � = 1174 and 100 mHz, and progressively tapered
from 50 to 100 mHz.

We present results focused on elastogravity perturbations in-
duced by the M9.1 Tohoku-oki earthquake (37.52◦N, 143.05◦E),
modelled at GEOSCOPE INU station (35.35◦N, 137.029◦E), IC
MDJ station (44.62◦N, 129.59◦E) and GGP KA station (36.43◦N,
137.308◦E) locations. Source rupture is described with angles
(strike, dip, rake) = (203◦, 10◦, 88◦) and we adopt the triangu-
lar moment-rate function from the Global Centroid Moment Ten-
sor project (Ekström et al. 2012) as source time function. Elas-
togravity perturbations are bandpass filtered between 2.0 mHz (But-
terworth, 2 poles, causal) and 30.0 mHz (Butterworth, 6 poles,
causal) in order to agree with instrumental and seismic noise
limitations.
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938 K. Juhel et al.

Figure 2. Non-convergence of the direct computation of the gravity-induced motion. The ground motion seismograms are plotted in the left-hand panel, and
the gravity perturbations g1 in the right-hand panel. (Top rows) Seismograms obtained through a straightforward mode summation at station MDJ, in response
to a step-function source. Numerical oscillations prevail in the entire pre-P time window for the gravity-induced ground motion (top left inset). (Bottom rows)
Seismograms after convolution with a triangular moment-rate source time function. Due to the very large difference in amplitude between the gravity-induced
motion (∼ 10−9 m/s2) and the following direct seismic waves (∼10−3 m/s2), the straightforward gravity-induced ground motion (black curve) does not
converge towards the real induced motion (green curve), computed with a two-step approach (bottom left inset). On the contrary, the gravity perturbation never
exceeds 10−7 m/s2, such that the prompt gravity perturbation converges in the pre-P time window.

3.3 Computation of the gravity perturbation

Vallée et al. (2017) computed the gravity perturbation g1 in a non-
self-gravitating Earth model using the AXITRA code. They fol-
lowed an indirect integration approach: first, the direct displacement
field induced by the seismic wave propagation is computed on a grid
centred around the epicentre location. Then, the gravity perturba-
tion g1 is computed from the integration of the displacement field
through the gradient of eq. (4).

We compute the gravity perturbation g1 with a direct, normal
mode based approach through the following summation:

g1
E(r, t) = −

∑
i

M:εi (rs) ṁ(t) ∗ 1 − cos(ωi t)

ω 2
i

�i (r) , (9)

where r = (r, θ, ϕ) are the instrument spherical coordinates, and
ωi is the eigenfrequency of a given mode i = (n, �, m) (Gilbert
1971). The double dot product between the moment and strain
tensors forms the excitation coefficient M:ε, estimated at source
location rs. The asterisk ∗ indicates convolution by the moment-rate

source time function ṁ(t). The acceleration operator � comprises
the three components of the gravity perturbation:

��m(r, θ, ϕ) = [
Ṗ(r ) er + P(r ) r−1 ∇1

]
Y�m(θ, ϕ). (10)

The consistency between the integration approach and the direct
approach is presented in Fig. 1, in the non-self-gravitating, homo-
geneous solid sphere. Since the integration approach imposes the
computation of thousands of intermediate seismograms, the direct
approach is significantly faster.

3.4 Computation of the gravity-induced ground motion

3.4.1 Two-step approach

The gravity-induced ground motion s̈ should be computed with a
direct, normal mode based approach through the summation:

s̈ (r, θ, ϕ, t) =
∑

i

M:εi (rs) ṁ(t) ∗ cos(ωi t) Ai (r, θ, ϕ) (11)
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Normal mode modeling of prompt gravity signal 939

Figure 3. Two-step computation of the gravity-induced ground motion. The earthquake rupture (black star) gives rise to seismic wave propagation (black
circle). The mass redistribution in turn generates gravity perturbations g1 (red stars) in the whole medium ahead of the seismic wave front. In the green volume
the gravity perturbations act as body forces, and generate elastic waves that will arrive at the station (yellow triangle) before the first direct seismic wave. These
secondary elastic waves are summed into the gravity-induced motion at the station.

and corresponding operator A:

A �m(r, θ, ϕ) = [
U(r ) er + V(r ) k−1 ∇1

− W(r ) k−1 (er × ∇1)
]
Y�m(θ, ϕ) . (12)

However, the immense amplitude difference between the gravity-
induced inertial acceleration (∼ 10−9 m/s2 at 1000 km) and the fol-
lowing impulsive direct seismic waves (∼ 10−3 m/s2 at 1000 km)
leads to numerical oscillations that mask our signal of interest be-
fore the direct P arrival (Fig. 2). Such oscillations are very small
and not a nuisance in gravity perturbation seismograms g1, due
to a smaller difference in amplitude between the pre-P time win-
dow (∼ 10−9 m/s2) and the post-P time window (∼ 10−7 m/s2).
The gravity-induced motion s̈ therefore cannot be computed with
a straightforward mode summation. We instead follow a procedure

similar to the three-stage method proposed in Vallée et al. (2017),
which consists here in only two steps (see Fig. 3 for a schematic).

To obtain the gravity-induced ground motion, we compute the
elastic response of the medium surrounding the station to the grav-
ity perturbations induced by the earthquake. Since we aim to re-
construct the inertial motion prior to the direct seismic wave ar-
rival, we only need to consider the portion of the medium that
contributes to the gravity-induced signal before the P-wave arrival
time, that is, the volume shown in green in Fig. 3, shrinking with
time as the P-wave propagates. We thus define a hemispheric grid
centred at the instrument location, with a radius equal to the dis-
tance between the instrument and the earthquake source, and grid
points every 40 km. An adequate grid sampling that ensures the
convergence of the two-step computation is assessed in the next
subsection.
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Figure 4. Three-component gravity perturbation g1 (red lines) and reversed gravity-induced motion −s̈ (green dotted lines) induced by the Tohoku earthquake,
recorded at station KA in a homogenous full space. Seismograms are truncated at P-wave arrival time. The resulting instrumental record arising from the terms
difference is null, in agreement with the theory.

The first step of our computation is thus to compute g1 in this
hemispheric volume:

g1 (rk, t) = −
∑

i

M:εi (rs) ṁ(t) ∗ 1 − cos(ωi t)

ω 2
i

�i (rk) , (13)

where k denotes a grid point and rk its corresponding location ahead
of the P-wave front. Each of these grid points is excited remotely
by the gravity perturbation g1 arising from the rupture, acting as a
body force ρg1, and will in turn produce elastic waves that propagate
inside the medium and arrive at the instrument location before the
direct seismic P wave. The second step of our procedure consists in
computing these gravity-induced elastic waves and summing them
at the instrument location. The result is the gravity-induced ground
motion s̈ recorded by the instrument:

s̈ (r, θ, ϕ, t) =
∑

i

(∑
k

Ai (rk) · ρk g1(rk, t) dVk

)

∗ cos(ωi t) Ai (r, θ, ϕ) , (14)

where dVk is the volume assigned to each grid point k. We point out
that the computation of all body force excitations ρg1 is performed
using a single summation based on eq. (13), while Vallée et al.
(2017) employed an integration approach based on eq. (4) for each
grid point.

We also note that in our PREM model both the body force ex-
citations ρg1 and their induced elastic waves are computed in a
self-gravitating Earth. However, the two-step induced motion is

not a direct solution of the coupling between the equation of mo-
tion and Poisson’s equation, therefore self-gravitation is not fully
accounted for in the computation of the gravity-induced motion.
Nonetheless, according to section 4.3.5 of Dahlen & Tromp (1998)
self-gravitation is expected to exert a negligible influence for ω 	
(4πGρ0)1/2 (i.e. above 0.3 mHz for crustal and upper mantle ma-
terial), that is, for all frequencies inside the considered frequency
range (2.0–30.0 mHz). The influence of self-gravitation on eigen-
frequencies, eigenfunctions and seismograms is further discussed
in Appendix A (available online).

3.4.2 Validation of the computation in full-space geometry

In order to validate the two-step computation of the induced mo-
tion and choose the appropriate grid spacing, we compute both the
gravity perturbation g1 and the induced ground motion s̈ in a ho-
mogeneous full space. In this model geometry, the induced motion
fully cancels the gravity perturbation, as demonstrated in the Sup-
plementary Materials of Vallée et al. (2017). It is thus particularly
well suited to assess the convergence of the numerical simulations.

To mimic a homogeneous full space with a normal mode based
method, we bury both source and receiver in a homogeneous solid
sphere at 1000 km depth, such that no direct waves reach the free
surface before direct P-wave arrival time at the station. In a homo-
geneous full space, the grid of secondary sources becomes purely
spherical. Full cancellation of elastogravity terms is verified at sta-
tion KA during the rupture (Fig. 4). We find that the cancellation is
not accurate enough if the grid spacing is larger than 40 km.
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Normal mode modeling of prompt gravity signal 941

Figure 5. Vertical (upward) gravity perturbations induced by the Tohoku earthquake, recorded at station INU in a full space (top panel), homogeneous solid
sphere (middle panel) and self-gravitating PREM model (bottom panel). Red lines represent normal mode seismograms. The black dotted lines are computed
from Harms et al. (2015) and Harms (2016) analytical formulations. Seismograms are truncated at P-wave arrival time, which depends on model properties.

4 D I S C U S S I O N

4.1 Validation of the analytical formulations

Harms et al. (2015) derived the following analytical solution of the
early gravity potential perturbation in a homogeneous full space,
without self-gravitational coupling, induced by a double-couple
point source:

φ1(r, θ, ϕ, t) = − R P(θ, ϕ)
3G

r 3

∫ t

0

∫ t ′

0
m(t ′′) dt ′′ dt ′, (15)

where (r, θ, ϕ) are spherical coordinates relative to the hypocen-
tre, R P(θ, ϕ) the quadrupolar P-wave radiation pattern and m(t)
the seismic moment function. The analytical solution is in good
agreement with the normal mode gravity perturbation computed
in the full-space geometry (Fig. 5, top panel). The homogeneous,
half-space analytical solution developed by Harms (2016) shares
common patterns with normal mode seismograms computed in a
homogeneous sphere (Fig. 5, middle panel). The inclusion of seis-
mic waves reflected by the free surface leads to signal shapes and
amplitudes significantly different from the full-space geometry. The
computation of gravity perturbations in more complex layered me-
dia such as the PREM model (Fig. 5, bottom panel) enables the
simulation of realistic seismic wave fronts, with an accurate dura-
tion for the pre-P time window.

4.2 Behaviour of gravity perturbation g1

The evolution of the gravity perturbation recorded at station MDJ
can be explained through a cross-section of the divergence of the
displacement field along the azimuth to the station (Fig. 6), in the
homogeneous solid sphere. At short times the gravity perturbation
is initially positive, due to compressed material below the ruptured
area. The compressed materials are located deeper than the dilated
materials, thus the projection of their gravity perturbations on the
instrument vertical axis is more effective. With the incoming dilat-
ing P, pP and sP wave fronts, the dilated areas are progressively
drawn closer to the observation point, and the effectiveness of the
projection of their gravity perturbations on the instrument verti-
cal axis increases: the gravity perturbation becomes increasingly
negative.

4.3 Three-component elastogravity perturbation

The normal mode simulations enable to investigate the complete
elastogravity perturbations on all three components: the perturba-
tions simulated at station INU in the PREM model are displayed in
Fig. 7. The terms representing the coupling to the static gravity field
are negligible. The induced motion tends to reduce the amplitude of
the overall perturbation, as predicted by Heaton (2017). However,
in contrast to the full-space model, in which the direct and induced
effects cancel each other perfectly up to the P-wave arrival time,
the two effects are distinct in the PREM model and an elastograv-
ity perturbation arises well before the arrival of the direct seismic
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942 K. Juhel et al.

Figure 6. Vertical gravity perturbation g1 at station MDJ (top panel) and cross-section of the divergence of the displacement field along azimuth to the station,
induced by the Tohoku earthquake 90 s (middle panel) and 150 s (bottom panel) after the initiation of the rupture, in a homogeneous solid sphere. The red star
represents the earthquake epicentre, the yellow triangle represents MDJ station location. Blue areas are compressed by the seismic wave propagation, red areas
are dilated.
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Normal mode modeling of prompt gravity signal 943

Figure 7. Three-component elastogravity perturbation (black lines), separated into gravity perturbation g1 (red lines) and reversed gravity-induced motion −s̈
(green lines), induced by the Tohoku earthquake at station INU in the self-gravitating PREM model. Seismograms are truncated at P-wave arrival time. Up to
40–50 s after the initiation of the rupture, the induced motion and the gravity perturbation balance each other out. Coupling terms to the static gravity field
(blue dashed line) are negligible.

waves. The amplitude of the perturbations is similar on all three
components. However, long-period horizontal recordings are usu-
ally noisier than vertical ones, due to their higher sensitivity to tilt
effects. An elastogravity detection on horizontal recordings might
then prove difficult, but still needs to be investigated. The shape
of the elastogravity perturbation differs significantly from the sole
gravity perturbation, thus both terms must be taken into account
in simulations of elastogravity signals recorded by seismometers or
gravimeters.

4.4 Surface map of gravity perturbation g1

The fast normal mode computation of gravity perturbations g1 en-
ables to draw perturbation maps such as Fig. 8. The vertical gravity
perturbations induced by the Tohoku earthquake at the direct P-
wave arrival time are displayed in Fig. 8, in the self-gravitating

PREM model. Corresponding maps for horizontal components can
be found in Appendix B (available online).

The surface map confirms several features of the gravity pertur-
bations described in Vallée et al. (2017). First, stations located in
the P-wave extensional direction (∼along azimuth to station MDJ)
record strong gravity perturbations ahead of the direct P-wave front.
These stations record a stronger perturbation when deployed at re-
gional distances from the ruptured area (1000–2000 km away from
the epicentre), due to the growing density anomaly generated by
the rupture itself and the larger volume perturbed by the propa-
gating seismic waves. At further distances (epicentral distances >

2500 km) the perturbation starts to decay. Finally, due to the fault
plane geometry (thrust mechanism in an east–west subduction con-
text), stations located north of the epicentre display a low gravity
perturbation.

Although it only represents a part of the total elastogravity per-
turbation, surface maps of gravity perturbations g1 can be used as a
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Figure 8. Vertical gravity perturbation g1 induced at the Earth surface by the M9.1 Tohoku-oki earthquake, at P-wave arrival time. The focal mechanism
locates the earthquake epicentre, and the triangles represent stations from the IRIS database. Yellow triangles are stations with low background seismic noise
in the 30 min preceding the event. In the area close to the epicentre the simulations are less reliable due to the very short P traveltimes, and the perturbations
are not computed.

proxy for signal observability. We thus fetch data recordings from
the IRIS database, and focus on stations with low background seis-
mic noise in the 30 min preceding the event (standard deviation
lower than 0.5 nm s−2, these stations are indicated by yellow tri-
angles in Fig. 8). The stations that have a strong predicted gravity
perturbation (say >1.0 nm/s2) should be well suited for the detec-
tion of elastogravity perturbations.

The set of stations selected by these criteria include most of those
used in Vallée et al. (2017) data analysis. The agreement between
the observed elastogravity perturbations, AXITRA simulations and
normal mode seismograms is shown in Fig. 9. Such agreement con-
firms that self-gravitation can be neglected in the frequency range
of analysis (2.0–30.0 mHz). Moreover, the observed waveforms
are accurately modelled with 1-D model-based simulations, mean-
ing that the overlooked topography and 3-D heterogeneities indeed
seem to be negligible.

4.5 Gravity-based earthquake and tsunami early warning

A fast and robust estimation of the magnitude of large earthquakes is
crucial for earthquake and tsunami warning systems, especially for
regions close to the rupture area. Tsunami warning centres currently
use a magnitude estimate based on seismic waves recorded distantly,

unlikely to be available within the first 15 min after the earthquake
onset time due to the seismic wave propagation delay. Unfortunately,
such time delay is close to the time needed for the first tsunami wave
to reach the nearest coastal regions.

Joint seismic and geodetic systems currently under development
could provide unsaturated magnitude estimates within a few tens
of seconds from the earthquake onset time (Crowell et al. 2016;
Ruhl et al. 2017), using local high-rate geodetic data. The detec-
tion of prompt elastogravity signals could provide a robust, final
estimate of the earthquake magnitude as soon as the rupture stops,
based on a sparse network of broad-band seismometers deployed at
regional distances (Vallée et al. 2017). Thus, both methods could
be used as complementary tools to assess that a large rupture is
happening.

However, the sensitivity of present seismometers prevents di-
rect elastogravity signal detection for subduction earthquakes of
magnitude much smaller than 9. A change in the detector concept
could enable to detect prompt gravity signals induced by smaller
magnitude earthquakes, and provide faster warnings and magni-
tude estimations (Juhel et al. 2018). Valuable seconds could then be
saved in comparison to conventional warning systems, which could
be exploited to launch automatic prevention systems or enhance
personal protective actions (Allen 2013).
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Figure 9. Observed elastogravity perturbations (red lines) recorded by high-quality stations during the Tohoku earthquake, and corresponding numerical
simulations. AXITRA simulations (blue lines, Vallée et al. 2017) and normal mode simulations (this study) are in good agreement, and fit the observed
waveforms at all stations.

Ultra-sensitive gravity strainmeters are currently being developed
for low-frequency gravitational waves detection purposes. Sensors
such as torsion-bars antenna (Ando et al. 2010; McManus et al.
2017) or superconducting gravity strainmeters (Moody et al. 2002;
Paik et al. 2016) record the gradient of the perturbed gravity field
from several sensing masses, attached to a common housing. The
background seismic noise is similar in every test mass, and rejected
by the differential measurement. Besides this noise reduction, the
gravity-induced motion is no longer recorded in such instruments:
the cancelling effect observed on seismometers at short times is
then avoided. Several instrumental challenges are yet to be over-
come, but the sensitivity target of 10−15 Hz−1/2 at 0.1 Hz seems
within reach (Harms et al. 2015). Such sensitivity is sufficient for
the measurement of gravity strain perturbations induced by earth-
quakes, and would enable the detection of gravity signals at lower
magnitudes. An earthquake early warning system based on these
gravity strainmeters could then be implemented. Gravity strain is
the second integral over time of the gravity gradient, which can be
computed by finite difference of gravity perturbation computed at
two closely located receivers. The straightforward mode summation
from eq. (9) may be beneficial for gravity-based earthquake early
warning system, by enabling fast computation of pseudo real-time
scenarios of earthquake ruptures.

5 C O N C LU S I O N

Ground-based seismometers record the gravity perturbation and
gravity-induced ground motion generated by a seismic rupture,
before the arrival of the strong direct seismic P wave at the sta-
tion. In addition to Vallée et al. (2017) simulations, this study
provides an alternate way to model elastogravity perturbations.
The normal mode based approach enables a direct and faster
computation of the gravity perturbation, and a two-step compu-
tation of the gravity-induced motion. Its accuracy is confirmed in
full-space geometry with the cancellation of elastogravity terms.
The importance of the free surface effects on the computation of
gravity perturbations, as well as the cancelling effect of the in-
duced motion on the early overall perturbation are confirmed by
our simulations. The computation of gravity perturbations vali-
dates the analytical solutions, and indicates instrument locations
where detection may be achieved. Associated with the current
development of high-precision gravity strainmeters, the normal
mode computation of gravity perturbations may prove useful in
the implementation of a gravity-based earthquake early warning
system.
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Supplementary data are available at GJI online.

Figure A1. Dispersion diagram of spheroidal oscillations for an
isotropic PREM model (no ocean), with (black dots) and without
(orange dots) self-gravitation included. Self-gravitation effects are
significant only at low frequencies and angular number �.
Figure A2. Eigenfunctions Ṗ(r ) within a homogeneous solid
sphere, with (black lines) and without (orange lines) self-gravitation
included. These are fundamental modes (n = 0) and the horizontal
angular wavenumber � ranges from 0 to 11. Self-gravitation effects
are significant only at low frequencies. The 0S1 spheroidal mode is
not computed, since it implies a displacement of the centre of the
Earth.
Figure A3. Vertical gravity perturbation induced by the M9.1 To-
hoku earthquake, recorded at INU (top panel) and MDJ (bottom
panel) stations, in a non-self-gravitating (orange lines) and self-
gravitating (black lines) isotropic PREM model (no ocean).

Figure A4. Horizontal (north) gravity perturbation g1 induced
at the Earth surface by the M9.1 Tohoku-oki earthquake, at
P-wave arrival time. The focal mechanism locates the earth-
quake epicentre, and the triangles represent stations from the
IRIS database. Yellow triangles are stations with low back-
ground seismic noise in the 30 min preceding the event. In the
area close to the epicentre the simulations are less reliable due
to the very short P traveltimes, and the perturbations are not
computed.
Figure A5. Horizontal (east) gravity perturbation g1 induced at
the Earth surface by the M9.1 Tohoku-oki earthquake, at P-wave
arrival time. The focal mechanism locates the earthquake epicentre,
and the triangles represent stations from the IRIS database. Yellow
triangles are stations with low background seismic noise in the
30 min preceding the event. In the area close to the epicentre the
simulations are less reliable due to the very short P traveltimes, and
the perturbations are not computed.
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