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Abstract13

Observation of the seismic process for a large earthquake population is of key interest14

to detect potential magnitude-dependent behaviors, and more generally to quantify how15

seismic rupture develops. In contrast with studies focusing on the first radiated waves,16

we here propose to characterize the growing phase leading to the main seismic moment17

release episode(s), that we refer to as the development phase. Our analysis uses the 222118

teleseismic source time functions (STFs) of shallow dip-slip earthquakes provided by the19

global SCARDEC database, and consists in measuring the moment acceleration during20

the development phase at prescribed moment rates. This approach is therefore insen-21

sitive to hypocentral time uncertainties, and aims at quantifying how seismic ruptures22

accelerate, independently of when they accelerate. Our results first show that rupture23

acceleration does not exhibit any magnitude dependent signal emerging above the in-24

trinsic measurements variability. We thus use the full STF catalog to characterize the25

moment rate Ṁd of the development phase, and show that, on average, Ṁd(t) ∝ tnd26

with nd equal to 2.7. This time evolution therefore does not follow the steady t2 growth27

expected for classical circular crack models, which indicates that stress drop and/or rup-28

ture velocity transiently vary during the development phase. We finally illustrate with29

a synthetic STF catalog that, due to initial rupture variability, approaches based on hypocen-30

tral time are not expected to fully characterize the behavior of the development phase.31

1 Introduction32

The mechanisms governing the seismic rupture expansion and giving rise to earth-33

quakes of very different magnitudes remain debated. From an observational point of view,34

past studies most often focused on the first seismic signals radiated by the earthquake35

rupture, with the goal to provide useful information for early warning. Several studies36

(Beroza & Ellsworth, 1996; Olson & Allen, 2005; Colombelli et al., 2014) argued for the37

existence of a magnitude-dependent initial signal, connecting the early phases of the rup-38

ture process with its final magnitude. The existence of such a signal could be explained,39

for example, if an earthquake is more likely to become a large one if its initial phase oc-40

curs in rupture-prone areas. Large earthquakes would then start differently from small41

ones, at least in a statistically predictable way. Conversely, many rupture onsets have42

been observed without detecting any clues related to the final earthquake magnitude;43

seismic rupture is then interpreted as a “self-similar” process, meaning that large earth-44

quakes are only upscaled versions of small magnitude events, without having their own45

characteristics (Aki, 1967). As a result of this concept, studies showed for instance that46

stress drop and rupture velocity are independent of the magnitude, or that the seismic47

moment is proportional to the cube of the earthquake duration (Kanamori & Anderson,48

1975; Allmann & Shearer, 2009). The self-similar behavior can be reproduced by a cas-49

cade model, in which the rupture starts from a very small patch, which size is undetectable50

by seismological investigation. Then rupture grows in a self-similar way, implying that51

the final magnitude is controlled by the earthquake duration. Such behavior has been52

for example observed by Uchide and Ide (2010) in their analysis of earthquakes in the53

Parkfield area.54

Observations of the earthquake process however reveal that real ruptures frequently55

depart from such simple models, and that the peak moment rate can be reached after56

a non-monotonical or delayed process. Studying how rupture behaves when entering into57

its most active phase (that we hereafter refer to as the “development phase”) therefore58

requires an analysis of the whole process and not only its beginning. To do so, we pro-59

pose to make use of the large catalog of moment rate functions (or Source Time Func-60

tions, STFs) provided by the SCARDEC database (Vallée & Douet, 2016). SCARDEC61

database has first been used to extract global source properties, such as source-averaged62

stress/strain drop or rupture velocity (Vallée, 2013; Courboulex et al., 2016; Chounet63

et al., 2017; Chounet & Vallée, 2018), and is now more and more exploited to charac-64
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terize the transient parts of STFs (Meier et al., 2017; Melgar & Hayes, 2017, 2019). With65

a similar objective as the studies based on the early stages of the rupture, we will first66

explore if the moment acceleration in the development phase correlates with the mag-67

nitude of the event. We will then characterize the temporal moment evolution of this spe-68

cific phase, in order to provide observational constraints on rupture propagation mod-69

els. We finally further illustrate, with a realistic synthetic STF catalog, why the char-70

acteristics of the development phase are difficult to retrieve from the study of the early71

rupture stages.72

2 Moment acceleration in the development phase73

2.1 SCARDEC STF database and earthquake development phase74

Exhaustive catalogs of STFs (describing the time evolution of the moment rate Ṁ)75

can be built with two distinct methods which both use teleseismic data from the FDSN76

(Federation of Digital Seismograph Network). The first approach determines a finite fault77

model of the seismic source (in general for earthquakes with Mw > 7, (Ye et al., 2016;78

Hayes, 2017)) from which the absolute STF is computed. On the other hand, in the SCARDEC79

method (Vallée et al., 2011), seismic moment, focal mechanism, source depth and STFs80

are more directly obtained through a deconvolution process (see also Tanioka and Ruff81

(1997)). At each station and for each phase (P or S), apparent source time functions (ASTFs)82

are extracted, whose shapes differ due to space-time source effects (Chounet et al., 2017).83

In order to take into account both this expected distorsion and possible outliers (due to84

nodal radiation, incorrect instrument response, etc.), SCARDEC database (Vallée & Douet,85

2016) provides two representative STFs for each event. A mean STF is first obtained by86

correlating in time all P-wave ASTFs (less sensitive to space-time source effects than S-87

wave ASTFs), removing ASTFs far from the beam, and averaging the remaining ASTFs.88

The optimal STF is then chosen as the P-wave ASTF which is the closest to the mean89

STF. Such an optimal STF is unlikely to be among the most distorted ASTFs, and its90

shape is not affected by the smoothing present in the mean STF. The optimal STFs are91

therefore considered in this study. Deep (> 70 km) and pure strike-slip events are re-92

moved from the database due to their specific behavior (Houston, 2001) and the diffi-93

culty to robustly extract their P-wave STFs, respectively. The catalog is finally composed94

of 2221 earthquake STFs (from 1992 to 2017), whose magnitudes range from Mw 5.5 to95

Mw 9.1 (2011 Tohoku earthquake) and durations from 2s to 120s.96

We aim here at isolating the development phase, i.e. the time period where STFs97

grow toward their peak moment rate Fm (that they reach at time Tm). Taking into ac-98

count that the moment rate always flattens before reaching Fm, we do not consider the99

highest STF values to be part of the development phase: in the following, we only se-100

lect the parts of the STF which are before Tm, and whose values are below 0.7Fm. At101

low moment rate values, we would ideally track the development phase from its very be-102

ginning. However, SCARDEC STFs are retrieved by deconvolving the full P-waveform103

(under physical constraints such as STF positivity), and the STF fidelity at values much104

lower than Fm is therefore expected to be relatively low. As a result, we do not analyze105

here the development phase for STF values lower than 0.07Fm. The value of these two106

selected lower and upper limits are not critical and other choices (e.g. starting at 0.05Fm107

and stopping at 0.5Fm) do not affect significantly the following results (see Figure S13108

in Supplementary Materials).109

In order to isolate the development phases in all cases, we consider the two follow-110

ing possible configurations of STFs. The simplest and most common case (representing111

62% of the STF catalog) is illustrated by the STFs shown in Figure 1a) and 1b). Here,112

even when the STF does not grow monotonically toward its peak, there is a unique mono-113

tonic domain connecting the values between 0.07Fm and 0.7Fm. This specific section of114

the STFs, shown in red in Figure 1, is selected as the development phase. STFs with com-115
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Figure 1. Examples of extraction of the development phase (in red) for representative STF

shapes. In a) and b), STFs have a monotonic section connecting the values between 0.07Fm and

0.7Fm. c) is an example of STF with complex shape in which development phase is extracted in

the [T0T1] time interval (see Section 2.1). These three illustrative events have different magni-

tudes and their development phases start at different times. Moment acceleration is computed at

the time where the development phase crosses the prescribed moment rates (Ṁd)i, if this inter-

section exists. Four examples of (Ṁd)i values (for i = 1, 15, 21 and 27) are shown in green. The

sampling rate is equal to 0.07s. Note that the approximate reference time shown in the bottom of

each STF is not used in this approach.
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plex shapes however do not have such a unique monotonic domain (Figure 1c)). In this116

case, we work on the time interval defined by two times T0 and T1: T0 is the latest time117

preceding Tm when the STF is as low as 0.07Fm and T1 is the latest time preceding Tm118

when the STF is not above 0.7Fm. In the [T0T1] interval, there may be several local max-119

ima Fp (p = 1, P ), around which rupture is not considered to be in a development phase.120

The development phase is then selected as the combination of monotonic phases preced-121

ing each Fp, from the time when they exceed the largest value of all the preceding lo-122

cal maxima (or from T0 if p = 1) to the time where they reach 0.7Fp. As a consequence,123

if one of the local peak values before Fp is larger than 0.7Fp, the monotonic phase pre-124

ceding Fp is not considered. We finally select the monotonic phase up to T1 (from the125

time where the STF reaches FP , or from T0 if P = 0). In these complex cases, the de-126

velopment phase is therefore the combination of at most (P+1) growing sections of the127

STFs.128

According to the aforementioned definitions, the development phase may be de-129

layed compared to hypocentral time, meaning that we do not intend to characterize the130

earliest signals emitted by the seismic rupture. This approach therefore differs from stud-131

ies specifically analyzing the latter signals in order to explore the concept of earthquake132

determinism since the earthquake initiation (Meier et al., 2017; Melgar & Hayes, 2017,133

2019).134

2.2 Seismic moment acceleration within the development phase135

Once the development phase is extracted for each STF, we aim at characterizing136

it without using hypocentral time information, in order to quantify how rupture devel-137

ops independently of when rupture develops. Formally, we look for the moment evolu-138

tion of the development phase Md where Md(t) = M(t + Td), Td being the unknown139

time at which the development phase starts. A way to characterize Md is to consider a140

discrete sampling of prescribed moment rates (Ṁd)i, and to compute the seismic moment141

acceleration (STF slope) each time that the development phase crosses (Ṁd)i. To do so,142

we consider 40 different values of (Ṁd)i (i = 1, 40), from 1017 to 1019Nm.s−1, in order143

to sample the development phase of most earthquakes. Outside of this range, moment144

rates are either mostly below 0.07Fm or above 0.7Fm, and cross only a few development145

phases. As further documented later, the maximum considered moment rate (1019Nm.s−1)146

is typically reached 6s after the beginning of the development phase for monotonically147

growing STFs. In terms of magnitude, the smallest earthquakes of the SCARDEC database148

(Mw = 5.5) can be analyzed by this sampling, and only the largest earthquakes (Mw >149

8.4) are systematically excluded. Figure 1 illustrates the method for three STFs and four150

moment rates (Ṁd)i (green dashed lines). Low values of moment rate are mostly sam-151

pled by small events (as they will lie below 0.07Fm for large ones) and high values of mo-152

ment rate are mostly sampled by large events (as they will lie above 0.7Fm for small ones).153

However, this general behavior does not prevent us from sampling a large range of mag-154

nitudes at a given moment rate. As shown in the example of Figure 1, the moment ac-155

celeration of the development phase at the (Ṁd)15 level can be computed from Mw =156

6.2 to Mw = 6.8.157

2.3 Variability and magnitude-independent behavior158

Such slope measurements can be first used to detect a potential magnitude-dependent159

behavior, in which the slope measured when the development phase crosses prescribed160

moment rates would be for instance steeper for larger events. For the Ni development161

phases crossing (Ṁd)i, we compute the slope values (M̈d)ij(j = 1, Ni) as a function of162

Mw, to observe whether or not a magnitude-dependent signal appears. Figure 2 shows163

an example of the 892 (M̈d)15j values for (Ṁd)15 = 5.2 × 1017Nm.s−1. The following164

analysis of M̈d values with respect to Mw has to be done with care, because a given (Ṁd)i165

value does not sample equally well all magnitude ranges (section 2.2), as also illustrated166
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in Figure 2: the histogram shows the ratio of sampled STFs in each Mw bin, and this167

value decreases both towards low Mw (only impulsive STFs reach (Ṁd)i) and towards168

high Mw (only STFs with relatively low Fm have (Ṁd)i in their development phase). As169

a consequence, (M̈d)ij values are expected to be biased toward high values for small mag-170

nitude events, as confirmed by Figure 2. We thus focus on the Mw domain where most171

of the development phases cross the chosen (Ṁd)i (for example between Mw = 6.3 and172

Mw = 7.0 in the case shown in Figure 2).173

Figure 2 does not exhibit any clear dependency between (M̈d)15j and Mw, and the174

same behavior is observed for all the other prescribed (Ṁd)i (Figures S3 to S12 of the175

Supplementary Materials). This shows that if a magnitude-dependent signal exists, it176

is fully dominated by the intrinsic variability of the development phase. This means that177

when an earthquake develops and reaches a given moment rate (Ṁd)i, moment accel-178

eration cannot be used as an indicator of the final magnitude (only a lower bound can179

of course be estimated based on the seismic moment already released). This observation180

may appear different from the recent results of Melgar and Hayes (2019), who extracted181

a magnitude-dependent signal from STF accelerations (using also the SCARDEC cat-182

alog). Their approach is however fundamentally different as they simply computed an183

averaged moment acceleration by dividing the moment rate from the rupture time, at184

several prescribed rupture times τ (τ = 2, 5, 10, 20s). Using this definition, they observe185

an increase of the moment acceleration with the final event magnitude, clearly appear-186

ing for τ equal to 10s and 20s. In such an analysis, there is however no guarantee that187

the earthquake at τ is still in its development phase, particularly when τ is a significant188

fraction of the global earthquake duration. As an example, 20s is a significant fraction189

of the global duration of an Mw = 8 earthquake (whose average global duration is about190

60s, e.g. Vallée (2013)). It is therefore not uncommon, at 20s, that Mw = 8 earthquakes191

STFs flatten as they approach their peak moment rate (and some of them may have al-192

ready passed it). As a result, on average, acceleration can be understood to be statis-193

tically lower than for a Mw = 9 earthquake, for which the peak always occurs far af-194

ter 20s. Melgar and Hayes (2019) results likely reflect the magnitude-dependent shape195

of the earthquake STFs, at a macroscopic scale, while we are here specifically studying196

their fast growing parts.197

3 Time evolution of the development phase198

3.1 Observational evidence of a power law between M̈ and Ṁ199

The magnitude independency derived in the previous section justifies the combined200

use of (M̈d)ij for all values of i, in order to determine a generic behavior of the rupture201

development. Figure 3 represents (in log-log scale) all the moment acceleration values202

as a function of the moment rate values (yellow dots). Direct observation in Figure 3 re-203

veals that M̈d grows with Ṁd, which first implies that the time evolution of the moment204

rate in the development phase cannot be linear. In order to quantify the general behav-205

ior, we try to fit our observations with a power law of the type M̈d = βṀm
d . Using the206

method detailed in Text S1 of the Supplementary Materials, a linear fit (in log-log scale)207

leads to values of m = 0.63± 0.015 and log(β) = 6.7± 0.28 at the 90% confidence in-208

terval, with a correlation coefficient of 0.8 (Figure 3).209

3.2 Power–law time exponent of the development phase210

Analytical models of rupture dynamics (Kostrov, 1964; Dahlen, 1974; Madariaga,
1976; Nielsen & Madariaga, 2003) have shown that self-similar circular growth with con-
stant stress drop ∆σ and rupture velocity Vr leads to a moment rate function of the form
Ṁ(t) = αtn with n = 2. In this model, the local slip u and slip rate u̇ have the shape,

–6–
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Figure 2. Moment acceleration as a function of magnitude for the prescribed moment rate of

5.2× 1017Nm.s−1 ((Ṁd)15). The filled histogram represents the ratio (in %, see scale to the right)

of sampled events in each Mw bin. Comparisons between moment acceleration and magnitude

can be safely done when almost all the STFs of a given magnitude are sampled (> 80%), here

between Mw = 6.3 and Mw = 7.0. Red stars are median values for each magnitude bin. Similar

figures for all the prescribed moment rates are provided in Figures S3 to S12.

in the general case of a time-varying rupture velocity vr(t) :

u(r, t) =
∆σ

µ

√
a2(t)− r2 (1)

u̇(r, t) =
∆σ

µ
vr(t)

a(t)√
a(t)2 − r2

(2)

where µ is the rigidity and a(t) =
∫ t

0
vr(u)du is the radius of the rupture at time t. The

moment time evolution therefore follows the law :

M(t) = 2πµ

∫ a(t)

0

u(r, t)r dr (3)

=
2π

3
∆σ
[
(a2(t)− r2)3/2

]0
a(t)

=
2π

3
∆σa3(t). (4)

And if vr(t) = Vr is constant, a(t) = Vrt and we have:

M(t) =
2π

3
∆σV 3

r t
3

Ṁ(t) = 2π∆σV 3
r t

2. (5)

This quadratic dependency with time is also found from the seismic moment M0, by us-
ing that ∆σ = cµ∆U

L , M0 = µ∆US (where c is a constant, ∆U the average displace-
ment, L the characteristic dimension of the fault and S its surface), and considering a
seismic rupture growing in a bi-dimensional way with constant rupture velocity. At the
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Figure 3. Moment acceleration M̈d as a function of moment rate Ṁd (log-log scale). Each

yellow dot corresponds to an individual (M̈d)ij value, and black dots are 75 randomly selected

values for each (Ṁd)i used to compute the linear fit (see Text S1 of the Supplementary Materi-

als). Red line is the best linear fit explaining the data, and its equation and correlation coefficient

r are given in the figure. Green dashed lines are fits with extremal values of m and log(β) at the

90% confidence interval. Background color represents the number of (M̈d)ij values normalized

by Ni for each (Ṁd)i. This fraction of observations is computed between log(1015)Nm.s−2 and

log(1020)Nm.s−2 with 100 bins.

time of the end of the rupture, we have M0 ∝ ∆σV 3
r T

3 (with T being the final rup-
ture duration), but due to self-similarity, this relation also holds for the moment func-
tion M at any earlier time t :

M(t) ∝ ∆σV 3
r t

3 leading to Ṁ(t) ∝ ∆σV 3
r t

2. (6)

The previously obtained M̈d values do not directly constrain the time evolution of211

the development phase, because we only know them as a function of Ṁd (M̈d = βṀm
d ,212

with log(β) and m found equal to 6.7 ± 0.28 and 0.63 ± 0.015 at the 90% confidence213

interval, respectively). However, reorganizing this power law equation, and integrating214

over time leads to :215 ∫
t

0

M̈d(u)

(Ṁd(u))m
du =

∫
t

0

β du (∀t > 0, Ṁd(t) > 0), (7)

with t being a time inside the development phase. The lower bound of integration
in (7) assumes that the observed power law between M̈ and Ṁ holds from the begin-
ning of the development phase, which appears reasonable because no deviation appears
at low moment rates in Figure 3. As m is observationally strictly smaller than 1 (even

–8–
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the extreme m values shown in Figure S1(a) of the Supplementary Materials are strictly
smaller than 1), equation 7 has the solution:

(Ṁd(t))
1−m

1−m
= βt (8)

where we use the physical constraint Ṁd(0) = 0. The moment rate function can then
be rewritten as a function of time :

Ṁd(t) = (β(1−m))
1

1−m × t
1

1−m (9)

In the following, we now define αd = (β(1 −m))
1

1−m and nd = 1
1−m . Using the216

values of m and β, the numerical expression for the time evolution of the development217

phase is:218

Ṁd(t) = αd × tnd = 1016.9±0.1 × t2.7±0.11 (10)

where uncertainties for nd and αd correspond to the 90% confidence intervals es-219

timated in Figure S1(b) of the Supplementary Materials.220
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Figure 4. Time evolution of the development phase extracted from the observed power law

between M̈d and Ṁd. t1 and t40 are the times corresponding to the extremal moment rate values

( (Ṁd)1 = 1017Nm/s and (Ṁd)40 = 1019 Nm/s) at which the moment accelerations are computed.

This time window between t1 and t40, where the time exponent of the moment rate nd = 2.7

directly comes from the observations, is highlighted by the red shaded area. Green dashed curves

are the extremal curves inferred from αd and nd uncertainties.

In Figure 4, we show this temporal evolution of Ṁd and indicate the time window221

between ∼1s and ∼6s (corresponding to Ṁd values between 1017 and 1019Nm/s), where222

the shape of Ṁd is directly constrained by the observations. As nd is robustly larger than223

2, Equation 10 indicates that the rupture process during the development phase grows224

with time with a higher exponent than what the classical self-similar equations 5 and225

6 predict.226
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3.3 Implications for earthquake source physics227

Our results highlight that when seismic rupture efficiently develops, it does not steadily228

follow the classical t2 law predicted by classical self-similar equations. While this sim-229

ple law is seismologically observed when considering the whole rupture duration T (i.e.230

M0 ∝ T 3 (Houston et al., 1998; Bilek et al., 2004; Vallée, 2013; Chounet & Vallée, 2018),231

it is transiently not respected during the development phase. Such breaks in scaling laws232

have been recently found by other authors (Denolle & Shearer, 2016; Archuleta & Ji, 2016).233

As their spectral observations are not explained by a self-similar Brune (1970) source234

spectrum with a single corner frequency, they also suggest the existence of a second timescale235

related to a transient accelerating phase.236

As the t2 law directly comes from the shape of the slip function in equation 2 and237

from the constant stress drop and rupture velocity hypotheses, at least one of these as-238

sumptions should not be respected during the development phase. The radial model can239

for example be questioned based on numerical dynamic and kinematic studies (Das &240

Kostrov, 1983; Dunham et al., 2003; Beroza & Spudich, 1988; Zhang et al., 2012) show-241

ing that the main asperity may break inward after being encircled by the rupture front.242

But while this process is expected to generate a large transient moment acceleration, it243

is less clear how it can reproduce a power law similar to what we observe. If remaining244

in a radial model with constant rupture velocity, we can also easily derive that a slip func-245

tion of the form u(r, t) ∝ tnd−2
√
a2(t)− r2 would lead to our observed moment rate246

evolution of the development phase. Such a model implies that stress drop inside the main247

asperities grows with time (consistent with some studies showing a positive correlation248

between peak stress drop and magnitude (Mai et al., 2006; Causse et al., 2013)), but as249

a consequence, it is unlikely that the slip law can be physically written in this case un-250

der a simple form similar to equation 2.251

An interesting analytical configuration, inspired by the model of Sato (1994), is the
case of a crack model growing with non constant rupture velocity. We here remain in
the general configuration of an unknown average rupture velocity function, that should
be regarded as the marker of the surface expansion evolution of the rupture. We now
refer to this average rupture velocity as vrd to clearly recall that we are inside the de-
velopment phase. By equating the theoretical moment function (4) and the observed one
(10), we have:

Md(t) =
2π

3
∆σa3(t) =

αd
nd + 1

tnd+1 (11)

which leads to :

a(t) =

∫ t

0

vrd(u)du =

(
3αd

2π∆σ(nd + 1)

) 1
3

t
nd+1

3 (12)

and finally to the determination of the rupture velocity evolution :

vrd(t) =

(
αd(nd + 1)2

18π∆σ

) 1
3

t
nd−2

3 ≡ ptγ (13)

This derivation therefore shows that the observed power law for the moment rate func-252

tion can be fully explained by rupture velocity acceleration. Rupture velocity is shown253

to follow a power law function with an exponent γ ' 0.23 and a factor p inversely pro-254

portional to ∆σ1/3. The crack model considered here (equation 2) can be modified to255

include a process zone of size δr at the tip, preventing the slip rate to diverge at the edges256

of the slipping zone. In this case, equation 2 remains valid for r ≤ a(t)−δr, where slip257

rate is maximum (and finite). This leads to a rupture velocity correlated with peak slip258

rate, as the slip rate calculated at δr just behind the rupture front u̇(a(t)−δr, t) grows259

as vrd(t)
√
a(t)/δr, or as t

3γ+1
2 if retaining only the time dependency. This derivation is260

consistent with dynamic models (Schmedes et al., 2010; Bizzarri, 2012) showing that dur-261

ing rupture propagation, there is a positive spatial correlation between rupture veloc-262

–10–

©2018 American Geophysical Union. All rights reserved.



manuscript submitted to JGR

ity and peak slip rate. In contrast, the classical crack model does not lead to this cor-263

relation because peak slip rate increases as
√
t while rupture velocity remains constant.264
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Figure 5. Rupture velocity acceleration during the development phase, as constrained by a

crack model with constant stress drop. Each curve shows the equation vrd(t) = ptγ for γ fixed to

the obtained value (0.23) and different values of p (controlled by ∆σ). Outside the time window

directly constrained by the observations (between ' 1s and ' 6s, see Figure 4), the curves are

dashed. vs is the shear wave velocity, here fixed at a classical 3.5km/s crustal value.

We show in Figure 5 the time evolution of vrd for three realistic values of ∆σ. In265

the sampled part of the development phase (between ∼1s and ∼6s) and for the realis-266

tic values of ∆σ shown in Figure 5, vrd(t) gradually increases and is in a classical rup-267

ture velocity range of 1.5km.s−1 to 3km.s−1 (Geller, 1976; Doornbos, 1982; Somerville268

et al., 1999; McGuire et al., 2002; Chounet et al., 2017). This behavior may however be269

questionable for two reasons. For rupture times approaching zero (not directly sampled270

in the develoment phases), the power law predicts slow rupture velocities, that have not271

been observed for microearthquakes (McGuire, 2004; Abercrombie et al., 2017). This re-272

quires that rupture accelerates even more abruptly in the initial instants following rup-273

ture initiation. Rupture velocity evolution also indicates that larger earthquakes, which274

have longer development phases, are expected to have higher local rupture velocities. How-275

ever, in the magnitude range of the SCARDEC catalog, a scaling between rupture ve-276

locity and final magnitude has not been clearly observed in kinematic source analyses277

(Hayes, 2017; Ye et al., 2016).278

The origins of the observed moment rate evolution may finally be searched in mod-279

els where rupture velocity and/or stress drop have a random variability. Such models280

are not expected to individually follow a power law but they may collectively reproduce281

the average behavior of the development phase. This class of stochastic models could ad-282

ditionally remain self-similar, without requiring to introduce differences between small283

and large earthquakes.284
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4 Different behaviors between development phase and early rupture285

stage286

The development phase does not necessarily occur at early times of the rupture pro-287

cess. As a consequence, we do not expect to find the same time dependencies as stud-288

ies focusing on how rupture starts, with reference to the earthquake origin time (Melgar289

& Hayes, 2017; Meier et al., 2017). In particular, we expect the latter studies to find a290

less pronounced time dependency, in an average sense, due to inclusions of earthquakes291

with low initial moment release. In this section, we further illustrate how an average lin-292

ear time dependency of the growing rupture process (Meier et al., 2017) can be approached293

from rupture variability rather than from intrinsic rupture properties.294

To do so, we build a synthethic catalog of bimodal STFs, by summing two sub-events295

growing both as Ṁ(t) = α(t − td)
n where α and n randomly vary around the obser-296

vational values of αd and nd. td = 0 for the first subevent and td take random values297

between 0 and T0/2 for the second subevent, where the STF total duration T0 takes into298

account the observed variability around its magnitude-dependent scaling law (Courboulex299

et al., 2016). By also varying the relative durations (and hence moments) between the300

first and the second subevent, we generate a synthetic catalog with a large diversity, mim-301

icking the main STF characteristics observed in the SCARDEC catalog : simple STFs302

with early development phases are obtained when the first sub-event dominates, while303

complex ruptures, with delayed development phases, are simulated when the second sub-304

event dominates. More details on the generation of this synthetic catalog are provided305

in Text S2 and Figure S2 of the Supplementary Materials, and Figure 6 shows examples306

of five synthetic Mw = 7 STFs, illustrating their large diversity.307
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Figure 6. Examples of 5 synthetic STFs of Mw = 7, illustrating the diversity of STF shapes

in the synthetic catalog.

Using the synthetic catalog, we compute the median values of the STFs at each time,308

as done by Meier et al. (2017) using the real STF catalogs of Ye et al. (2016), Hayes (2017)309

and Vallée and Douet (2016). Figure 7 shows the obtained median STFs for 6 magni-310

tude bins between Mw = 7 and Mw = 8. No early magnitude-dependent signal is ob-311

served, as the median STFs grow in a indistinguishable way before the smallest earth-312
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quakes approach their peak. The non-linear signal at the very beginning of each median313

STF is expected since all STFs have a first sub-event growing with an n exponent dis-314

tribution centered on nd = 2.68. This early non-linearity is also observed in the aver-315

age source time functions of Melgar and Hayes (2017). Median STFs then have a flat-316

ter trend than individual subevents (equation 10), as a result of STF diversity.317

This synthetic catalog therefore illustrates how the early stages of the STFs can318

have average characteristics which are difficult to translate in terms of physical rupture319

properties. The linear behavior observed by Meier et al. (2017) quantifies how rupture320

starts, on average, and is useful from a practical point of view to characterize a standard321

STF shape. However, as we here show that this behavior can mainly result from the com-322

bined effects of non-linear development phases and rupture diversity, its interpretation323

in terms of rupture dynamics must be done with care.324
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Figure 7. Median synthetic STFs from Mw = 7 to Mw = 8, shown in 0.2 magnitude bins.

Each median STF is computed from a large number of STFs whose diversity is illustrated in

Figure 6.

5 Conclusion325

In this study, the development phase is defined as the growing phase directly pre-326

ceding the peak moment rate. As such, it is not expected to behave the same way as the327

early stage of the seismic rupture. We here systematically extract the development phase328

of 2221 STFs from the SCARDEC database in order to quantify its time evolution. For329

this purpose, we compute the moment acceleration (STF slope) at several moment rates,330

within the development phase. We first show that no magnitude-dependent signal ap-331

pears, favoring a process where small and large earthquakes only differ in the duration332

of their development phase. Further analysis then highlights that rupture time evolu-333

tion inside the development phase differs from the classical steady self-similar growth (where334

moment rate develops as t2): the moment rate of the development phase Ṁd rather de-335

velops as Ṁd ∝ tnd with nd ' 2.7± 0.11 at the 90% confidence level.336
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Such deviation with respect to the steady quadratic growth can be due to a com-337

bination of factors. Non-circular rupture geometry, or transient variations of stress drop338

and rupture velocity, may increase the time exponent of Ṁd. We analytically developed339

one of the end-member cases, where the exponent excedence compared to the self-similar340

growth is purely due to monotonic rupture velocity variations. In this configuration, rup-341

ture velocity vrd inside the development phase is itself shown to follow a power-law time342

function, with vrd ∝ t0.2. Due to this low exponent, vrd is expected to quickly reach343

classical rupture velocities (> 1km.s−1) and then to increase only moderately in the sam-344

pled part of the development phase (between ∼1s and ∼6s) More generally, even if the345

observed time-dependency of the development phase may have several causes, it should346

give a new observational constraint to assess the realism of dynamic rupture scenarios.347
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