Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS


Aller au compte twitter

  Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals

Type de publication:

Journal Article


American Mineralogist, Volume 92, Ticket 5-6, p.811-828 (2007)







We present new Fourier Transform Infrared Spectroscopy (FTIR) and ion microprobe/secondary ion mass spectrometry (SIMS) analyses of H-1 in 61 natural and experimental geological samples. These samples include 8 basaltic glasses (0.17 to 7.65 wt% H2O), 11 rhyolitic glasses (0.143 to 6.20 wt% H2O), 17 olivines (similar to 0 to 910 wt. ppin H2O), 9 orthopyroxenes (similar to 0 to 263 wt. ppin H2O), 8 clinopyroxenes (similar to 0 to 490 wt. ppin H2O), and 8 garnets (similar to 0 to 189 wt. ppm H2O). By careful attention to vacuum quality, the use a Cs+ primary beam, and a resin-free mounting technique, we routinely achieve hydrogen backgrounds equivalent to less than 5 ppm by weight H2O in olivine. Compared to previous efforts, the new calibration extends to a wider range of H2O contents for the minerals and is more reliable owing to a larger number of standards and to characterization of anisotropic minerals by polarized FTIR on oriented crystals. When observed, discrepancies between FTIR and SIMS measurements are attributable to inclusions of hydrous minerals or fluid inclusions in the crystals. Inclusions more commonly interfere with FTIR analyses than with SIMS, owing to the much larger volume sampled by the former. Plots of H2O determined by FTIR vs. (H-1/Si-30) x (SiO2), determined by SIMS and electron microprobe (EMP) yield linear arrays and for each phase appear to be insensitive to bulk composition. For example, basalt and rhyolite calibration slopes cannot be distinguished. On the other hand, calibration slopes of different phases vary by up to a factor of 4. This reflects either phase-specific behavior of H-1/Si-30 secondary ion ratios excited by Cs+ ion beams or discrepancies between phase-specific FTIR absorption coefficient schemes.


Am. Miner.ISI Document Delivery No.: 170RRTimes Cited: 1Cited Reference Count: 79Cited References:AGRINIER P, 2000, CONTRIB MINERAL PETR, V139, P265AINES RD, 1984, GEOLOGY, V12, P720ASIMOW PD, 2004, GEOCHEM GEOPHY GEOSY, V5, P1ASIMOW PD, 2006, AM MINERAL, V91, P278BAI Q, 1992, NATURE, V357, P672BAI Q, 1993, PHYS CHEM MINER, V19, P460BELL DR, 1992, NATURE, V357, P646BELL DR, 1995, AM MINERAL, V80, P465BELL DR, 2003, J GEOPHYS RES, V108BELL DR, 2004, J PETROL, V45, P1539, DOI 10.1093/petrology/egh015BERAN A, 1983, PHYS CHEM MINER, V9, P57BERMAN RG, 1991, AM MINERAL, V76, P1223BERRY AJ, 2005, GEOLOGY, V33, P869, DOI 10.1130/G21759.1BLANCHARD M, 2004, EUR J MINERAL, V16, P567, DOI10.1127/0935-1221/2004/0016-0567BOND FC, 1951, MINING ENG MAY, P484BROMILEY GD, 2004, AM MINERAL, V89, P941BRYAN WB, 1977, GEOL SOC AM BULL, V88, P556CHOPIN C, 1984, CONTRIB MINERAL PETR, V86, P107DELOULE E, 1995, CHEM GEOL, V125, P19DOBSON PF, 1989, GEOCHIM COSMOCHIM AC, V53, P2723EILER JM, 1997, CHEM GEOL, V138, P221FINE G, 1985, EARTH PLANET SC LETT, V76, P263FISHER GW, 1969, AM MINERAL, V54, P741FREUND F, 1986, J GEOPHYS RES-SOLID, V91, P745HAURI E, 2002, CHEM GEOL, V183, P99HAWTHORNE FC, 2000, AM MINERAL, V85, P1716HINTHORNE JR, 1975, AM MINERAL, V60, P143HIRSCHMANN MM, 2006, ANNU REV EARTH PL SC, V34, P629, DOI10.1146/ G, 1995, J GEOPHYS RES-SOL EA, V100, P15441HIRTH G, 1996, EARTH PLANET SC LETT, V144, P93HUANG XG, 2005, NATURE, V434, P746, DOI 10.1038/nature03426IHINGER PD, 1994, REV MINERAL, V30, P67INGRIN J, 1989, EUR J MINERAL, V1, P327ISHIDA K, 2001, AM MINERAL, V86, P965JAROSEWICH E, 1980, GEOSTANDARD NEWSLETT, V4, P43JENDRZEJEWSKI N, 1996, CR ACAD SCI II A, V322, P735KARATO S, 1990, NATURE, V347, P272KARATO S, 1998, EARTH PLANET SC LETT, V157, P193KATAYAMA I, 2004, GEOLOGY, V32, P1045, DOI 10.1130/G20805.1KHISINA NR, 2002, PHYS CHEM MINER, V29, P98KING PL, 2002, AM MINERAL, V87, P1077KITAMURA M, 1987, NATURE, V328, P143KOGA K, 2003, GEOCH GEOPHYS GEOSYS, V4KOHLSTEDT DL, 1996, CONTRIB MINERAL PETR, V123, P345KOHN SC, 1996, AM MINERAL, V81, P1523KUBO T, 1998, SCIENCE, V281, P85LEMAIRE C, 2004, CONTRIB MINERAL PETR, V147, P48, DOI10.1007/s00410-003-0539-xLIBOWITZKY E, 1996, PHYS CHEM MINER, V23, P319LIBOWITZKY E, 1997, AM MINERAL, V82, P1111LU R, 1997, CONTRIB MINERAL PETR, V129, P35MACKWELL SJ, 1988, PHILOS MAG, V57, P779MALDENER J, 2003, PHYS CHEM MINER, V30, P337, DOI10.1007/s00269-003-0321-7MATSYUK SS, 2004, CONTRIB MINERAL PETR, V147, P413, DOI10.1007/s00410-003-0541-3MATVEEV S, 2001, J PETROL, V42, P721MILLER GH, 1987, PHYS CHEM MINER, V14, P461MIYASHIRO A, 1969, CONTRIB MINERAL PETR, V23, P38NAFZIGER RH, 1967, AM MINERAL, V52, P1364OHLHORST S, 2001, CHEM GEOL, V174, P5PARMAN S, 2004, J GEOPHYS RES, V109PATERSON MS, 1982, B MINERAL, V105, P20PESLIER AH, 2002, EARTH PLANET SC LETT, V201, P69ROSSMAN GR, 1989, EUR J MINERAL, V1, P151SACK RO, 1994, CONTRIB MINERAL PETR, V116, P277SKOGBY H, 1990, AM MINERAL, V75, P764SOBOLEV AV, 1996, EARTH PLANET SC LETT, V137, P45STALDER R, 2004, EUR J MINERAL, V16, P703, DOI10.1127/0935-1221/2004/0016-0703STOLPER E, 1982, GEOCHIM COSMOCHIM AC, V46, P2609SUZUKI T, 1996, PHYS EARTH PLANET IN, V96, P209SWEENEY RJ, 1997, GEOCHIM COSMOCHIM AC, V61, P101WANG LP, 1996, AM MINERAL, V81, P706WANG LP, 1999, CONTRIB MINERAL PETR, V135, P164WANG ZY, 2004, APPL PHYS LETT, V85, P209, DOI 10.1063/1.1769593WISER NM, 1991, CONTRIB MINERAL PETR, V108, P146WITHERS AC, 1999, PHYS CHEM MINER, V27, P119WOOD BJ, 1995, SCIENCE, V268, P74XIROUCHAKIS D, 2001, GEOCHIM COSMOCHIM AC, V65, P2201YAMASHITA S, 1997, GEOCHEM J, V31, P169YURIMOTO H, 1989, GEOCHIM COSMOCHIM AC, V53, P751ZHAO YH, 2004, CONTRIB MINERAL PETR, V147, P155, DOI10.1007/s00410-003-0524-4