SALTGIANT ETN – Early Stage Researcher in Isotope Geochemistry of Gypsum Deposits – ESR 6

Title

Hydrology of Mediterranean Marginal basins during the formation of the Mediterranean Salt Giant (MSG)

Duration

36 months

Expected start date

October 2018

Host Institution

Institut de Physique du Globe de Paris, Paris (France) - www.ipgp.fr

Primary Supervisor(s)

Giovanni Aloisi

To reconstruct the hydrology of selected marginal basins of the Mediterranean Sea during the formation of the MSG using stable isotope tracers. Gypsum and carbonate minerals precipitated form the water column of Mediterranean marginal basins during the formation of the MSG record the isotopic composition of basin water (δ^{18}O$_{H2O}$ and δD_{H2O}) and of the dissolved sulfate (δ^{34}S$_{SO4}$ and δ^{18}O$_{SO4}$) and strontium ($^{87}/^{86}$Sr) ions. These isotopes are sensitive to the hydrological exchanges between the ocean and continental runoff, as well as evaporation and precipitation processes (limited to δ^{18}O$_{H2O}$ and δD_{H2O}). Ongoing geochemical investigations of Mediterranean marginal basins suggest that some of the gypsum deposits might have formed at salinity lower than modern seawater, under the influence of SO$_4$- and/or Ca$^{2+}$- rich river runoff and with little exchange with the Mediterranean Sea. This scenario is radically different from the classical view interpreting the evaporites of the Mediterranean marginal basins as formed by evaporation of seawater. ESR 6 will work in tight collaboration with field-based ESRs (ESRs 1, 4, 5, 8), and mining sector partner KNAUF, to carry out a detailed sampling of primary gypsum deposits outcropping on land. The isotope composition of gypsum will be measured at the geochemical facilities of IPGP. In collaboration with ESR 7, ESR 6 will apply simple numerical box models that simulate the isotopic composition of H$_2$O and dissolved SO$_4$ and Sr in marginal basins. In conjunction with the isotope composition of gypsum, these models will be used to deduce the hydrological cycle that dominated at the time of gypsum deposition in the marginal basins of the Mediterranean Sea, tackling the apparent contradiction of a marine-type evaporitic sequence bearing a continental isotope signal.

Expected results

A Mediterranean basin-wide overview of the hydrological regimes of marginal basins during the formation of the MSG.

Specific requirements

Completed MSc or Diploma degree in Geology, Geochemistry, Earth Sciences or related fields

Some numerical modelling experience is not mandatory but welcome

Planned secondments

Provided by SALTGIANT partners to ESRs; duration 1-3 month each

1. University of Palermo, Palermo, Italy (Antonio Caruso, for the geographically extensive, high-resolution sampling of Messinian gypsum deposits); 2. KNAUF Gips KG (Germany), field work in Mediterranean area (Matthias Reimann, for access to pristine samples of gypsum from active mines and prospection cores of the Mediterranean region; 3. Utrecht University, Utrecht, The Netherlands (Paul Meijer, for isotopic box modelling of hydrological exchanges in Mediterranean marginal basins).
Keywords: Isotope geochemistry, field work, laboratory isotope measurements, modelling

Application: Send application via: www.ipgp.fr/saltgiant

For further information: Contact primary supervisor: aloisi@ipgp.fr