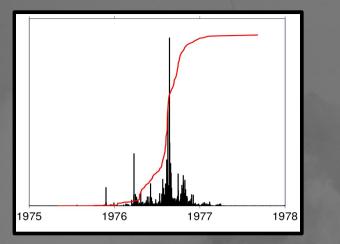
The review of the 1975-1977 eruption of La Soufrière de Guadeloupe (FWI)

François Beauducel


Seismology / former Director of Guadeloupe Obs. 2001-2007

Pascale Besson Geology of Volcanic Systems

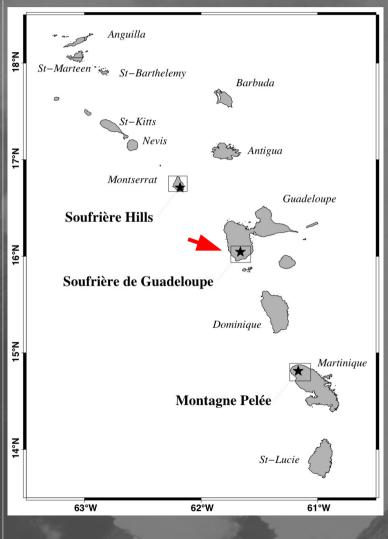
Institut de Physique du Globe de Paris Volcanological Observatories Dpt.

I. Phenomenology

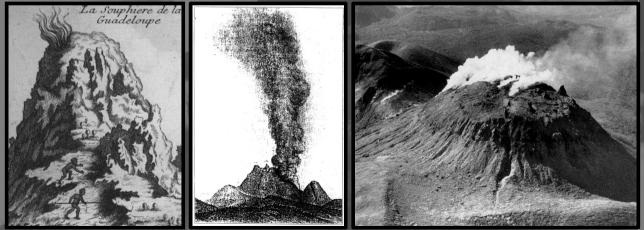
Plan

I. Phenomenological chronology

II. Crisis management



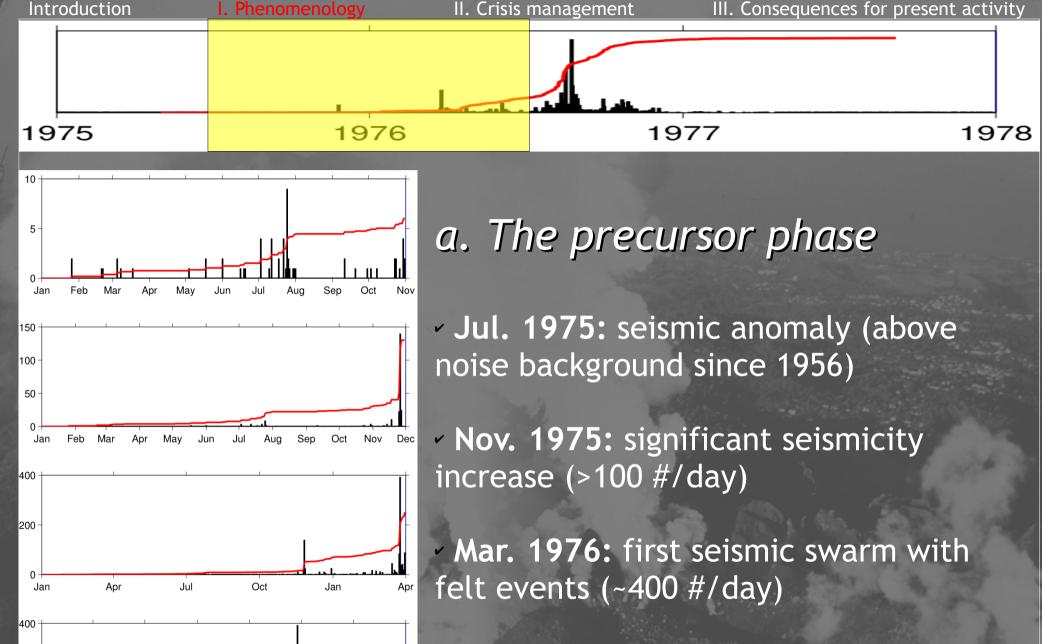
III. Consequences for present activity interpretation


I. Phenomenology

II. Crisis management

Introduction

Active subduction zone context
Volcanic complex ~200 ky
1535 AD: last magmatic eruption (dome, pyroclastic flows, flank collapse, small subplinian VEI=3 ...)
[Komorowski et al., 2008]
4 known phreatic eruptions: 1690, 1797-1798, 1836-1837, and 1956



XVIIth - XVIIIth 1836-1837

December 18, 2008

AGU San Francisco 'Failed' magmatic eruptions

1956

 Apr.-Jun. 1976: constant high level of seismicity (~100 #/day)

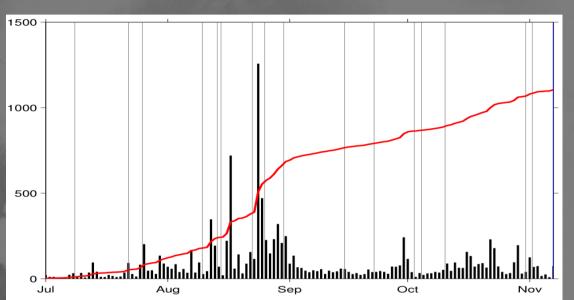
Apr

Jul

Oct

Jan

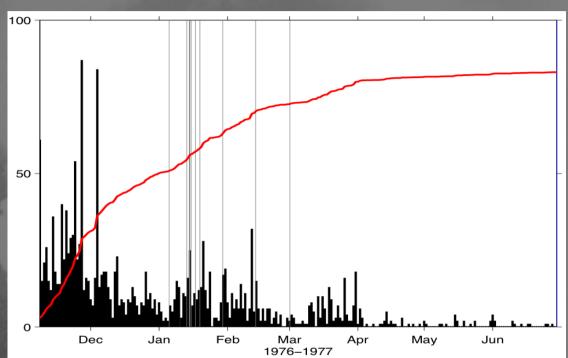

Jul


Apr

Oct

200

Jan



b. Surface phenomena

Jul. 8, 1976: First phreatic explosion (600,000 m³) with new 300-m long crack and lahar Jul. to Aug. 1976: 8 other phreatics preceded by tremors Aug. 16, 1976: mag. 4.2, VI Aug. 24, 1976: maximum seismicity (1300 #/day) Aug. 30, 1976: creation of new crack "Aug. 30th Fault" Sep. to early Nov., 1976: still high level of seismicity

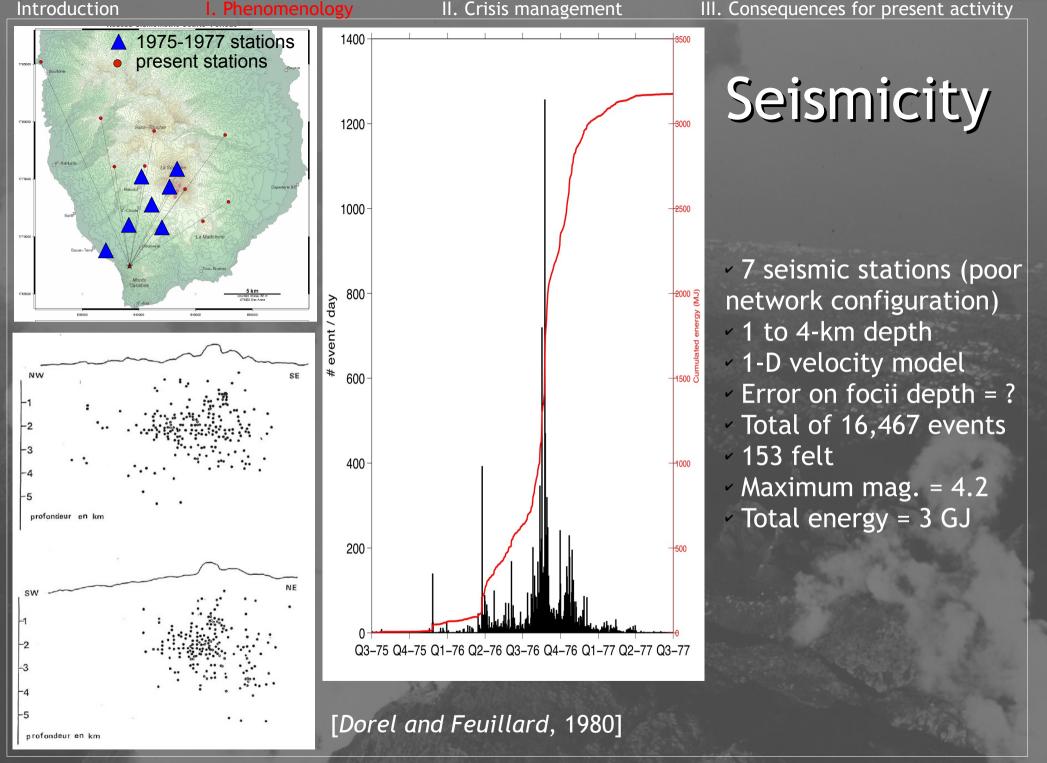
December 18, 2008

c. Decrease of seismic activity renewed explosivity

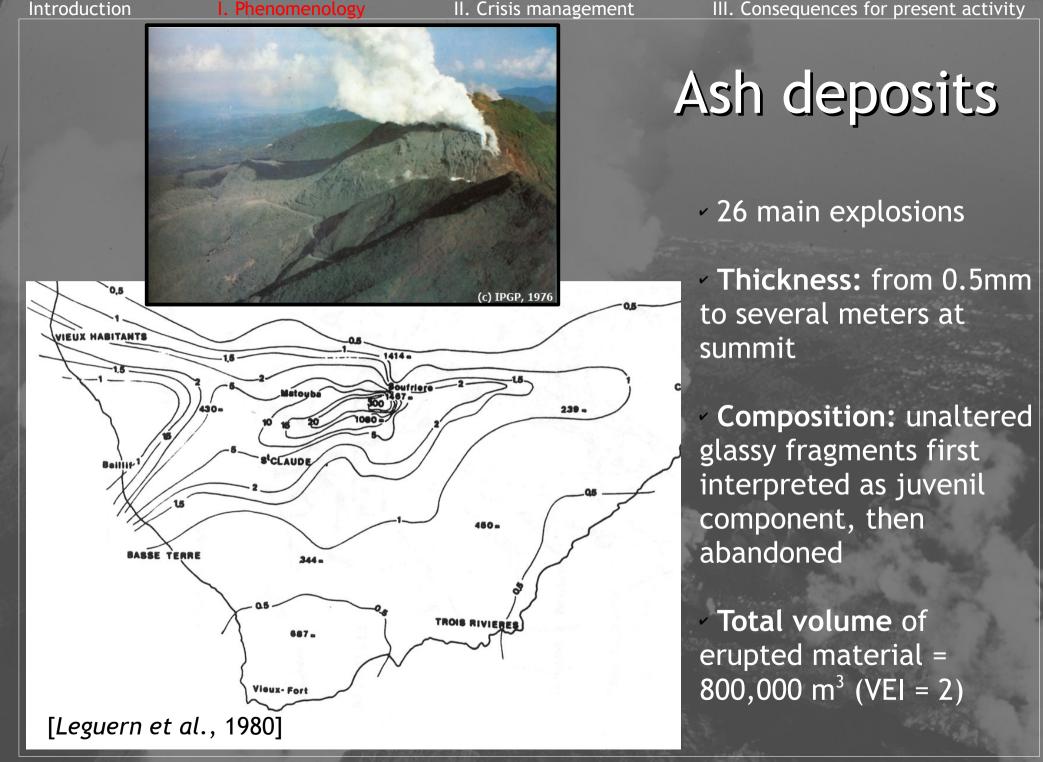
Nov. 1976 to mid-Jan.
1977: seismicity starts to decrease, lull in explosions
Jan. to Mar. 1977: 10 new phreatics, including one of the strongest on Jan. 29th
March 1st, 1977: last phreatic explosion
July 1977: return to preeruptive seismic background level

December 18, 2008

. Phenomenology


II. Crisis management

III. Consequences for present activity


(c) F. Beauducel / IPGP, 2000

(c) F. Le Guern, 1976

December 18, 2008

December 18, 2008

Other methods

Gaz analysis:
 184°C max,
 pH ~1.5,
 95% H₂O, low SO₂, H₂S, CO

Ground deformation: not significant due to inappropriate installation

 Magnetic field: 15-nT anomalies interpreted as hydrostatic pressure variations in the magma chamber

II. Crisis Management

a. Context

~75,000 inhabitants around the volcano
No historical magmatic eruption in Guadeloupe but Mt Pelée 1902 eruption still in mind
Rudimentary observatory (since 1951)
No regular information to population
Inexistent prevention of volcanic risk

b. Chronology

Jul. 1975: observatory internal "alert" (based on seismic anomaly) • Nov. 1975: first official information to authorities, preparation of emergency plan - Mar. 1976: first information to population (due to felt earthquakes) Apr. 1976: H. Tazieff public intervention, french President demands: "zero fatality" Jul. 8, 1976: 25,000 people spontaneously leaving during few days (due to first phreatic explosion) - Mid-July 1976: H. Tazieff announces a total absence of risk for population, then quits Guadeloupe

III. Consequences for present activity

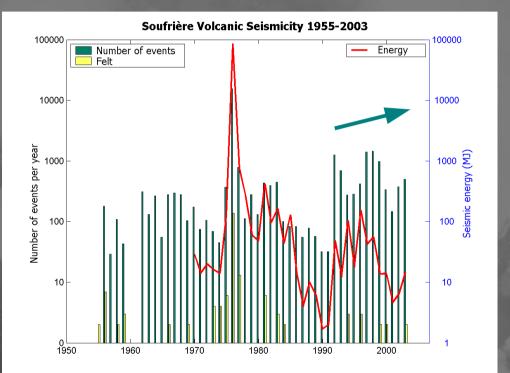
• Aug. 12-15 1976: official evacuation of 73,000 people on scientists advice (R. Brousse and J. Tomblin)

 Sep. to Oct. 1976: conflict between scientists (H. Tazieff and C.J. Allègre)

- 2 hypothesis: A. purely phreatic with low immediate risk, or B. magmatic intrusion with possible worsening

- 1 question: since 3 days are needed for complete evacuation, how many time between "significant" precursors and dangerous volcanic event ?

 -> consequences: discontent of the population + scientist discredit
 => authorities ask for international committee

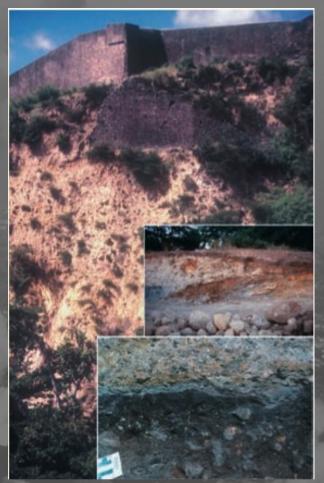

• Nov. 15-18 1976: international committee (F. Press, R. Aramaki, F. Barberi, J. Coulomb, R.S. Fiske, P. Gasparini, C. Guillemin, G. Sigvaldason) - maintains the 2 possible eruptive scenarios, - suggests population return and monitoring reinforcement, - suggests better scientist/population communication. - Dec. 1st 1976: official return of the population - Dec. 1976 to Mar. 1977: paradoxical situation - societal activity renewal (back to "normal") - ash falls, water and cultivation contamination - 10 phreatic explosions until Mar. 1st, 1977 (including one of the major on Jan. 29, 1977)

Until today:

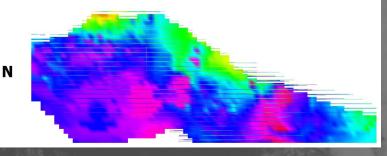
population feels that evacuation was unnecessary
 one of the observatory priority is to get back
 population's confidence

III. Consequences for present activity

III. Consequences for present activity interpretation



1977-1991: activity decrease 1992: start of new seismic unrest and fumarole activity 1997: apparition of chlorine in fumaroles (pH < 0) 2000 to present: constant increase in gas flux, sulfure content and temperatures 2004: shallow Mw 6.3 tectonic earthquake lead to small avalanches on the volcano flanks


Recent studies:

Amongst world's most unstable volcanoes, 10 collapses / 15 ky (hydrothermal alteration, structure) 5-7 collapses + magmatic blast/surges - Last collapse 564 years ago with last magmatic 7 dome eruptions / 15 ky Electrical tomography shows alterated rocks inside and below the lava dome

But... what is the present stage ?

[Komorowski et al., 2005]

[Nicollin et al., 2006]

Arguments supporting purely phreatic eruption		Arguments supporting still-born magmatic eruption		
Nothing happened	1	-		
Surface observations (gas content, temperatures, ash) only phreatic	✓	-		
Lack of any violent historical eruption at La Soufrière, small proportion of pyroclastic flows deposits [<i>Tazieff</i> , 1976]	×	Recent geological evidences [<i>Boudon</i> et al., 1987; 2008, <i>Komorowski</i> et al., 2005; 2008]	1	
Frequent seismic crisis in the Caribbean without any eventual eruption (e.g. Montserrat) [<i>Tazieff</i> , 1976]	X	Posterior facts: St-Vincent 1979; Soufrière Hills 1995-present		
No migration of seismic events during crisis [<i>Tazieff</i> , 1976]	×	Evidence for migration of seismic events [Hirn and Michel, 1979]	1	
-		Seismicity energy and magnetic anomaly [<i>Feuillard</i> et al., 1983]	1	
-		Hot springs chemical modeling (degasing pulses of Cl) [<i>Villemant</i> et al., 2005]	1	
Phreatic surface phenomena usually not followed by magmatic stage	×	Posterior facts: St-Helens, Pinatubo, Unzen, Soufrière Hills	1	

Comparison with other explosive volcanoes

	Soufrière Guadeloupe 1976	St-Helens 1980	Pinatubo 1991	Unzen 1991	Soufrière Hills 1995- present
Duration since last magmatic	341 years	123 years	500 years	198 years	363 years
First seismic anomaly	Nov 1975	March 1980	Mid-March 1991	Nov 1989	1989, 1992, 1994
Delay 1	236 days	11 days	20 days	360 days	?
First phreatic	July 8,1976	March 27, 1980	April 2, 1991	Nov 17, 1990	July 18, 1995
Delay 2	$\left(- \right)$	53 days	67 days	186 days	121 days
First magmatic	None	May 18, 1980	June 8, 1991	May 20, 1991	Nov 15, 1995

Conclusions

If there was a magmatic intrusion during 1976 crisis:

- magma already reached ~ 2-km depth,
- no need for strong precursors / long delay before a future magmatic eruption,
- medium local earthquake may easily trigger an eruption,
- present activity is more worrying...

Work in progress:

Digitize of old seismic recordings (for relocation using recent velocity models, and waveforms analysis)

Tomography of the dome (seismic, muonic, electric)