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Nitrogen: Highly Volatile 
yet Surprisingly Compatible

INTRODUCTION
Nitrogen (N), one of the most abundant elements in our 
galaxy and the Solar System, makes up 78% of Earth’s 
atmosphere by volume. It is depleted in the inner, rocky 
planets (including Earth) relative to the remainder of the 
Solar System and is in general concentrated into atmospheres 
on planets and moons. Nitrogen was discovered indepen-
dently by Daniel Rutherford, Carl Wilhelm Scheele, and 
Antoine Lavoisier in the 1770s and was regarded by each 
as an extremely inert/unreactive gas (noncombustible and 
non-life-supporting). Lavoisier (1790) referred to nitrogen 
as azote, from the Greek word αζωτος meaning “lifeless,” 
and this term became the French word for nitrogen. The 
English word nitrogen came from the French nitrogène, 
coined in 1790 by French chemist Jean-Antoine Chaptal 
from the Greek nitron (sodium carbonate) and the French 
gène (producing), referring to its occurrence in nitric 
acid, in turn formed from saltpeter then known as nitre. 
Nitrogen consists of two stable isotopes, 14N and 15N, 
with abundances of 99.636% and 0.364%, respectively. 
Stable isotope compositions of nitrogen are expressed as 
ratios of 15N/14N relative to a standard, the latter gener-
ally N2 in Earth’s atmosphere. The conventional notation 
for expressing nitrogen isotope compositions, in ‰ 
(delta notation), is: δ15N (‰ versus atmospheric N2) = 
[(15N/14Nsample ÷ 15N/14NAIR-N2) – 1] × 1000.

Despite its relatively inert and 
volatile behavior (particularly 
as N2), nitrogen is an essential 
element for all living organisms 
and is central in the structure 
of amino acids, proteins, nucleic 
acids, and other substances vital 
to life. Living organisms have 
evolved an array of biochem-
ical pathways for taking up and 
“processing” atmospheric N2, 
along with nitrogen in all its 
other oxidation states (FIG. 1), in 
part conveying it into the litho-
sphere through sedimentation 
and diagenesis. The strong redox 
dependency of N results in its 

speciation into several important molecules other than 
N2, including NH4

+ (ammonium), NH3 (ammonia), and 
NO3

– (nitrate). This speciation increases its reactivity in 
both biotic and abiotic settings and produces signifi cant 
stable isotope fractionation in the major Earth reservoirs 
(Busigny and Bebout 2013 this issue). Its association with 
life on Earth makes nitrogen a compelling element for 
consideration in our search for life elsewhere in the Solar 
System, leading to the mantra “Follow the nitrogen” (see 
Capone et al. 2006; Fogel and Steele 2013 this issue). In 
this paper, we highlight some directions for future research 
in the growing fi eld of nitrogen (biogeocosmo)chemistry.

DISTRIBUTION ON EARTH
One common misperception is that nitrogen on Earth is 
dominantly in the atmosphere, and if we consider only 
the surface and near-surface environment, this is certainly 
true. Most work on nitrogen abundances and isotopic 
compositions has been done on surface/near-surface, 
low-temperature environments, even though the fraction 
of Earth’s nitrogen in biomass, soils, and the oceans is 
very low (likely <1%; Chapin et al. 2002). Depending on 
the exact sizes of the nitrogen reservoirs in the mantle 
and crust, the atmospheric reservoir could constitute 
only about 25–30% of the Earth’s nitrogen inventory 
(TABLE 1). Unfortunately, the sizes of the crust and mantle 
reservoirs are poorly constrained, relying on very small 
numbers of analyses of appropriate materials and/or mass-
balance calculations and assumptions regarding incompat-
ibility during partial melting (Busigny and Bebout 2013). 
It appears that N2 in Earth’s atmosphere has been at or 
near modern concentrations since the very early stages of 
degassing (Zhang and Zindler 1993; Tolstikhin and Marty 
1998); however, some have suggested that the atmosphere 
on the earliest Earth was somewhat more concentrated 
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in N2 (Boyd 2001; Goldblatt et al. 2009; see the poten-
tially confl icting evidence presented by Marty et al. 2013). 
According to Goldblatt et al. (2009), N2 levels in the early-
Earth atmosphere could have been decreased by the onset 
of biological activity and incorporation of organic nitrogen 
into rapidly forming continental crust, an intriguing 
concept. Unfortunately, work on nitrogen inventories on 
the Moon, aimed at identifying indigenous/endogenic 
and exogenic components, has been greatly limited by the 
scarcity of lunar rock samples and analytical challenges 
associated with very low nitrogen concentrations in these 
rocks (see Marty et al. 2003).

RECENT RESEARCH ON NITROGEN 
ON EARTH AND IN THE SOLAR SYSTEM
Research papers published on nitrogen isotopes and associ-
ated nitrogen cycling for 2012 to mid-2013 (from a Web 
of Knowledge search with “nitrogen isotope” in the title) 
can be broken down into the following research categories: 

 � trophic interactions (terrestrial and marine combined), 
food webs [43]

 � terrestrial ecosystems, watershed studies, limnology [32] 

 � anthropogenic effects (pollution of air, water) [19]

 � atmosphere, aerosols, precipitation [13]

 � ocean cycling – modern [10]

 � methods for nitrogen isotope measurements [6]

 � deep Earth (diamond/mantle, hydrothermal deposits, 
igneous/metamorphic rocks, volcanic gases) [5]

 � forensic applications [5]

 � experiments and theoretical studies [3]

 � ancient-Earth atmosphere/ocean (oxygenation of the 
atmosphere, etc.) [2]

 � extraterrestrial (meteorites, comets, lunar rocks, solar 
wind) [0]

From this quick survey, one sees that most of the recent 
work on nitrogen isotopes is centered on modern ecosys-
tems, trophic interactions and transfers, and anthropo-
genic effects. Far fewer studies focus on higher-temperature 
systems, ancient-Earth atmospheric evolution, and extra-
terrestrial materials.

EARTH’S SURFACE AND NEAR SURFACE

“By the end of the nineteenth century, humans had 
discovered nitrogen and the essential components of the 
nitrogen cycle. In other words, they then knew that some 
microorganisms convert N2 to NH4, other microorganisms 
convert NH4 to NO3, and yet a third class of microorgan-
isms convert NO3 back to N2, thus completing the cycle.”

–Galloway (2003)

Although high-temperature fractionations can produce 
signifi cant shifts in nitrogen isotope composition in melt–
fl uid–rock settings (Busigny and Bebout 2013), it is the 
low-temperature nitrifi cation/denitrifi cation reactions that 
produce the largest stable isotope fractionations. With more 
than 30‰ natural variability observed in sedimentary and 
biological systems, this nitrogen is then conveyed into 
continental crust and into the mantle, in the latter case 
via subduction (Holloway and Dahlgren 2002; Cartigny 
and Marty 2013 this issue). FIGURE 1 shows a framework of 
key biological reactions in this cycle, involving N fi xation, 
assimilation, nitrifi cation, decomposition, ammonifi cation, 
and denitrifi cation. In the past decade, microbiologists 
have identifi ed several new pathways that show the depth 
and complexity of the ways that organisms process this 
important, and often limiting, nutrient (Zehr and Ward 
2002; Canfi eld et al. 2010; Fogel 2010; Kraft et al. 2011). 
The isotopic compositions of the different nitrogen phases 
are key tools for understanding surface processes and the 
microbes that carry out the specialized reactions.

Recent research on surface nitrogen biogeochemistry has 
emphasized the ways in which anthropogenic nitrogen 
is being processed through the atmosphere, groundwater, 
stream networks, and the oceans. As discussed in Hastings 
et al. (2013 this issue), humans have doubled the amount of 
reactive nitrogen in the Earth system over a very short time 
period (the last 200 years)—this complicates comparisons 
of modern nitrogen cycling with records of nitrogen biogeo-
chemistry on the ancient Earth (Thomazo and Papineau 
2013 this issue; Cartigny and Marty 2013). It is unclear 
how this anthropogenic loading of nitrogen will alter the 
biogeochemical pathways in the oceans and be recorded in 
sediments and the future sedimentary rock record.

NITROGEN IN MINERALS AND ROCKS
Holloway and Dahlgren (2002) summarized the history of 
analyses of nitrogen in minerals and rocks and the methods 
by which nitrogen concentrations and isotopic composi-
tions have been determined. Early reports of nitrogen in 
rock systems and volcanic gases date back to Rayleigh 
(1939) and Hutchinson (1944). Analyses of mineral and 
rock concentrations and δ15N originated with studies by 
Hoering (1955), who also presented the earliest analyses 
of biological (e.g. rats and plants) and nonbiological Earth 
materials (e.g. petroleum, coal, igneous rocks). Work 
by Mayne (1957), Scalan (1958), and Stevenson (1962) 
followed these pioneering studies, and applications of 
nitrogen isotopes expanded considerably in the 1970s and 
1980s, notably by the former East German group in Leipzig 
(e.g. Haendel et al. 1986). The methods for analyzing small 
amounts of nitrogen, in general requiring laborious extrac-
tion methods and high-sensitivity mass spectrometry, have 

FIGURE 1 Photosynthetic organisms compete with bacteria (and 
vice versa) for inorganic N-containing nutrients (blue 

lines). Simple organic compounds, like urea and amino acids, are 
often taken up by plants and phytoplankton, a process that is more 
common than once thought (black lines). Nitrogen fi xation is 
important for both groups of organisms, much more so than was 
previously considered (pale blue lines) (Zehr and Ward 2002).

Nitrite (NO2
–) is a key molecule in many microbial reactions 

between NH4 and NO3
–: nitrifi cation and denitrifi cation (turquoise 

lines), as well as the more recently discovered pathways of 
anammox (light brown lines), NO dismutation (red lines), and 
denitrifi cation (green lines). Dissimilatory nitrate reduction (purple 
lines) occurs in many deep-sea, hydrothermal areas (Kraft et al. 
2011). DON = dissolved inorganic nitrogen
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restricted the number of applications of nitrogen isotopes 
in silicate rock systems. The isotope analyses have been 
achieved largely by static or dual-inlet, dynamic gas-source 
mass spectrometry, more recently employing carrier gas 
and SIMS methods (see Analytical Box in Cartigny and 
Marty 2013).

GREAT STABILITY OF NITROGEN 
IN SILICATE MINERALS TO HIGH 
TEMPERATURES AND PRESSURES
The chemical reactivity of nitrogen results in its incor-
poration into numerous mineral phases, often as NH4

+, 
resulting in the potential for long-term storage in the solid 
Earth (Busigny and Bebout 2013). Incorporation into clay 
minerals of nitrogen released from organic matter during 
diagenesis (as NH4

+) initiates the key pathway for nitrogen 
in the biosphere to enter the deep Earth (Boyd 2001; FIG. 2). 
The close association of nitrogen with potassium (K) in 
various minerals refl ects the tendency for NH4

+ to substitute 
for K+ in many minerals, including the silicates (Honma 
and Itihara 1981). Palya et al. (2011) demonstrated the 
extraordinary retention of nitrogen, with what appeared 
to be sedimentary/organic elemental C/N ratios, in rocks 
that had experienced multiple partial melting reactions (up 
to 850 °C at 2–4 kilobars pressure, the latter corresponding 
to depths of ~5–15 km). In these rocks, cordierite in the 
partial melting residues contains appreciable amounts of 
N2 in its channels. Although these observations point to 
the feasibility of long-term nitrogen storage to even greater 
depths in the continental crust (see Boyd 2001; Goldblatt 
et al. 2009), the paucity of data for appropriate rocks makes 
it diffi cult to estimate the size of the continental crust 
nitrogen reservoir (Rudnick and Gao 2003; Goldblatt et al. 
2009; Palya et al. 2011; TABLE 1). The signifi cance of nitride 
for nitrogen storage in the mantle remains underexplored, 
as is the possibility that signifi cant amounts of nitrogen are 
stored in the crust in microporous mineral phases such as 
cordierite and beryl (see Lazzeri et al. 2011 and discussion 
by Busigny and Bebout 2013).

DEEP-EARTH NITROGEN CYCLING
Boyd (2001) provided a holistic synthesis of whole-Earth 
nitrogen cycling (FIG. 2), with emphasis on the biosphere 
and incorporation of biologically fi xed nitrogen into the 
silicate Earth. He also included the concept of biologically 
mediated uptake of nitrogen from the atmosphere into the 
crust over geological time (a concept expanded upon by 
Goldblatt et al. 2009). A large fraction of Earth’s nitrogen 
probably resides in the mantle (Busigny and Bebout 2013), 
with subduction as the only signifi cant mechanism for 
conveying surface nitrogen, presumably largely in sediment 
and variably altered oceanic crust, to mantle depths. In 
their review of the fate of nitrogen in the mantle, Cartigny 
and Marty (2013) suggest that the recycling of nitrogen 
into the mantle exceeds outgassing fl ux: the Earth's mantle 
presently stores more nitrogen than it looses. Based on a 
study of high-pressure and ultrahigh-pressure metamor-
phic rocks (Bebout et al. 2013) and studies of nitrogen 
return at individual volcanic arcs (Mitchell et al. 2010), 
>50% of the initially subducted nitrogen (in sediments 
and altered oceanic crust) could be transported to depths 
in the mantle beyond those experienced by subducting 
slabs beneath volcanic arcs (~100 km; see discussions by Li 
and Bebout 2005; Elkins et al. 2006; Mitchell et al. 2010). 
This could imply that the mantle is currently accumulating 
nitrogen; however, the fact that mantle-derived igneous 
rocks and diamonds have fairly uniform δ15N values near 
–5‰ could refl ect a relatively small input to the mantle 
of nitrogen with elevated δ15N inherited from shallow 

processes. Another possibility is that sedimentary/organic 
nitrogen with positive δ15N is preferentially delivered into 
volcanic arcs (Elkins et al. 2006), leaving the low-δ15N 
nitrogen in subducting oceanic lithosphere to contribute 
to the mantle nitrogen inventory (Li et al. 2007; see a 
contrasting view by Busigny et al. 2011, who proposed that 
oceanic crust has a positive bulk δ15N value).

EARLY-EARTH RECORDS OF ATMOSPHERIC 
OXYGENATION
Studies employing nitrogen isotopes to evaluate ancient-
Earth atmospheric evolution have proliferated. Some of 
these correlate the behavior of nitrogen with that of other 
elements of biological interest (e.g. Fe, Mo, S, C isotopes; 
Thomazo and Papineau 2013). A more robust interpreta-
tion of nitrogen records in rocks billions of years old will 
require additional information regarding the preservation 
of ancient δ15N records through diagenesis and low-grade 
metamorphism and will have to evaluate issues of contami-
nation and syngenicity (i.e. whether a textural, chemical, 
mineral, or biological feature formed at the same time as 
the encapsulating material). Interestingly, however, many 
metamorphosed sedimentary rocks, even those subjected 
to high-grade metamorphism and partial melting, appear 
to preserve carbon and nitrogen concentrations (and 
thus C/N) and isotopic compositions resembling those of 
their protoliths (Palya et al. 2011). Further work on early-
Earth nitrogen biogeochemical cycling should also take 
into account the varying sedimentological settings of 
the relatively small number of Archean metasedimentary 
suites, as signifi cant variability is observed on the modern 
Earth among different settings (e.g. related to varying 
redox conditions; see Quan et al. 2013).

STUDY OF EXTRATERRESTRIAL NITROGEN
In this issue, Fogel and Steele (2013) provide an overview of 
the work on nitrogen in extraterrestrial materials that could 
elucidate the evolution of the Solar System and planets and 
potentially help focus efforts in the search for extrater-
restrial life. Future work will be stimulated by the recent 
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discovery that the solar wind is very depleted in 15N (δ15N 
≈ –400‰; Marty et al. 2011). This observation indicates a 
similar depletion in 15N in the modern Sun and the proto-
solar nebula and sheds new light on the very wide range 
of δ15N values in meteorites (for example, in iron meteor-
ites and among the different classes of meteorites). The 
emerging picture for the evolution of nitrogen in the Solar 
System involves a 15N-depleted protosolar nebula, likely 
dominated by silicates, and a 15N-enriched end-member 
represented by organic matter and most comets.

Goals for work on nitrogen on Mars include evaluating 
the modern and ancient inventories of nitrogen, in both 
surface/near-surface and deep planetary reservoirs (Jakosky 
and Phillips 2001; Fogel and Steele 2013), and determining 
the degree and timing of the volatilization of nitrogen into 
space and its associated isotope fractionation. There has 
been considerable interest in nitrogen as a potentially key 
element in developing strategies for the search for signs 
of life on Mars. Related work has included biogeochem-
ical studies of modern environments on Earth that are 
similar to modern Mars environments (e.g. gypsum sand 
dunes); the study of ancient-Earth nitrogen biogeochem-
ical cycling, which could have resembled that on Mars 
given the likelihood that surface conditions on Mars were 
similar to those on Earth during the Archean (Thomazo 
and Papineau 2013); and work on hydrothermal and 
microbial activity associated with impact craters on Earth 
(Osinski et al. 2013). A number of minerals common on 
Earth are likely to be present and possibly abundant on 
the surface of Mars, most notably phyllosilicates (Bish et al. 
2003)—which are known on Earth to incorporate signifi -
cant amounts of organically derived nitrogen as NH4

+— but 
also mineral phases such as zeolites and even sulfates such 
as jarosite, capable of incorporating nitrogen as N2 and 
NH4

+, respectively. A large part of Mars’s surface is home 
to hydrothermally altered (palagonitized) basaltic rocks; on 
Earth, basalts palagonitized on the seafl oor are enriched in 

TABLE 1 ESTIMATES OF THE MODERN-EARTH NITROGEN BUDGET, SHOWING THE VARIOUS RESERVOIRS, 
THEIR SIZES, AND THEIR PERCENT OF NITROGEN1

Reservoir size

(1021 g)
% in reservoir

Reservoir size

(1021 g)
% in reservoir

Goldblatt et al. (2009) Palya et al. (2011)2

Atmosphere 4 27.0 Atmosphere 3.9 30.1

Continental crust 2.1 14.2 Continental crust 1.1 8.5

Oceanic crust 0.32 2.2 Oceanic crust no estimate

Mantle 8.4 56.7 Upper mantle 0.17 1.3

TOTALS 14.82 100 Lower mantle 7.8 60.1

Galloway (2003) – surface/near surface only Deep ocean 0.0006 0.00463

Atmosphere 3.95 79.5 Surface ocean 0.00006 0.00046

Sedimentary rocks 1 20.1 Soils 0.0001 0.00077

Ocean N2 0.02 0.4 Biomass 0.0000043 0.00003

Ocean NO3
– 0.00057 0.01147 Marine biota 0.0000003 0.000002

Soil organics 0.00019 0.00382 Terrestrial vegetation 0.000004 0.00003

Land biota 0.00001 0.00020 TOTALS 12.97 100

Marine biota 0.0000005 0.00001

TOTALS 4.97 100

1 From Chapin et al. (2002); Galloway (2003); Kerrich et al. (2006); Goldblatt et al. (2009); Palya et al. (2011)

2 The compilation of Palya et al. (2011) incorporates estimates from Kerrich et al. (2006) and Chapin et al. (2002).

FIGURE 3 Nitrogen concentrations and isotopic compositions 
of volcanic glasses showing more alteration (in square 

boxes) and less alteration (no boxes, connected by lines to more 
altered glass from the same sample), as judged microscopically 
from varying amounts of palagonite developed on edges of grains. 
Samples are from Cyprus (CYP) and the Stonyford Volcanics, 
California (SFV). HYAL = glass from hyaloclastites from Cyprus. 
Data from Lazzeri et al. (2011). Note that, in most cases, the more 
altered glass has a higher nitrogen concentration and higher δ15N 
value (gray squares indicate lower δ15N values). Note also that the 
SFV glasses retain near “mantle values” of δ15N (–5 ± 2‰; gray-
shaded box in lower left of fi gure; see Cartigny and Marty 2013) 
despite nitrogen enrichment, possibly refl ecting incorporation of 
nitrogen degassing from the crystallizing and cooling volcanic 
rocks. The inset photomicrograph is of putative microbial ichnofos-
sils near a palagonitized fracture (the latter oriented from upper left 
to lower right) in glass from the Stonyford Volcanics (horizontal 
dimension is 200 µm; example of putative microbial feature is 
indicated by arrow). PHOTOGRAPH COURTESY OF M. R. M. IZAWA AND N. R. 
BANERJEE
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