Challenges of precise timing underwater

- No GPS!
- Limited power budget
- Size constraints
- Weight constraints
- On the bright side, temperature is often very stable

Timing requirements for Ocean Bottom Seismology

- Many independent instruments deployed in large arrays
- Timing arrival of seismic waves at each point across the array
- Desired timing accuracy is 1 millisecond
- Experiments range from a few weeks to one year in duration
- 1 ms / 365 days ≈ 3.2e-11
- Typical power budget ~ 1 W for entire system, <200mW for clock
- Many instruments required for an experiment, so unit cost is important

SISMTB Low-Power, High-Accuracy Time Base Module

- Manufactured by Seascan Inc. of Falmouth, MA
- 1.8 x 2.9 x 0.9 inches
- Microprocessor Compensated Crystal Oscillator
- In use for over a decade in hundreds of instruments

SISMTB Low-Power, High-Accuracy Time Base Module

- Manufacturer's Specifications:
- 5e-8 long term stability (~4.3ms/day)
- -5 to 35 °C operating range
- 5mW typical power consumption
- 1 microsecond short term jitter
- 1 Hz and 125 Hz standard outputs
- Internal real time clock, ASCII interface
- High frequency PLL output available

Linear drift correction

- The best we can do to improve performance is a linear drift correction:
- Largest contributors to frequency error are temperature and calibration error
- Temperature is constant in ocean bottom deployments
- Measure time offset between instrument clock and GPS before deployment and after recovery
- Assume frequency error to be constant
- Then clock phase error, or drift, is a linear function of time
- Re-sample data to correct for estimated drift throughout deployment

Linear drift correction example

Linear drift correction example

Linear drift correction problems

- Linear drift correction is effective, but not perfect
- Observed errors of 40 ms between neighboring instruments in 100 day deployments using noise correlation techniques
- Observed differences of ~10 ms between well-timed airgun shots roughly 2 weeks apart
- Aging causes frequency change / calibration error
- Other non-linear effects?

Linear drift correction example What's really going on?

Testing clocks in the lab at room temperature is not enough!

Seascan Multiplexer Board

- Lots of data from seafloor, but we wanted to monitor drift rates in real time for many clocks in a controlled environment
- Allows up to 64 Seascan Timebases to be tested simultaneously in a controlled temperature environment
- Temperature and offset of each clock measured vs. GPS and logged every minute
- Between 2009 and 2011 all of our Seascans were tested, with periodic retests since then
- Checking for calibration errors, temperature coefficient, effects of thermal shock, aging, and other non-linearities

Seascan Multiplexer Block Diagram

Value of laboratory testing: Improved Seascan performance

- Approx. 190 years total bottom time, 500 deployments
- Clocks are recalibrated after testing as necessary
- Most deployments within manufacturer's specs
- Histograms show significant improvements in calibration and temperature coefficients
- Not visible are effects of weeding out clocks with non-linearities

Lab testing protocol with Seascan multiplexer

- Typical test cycle simulates a deployment
- Run at 25 °C for a few days, drop rapidly to 3 °C and hold for a few days to a few months, then return to 25 °C

One time base showing temperature shock and other non-linearities on 3 separate tests

4 Time bases, before and after recalibration

23 Timebases, actual timing errors after linear drift correction in lab

Symmetricom Chip Scale Atomic Clock

- Seismology needs better performance than spec of Seascan
- Non-linear drift correction and careful testing and selection helps, but not good enough
- Symmetricom, Inc. of San Jose California developed world's first (and only) commercial chip scale atomic clock
- Constructed using MEMS technology
- Developed with DARPA grant
- Over an order of magnitude lower power than lowest power standard atomic clock
- Performance approaches that of standard Rubidium clock
- WHOI OBS lab received one of the first commercial prototypes

Symmetricom Chip Scale Atomic Clock

- Manufacturer's Specifications:

- Power consumption < 120 mW
- 1.6 x 1.39 x 0.45 inches
- Frequency accuracy +/- 5e-10 over temperature range
- Temperature range of -10 °C to +70 °C
- Jitter <1 nanosecond (Allan Deviation <1.5e-10 at 1 second,
 <1.5e-11 at 100 seconds)
- It provides 10 MHz and 1 Hz outputs.
- Internal "time of day" counter
- Can discipline to external 1 Hz reference

WHOI CSAC interface board

- Regulates power
- Maintains internal real time clock, set manually or by NMEA string
- Simulates an NMEA output for Q330
- Built-in phase meter accurate to 100nS
- Automatically logs engineering values, including phase
- Multiple input and output options (logic level and open collector pulse per second; RS-232 and open collector serial)
- Backup battery input

CSAC performance in lab over 3 month test

Elapsed Time (Weeks)

CSAC performance, first 6 month deployment

CSAC #	Deployment average drift rate (PPB)	Post recovery aging rate over last month (PPB/ month)	Notes
1104CS00304	-0.023	0.043	Deployed for ~6 months
1103CS00255	-0.049	0.014	Deployed for ~6 months
1104CS00379	0.071	0.090	Deployed for ~6 months
1104CS00362	0.107	0.038	Deployed for ~6 months
1106CS00594	0.110	0.155	Deployed for ~6 months
1104CS00372	-0.236	0.042	Deployed for ~6 months
1102CS00227	-0.256	-0.117	Deployed for ~6 months
1106CS00447	-0.367	-0.043	Deployed for ~6 months
1104CS00353	0.800	0.157	Not deployed
1102CS00239	-1.170	-0.043	Deployed for ~6 months
1103CS00300	-1.243	-0.768	Deployed for ~6 months
1101CS00199	-1.562	-0.063	Deployed for ~6 months
1102CS00209	-2.634	-1.759	Deployed for ~6 months
1101CS00193	-3.542	0.020	Deployed for ~6 months
1101CS00198	-4.891	-0.163	Not deployed. Vacuum leak!

Retrace and aging

- Aging spec is <3e-10 per month, not to exceed <1e-9 per year
- Doesn't apply for first month after power up due to retrace
- Each time the CSAC is power cycled it will need to "age in" again
- We use battery to keep it powered during shipment
- High failure rate seen in year 1 of Cascadia initiative.
- We saw 3 failures out of 19 clocks tested
- Symmetricom claimed 0.5% failure rate overall
- All of the failures we saw were in very early production units
- Dramatic improvement in results seen after first Cascadia deployment

CSAC performance, Cascadia Years 1-3

	Cascadia year 1 (~6 mo)		Cascadia year 2 (~10 mo)		Cascadia year 3 (~10 mo)	
	Rate (ms/day)	Drift (ms)	Rate (ms/day)	Drift (ms)	Rate (ms/day)	Drift (ms)
1104CS00303	#N/A	#N/A	0.035	10.02	0.030	8.47
1103CS00255	-0.004	-0.77	-0.026	-7.45	-0.088	-24.77
1104CS00354	#N/A	#N/A	0.077	22.01	0.043	12.06
1106CS00447	-0.032	-5.56	-0.035	-10.09	-0.035	-9.89
1104CS00379	0.006	1.07	0.029	8.17	0.002	0.51
1102CS00239	-0.101	-17.88	-0.023	-6.70	-0.027	-7.77
1104CS00304	-0.002	-0.36	0.063	17.93	0.040	11.33
1101CS00193	-0.326	-57.50	-0.004	-1.28	0.000	0.13
1104CS00362	0.009	1.57	0.026	7.32	0.018	6.02
1104CS00353	0.069	9.26	0.048	13.79	0.012	3.47
1106CS00594	0.011	1.81	0.052	14.88	0.021	5.88
1104CS00372	-0.020	-3.61	-0.035	-12.27	-0.020	-5.35
1103CS00281	#N/A	#N/A	0.072	20.61	0.050	14.04
1102CS00227	-0.022	-3.88	0.004	1.10	0.001	0.16
CSAC Max:	0.069	9.26	0.077	22.01	0.050	14.04
CSAC Min:	-0.326	-57.50	-0.035	-12.27	-0.088	-24.77
CSAC Avg (Abs):	0.055	9.39	0.038	10.97	0.028	7.85
Seascan Max:	1.720	305.23	1.661	473.27	1.780	509.52
Seascan Min:	-0.300	-54.27	-0.388	-111.88	-0.330	-97.63
Seascan Avg (Abs):	0.900	158.46	0.858	245.18	0.930	263.75

Historical WHOI clock performance

Current status of CSAC production

- Symmetricom has been purchased by Microsemi
- Serious production issues (likely not related to Microsemi acquisition)
- CSACs currently sold only under waiver reducing max storage and operating temperature to 35 deg C, and increasing aging spec by factor of 10
- Significant failure rate due to loss of vacuum, exacerbated by elevated temperatures
- Production issues began sometime around 2012 or 2013
- Watch for increases in HeatP in status for indication vacuum leak – should be around 10 to 15 mW; cannot maintain temperature above ~35mW
- Fixes are being implemented, but improved parts will not be available until December 2015 at the earliest

Six CSACs being tested at WHOI

Summary

Seascan Timebase

- 5e-8 stability
- ~1 microsecond jitter
- -5 to 35 °C
- Return to factory for recalibration
- 5mW
- Good enough for many applications
- Important to understand non-linearities

Symmetricom CSAC

- <1e-9 stability (temperature, magnetics, supply voltage)
- ~1 nanosecond jitter
- -10 to 75 °C
- Discipline to GPS
- 120mW
- Significantly better performance at cost of higher power
- Important to understand aging effects

Cascadia CSAC measured drift rates

Summary of results from Seascan testing

- After years in service, many clocks had large static frequency errors and incorrect temperature coefficients near to or exceeding the 5e-8 spec.
- Factory recalibration corrected these problems; however, assuming a constant temperature on the seafloor, these problems will be corrected by linear drift corrections anyway.
- Most clocks show some long term change in frequency error after a temperature change. This can represent a significant non-linear error, which cannot be easily corrected.
- The shape of the frequency error curve after a change in temperature for each clock is consistent.
- Recalibration does not change the shape of the frequency error curve.
- Other effects such as aging and random variations observed, but generally small compared to temperature shock.