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Abstract Analyses of fault attributes have contributed to unraveling fault growth processes in diverse
tectonic settings. By integrating such analysis at the scale of a fault population, we propose to investigate
the characteristics of a rift that has evolved up to a stage typical of a continent-ocean transition. We
address this problem by considering Dabbahu-Manda-Hararo (DMH) rift segment (Central Afar,
Ethiopia), recognized for being in a late rifting stage. We quantify fault azimuth, length, and throw
attributes for 668 normal faults. Along DMH rift, the mean fault density is 0.87 ± 0.7 km/km2 and the
median tectonic strain ranges from 1.8% to 3.1% assuming a fault dip of 60° and 45°, respectively.
Maximum tectonic strain (>10%) is found where the rift azimuth changes. Along-rift variations in fault
azimuth, length, and scaling relationships suggest a different stage of rifting in the northern part of the
rift. We show that this difference can be attributed to the influence of the Dabbahu volcano located at the
northern tip of the rift, which captured the propagating Manda-Hararo rift in the last ~100 kyr. The
morpho-tectonic analysis reveals numerous common features with slow-spreading ridge segments, such as
the Lucky Strike segment located along the Mid-Atlantic ridge (segment length, spreading rate, associated
magmatic system) but also with intermediate and fast ones (axial valley, fault throws, and diking). This
study reveals that a rift at the continent-ocean transition may be characterized by a transient and
evolutionary behavior that shares features with oceanic ridges from slow- to fast-spreading rates.

Plain Language Summary East Africa forms one of the best locations around the world for
studying rifting processes. In the Afar depression, three limits of tectonic plates meet to break up the
African continent. Faults and volcanism shape rift morphology, and they both participate in the continental
breakup. We study 668 faults along the Dabbahu-Manda-Hararo rift that is close to give birth to an ocean.
We focus on how faults develop by measuring their length, their height, orientation, and number in a given
area. Our analysis shows that in the northern part of the rift, faults develop in a singular way, illustrated
by their unusual great length at the rift axis. We gather evidences of the specificity of faults located in this
area, and we link them to the presence of Dabbahu volcano that developed ~100 kyr ago in this area. We also
compare our rift to a slow oceanic ridge located in Atlantic with which it shares numerous features
(spreading rate, morphology, andmagmatic system). This comparison leads us to discuss how different these
extensional systems are and to better understand the transition between a continent and an ocean.

1. Introduction

The formation and development of fractures and faults under tectonic forces accommodate strain within the
brittle crust at scales ranging from millimeters to kilometers. In extensional environments, fault analyses
over a wide range of spatial and temporal scales provide insights into the physical mechanisms and condi-
tions of fault growth as well as fault evolution (Cartwright et al., 1995; Cowie & Scholz, 1992a; Dauteuil et
al., 2001; Manighetti, King, et al., 2001; Perrin et al., 2016). Among the various approaches addressing these
processes, studies have evaluated fault attributes such as fault azimuth, length, cumulative displacement,
spacing, or damage zone width, to characterize a fault population using a collection of individual fault
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segments (Kolyukhin & Torabi, 2012; Soliva & Schultz, 2008; Torabi & Berg, 2011). Besides testing models of
fault growth, these quantitative parameters and their variations are also useful to estimate tectonic strain
and to decipher the role of faulting in shaping the topography (e.g., Cowie et al., 1993; De Chabalier &
Avouac, 1994; Deschamps et al., 2005, 2007). This approach has been widely used to investigate the growth
of fault populations as a result of rifting or oceanic spreading processes (e.g., Bohnenstiehl & Carbotte, 2001;
Deschamps et al., 2005, 2007).

Studies of continental rifts, volcanic and non-volcanic passive margins using a wide range of techniques
from observations to numerical modeling have greatly improved our understanding of the different stages
of continental rifting leading to continental breakup. In magmatic context, the respective role of tectonics
and magmatism and their interactions is more complex to evaluate (Acocella, 2014; Bastow & Keir, 2011;
Behn et al., 2002; Buck, 2004; Corti, 2012; Courtillot, 1982; Didana et al., 2014; Ebinger & Casey, 2001;
Geoffroy, 2005; Hayward & Ebinger, 1996; Kusznir & Karner, 2007; Liao & Gerya, 2015; Rooney et al.,
2014; Stab et al., 2016). Buck (2004) showed that with magmatism the tectonic forces required to separate
two plates are about one tenth compared to amagmatic rifting. In addition to facilitating plate separation,
dike intrusions progressively modify the thermal and compositional structure of the continental lithosphere,
which is thinned during the continent-ocean transition.

The transition from continental rifting to oceanic spreading is accompanied by an increase in magmatism
at the expense of faulting (Hayward & Ebinger, 1996), making magmatism the main process accommodat-
ing the extension between tectonic plates (Ebinger & Casey, 2001). The role of faulting and its interaction
and partitioning with magmatism during continental breakup have been addressed through multiple stu-
dies (Acocella, 2014; Behn et al., 2002; Belachew et al., 2013; Casey et al., 2006; Corti et al., 2003;
Ebinger & Casey, 2001; Ebinger et al., 2017; Hayward & Ebinger, 1996). In particular, many studies have
focused on the faults of the East African Rift System (EARS) and the Afar depression to quantify the
amount of tectonic strain (i.e., stretching and thinning) with respect to magma intrusion (Acocella et al.,
2008; Agostini et al., 2011; Corti, 2012; Gupta & Scholz, 2000; Keir et al., 2006, 2009; Manighetti, King,
et al., 2001) in the overall process of continental breakup. For continental magmatic rifts, the few estimates
of the tectonic strain accommodated by faults show a relatively wide range of values, between a few percent
and 15% (De Chabalier & Avouac, 1994; Gupta & Scholz, 2000). Beyond the techniques used, such varia-
tions provide insights about the different stages of rifting, as well as the variations in faulting along the rift
axis. Is the strain released in a similar way at the magmatic center and rift tips? How similar a fault popula-
tion of a continent-ocean transition rift is to those of oceanic ridges? What does this similarity imply for the
continental breakup? To address these questions, the continental rift of Dabbahu-Manda-Hararo (DMH)
located in Ethiopian Afar is among the best candidates to properly characterize the nature of faulting dur-
ing the continent-ocean transition and onset of seafloor spreading. In a late stage of rifting, the DMH rift
has hosted an intrusive sequence of 14 dikes between 2005 and 2010 (Wright et al., 2012) that have
reshaped the rift topography by both fault activation and effusive volcanism (Barnie et al., 2016; Dumont
et al., 2016; Ferguson et al., 2010; Grandin et al., 2009; Hamling et al., 2009; Rowland et al., 2007).
Situated in an arid region, fault scarps along the DMH rift are well protected from erosion (Stein et al.,
1991), thus allowing detailed analysis of displacement-length (D-L) profiles (Dumont et al., 2017).
Although Dumont et al. (2017) considered 357 normal faults along the DMH rift, they restricted the study
to the shapes of D-L profiles, thus providing only insights on long-term lateral fault propagation in a
magma-rich rift.

Here we characterize 668 individual fault segments using several fault attributes including geometry, fault
trace, and vertical throws, to shed lights on fault growth processes and strain distribution, as well as their
variations along DMH rift. The DMH rift geometry and in particular the change of azimuth of the main axis
and associated fault network, impact the process of fault growth and its evolution. Furthermore, recent stu-
dies have shownmagmato-tectonic interactions at the northern rift tip involving the Dabbahu stratovolcano
(Ayele et al., 2007; Dumont et al., 2016; Grandin et al., 2009; Medynski et al., 2013, 2016; Wright et al., 2006),
leading us to consider the potential interplay between the fault population and the volcano on the process of
fault growth and its evolution. Integrating the results of fault attribute analyses at the rift scale leads us to
propose a conceptual model to describe the DMH rift evolution. To further explore the behavior of the
ocean-continent transition rift, we compare our morpho-structural analyses and subsequent strain estimates
to those for oceanic ridges. To this end, we consider Lucky Strike, a slow oceanic spreading center (North
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Atlantic) that shares features (spreading rate, morphology, and magma plumbing system) with DMH rift
(Figure 1 and Table 2) and where magmato-tectonic processes have been well characterized (e.g., Cannat
et al., 1999; Escartín et al., 2014). This detailed comparison offers an opportunity to better capture
specificities of a late stage of continental breakup.

2. Tectonic Setting

The Afar Depression is a diffuse triple junction where the Gulf of Aden (GA) oceanic ridge and the Red Sea
(RS) rift systems, overlap in Central Afar and meet the EARS (Figure 2a; Barberi & Varet, 1977; Ehrhardt &
Hübscher, 2015; Manighetti, Tapponnier, et al., 2001). Along the three rift branches, extension and volcan-
ism are concentrated along rift segments (Casey et al., 2006; Hayward & Ebinger, 1996). This triple junction
formed after the flood basalt magmatism known as Ethiopian-Yemen traps, dated about 30 ± 1 Myr ago
(Hofmann et al., 1997) and that led to rifting in the region (Courtillot et al., 1999; Ebinger et al., 2017).
This continental breakup is characterized by a period of distributed stretching, ~29 to 26 Myr ago, followed
by a period of thinning, from 23 Myr to ~7 Myr (Stab et al., 2016, and references therein). A late phase of
flood basalt, known as the “Stratoid series,” occurred from ~1 to ~4 Myr ago and covered about two thirds
of the Afar depression (Lahitte et al., 2003, and references therein). At the top of the Stratoid series between
~1.1 and ~0.6 Myr, a new form of volcanism, known as the “Gulf Basalt” formation, developed. The Gulf
Basalts are characterized by the localized emission of basaltic lava flows along large faults dissecting massive
silicic centers (Kidane et al., 2003; Stab et al., 2016). This formation is recognized as part of a regional loca-
lizing phase (Stab et al., 2016). The mantle seismic velocity structure underlying the Afar depression reveals
narrow low-velocity zones below the rift segments, interpreted as segmented mantle upwelling beneath Afar

Figure 1. Morphological comparison between Lucky Strike oceanic spreading segment (left) and Dabbahu-Manda-Hararo rift (right). A similar color scale allows
to emphasize similarities between the two systems such as the transversal volcanic constructs that are rifted by normal faults. The borders of the neovolcanic zones
(rift valley) are delimited by black lines. At Dabbahu-Manda-Hararo rift, off-axis volcanism is shown using blue rectangle (Dessisa et al., 2013; Medynski et al.,
2015). At Lucky Strike oceanic spreading segment, the Menez Hom relief is associated with ultramafic rocks and the nontransform offsets (NTO) are characterized
by complex structures with faulting, tectonic rotation, and uplift (Escartín et al., 2014).
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(Gallacher et al., 2016; Hammond et al., 2013). The narrowing and localization of deformation are attributed
to variations in magma supply and volatiles that directly impact the lithosphere rheology (Ebinger et al.,
2017; Stab et al., 2016). Using tectonic observations and geochronological measurements along the Asal-
Ghoubbet and Manda Inakir rifts, Manighetti et al. (1998) proposed that the GA ridge is propagating
northwestward on land, following the western boundary of the continental Danakil block (Figure 2a).
Combining multi-scale observations and geometrical and mechanical arguments, they also suggested a
southeastward propagation of the RS rift segments, primarily controlled by the minimum horizontal
principal stress. Moreover, an analysis of along-axis segmentation revealed an evolutionary sequence from
early continental rifting to incipient seafloor spreading (Chorowicz, 2005; Hayward & Ebinger, 1996).
From EARS to Afar, there is an increase in extension and magmatism that is linked to a decrease in the

Figure 2. magmato-tectonic setting of Dabbahu-Manda-Hararo (DMH) rift. (a) magmato-tectonic rifts composing the three branches of the Afar triple junction, the
Red Sea and Aden ridges as well as the system of the east African rifts. The arrows associated to rift segments represent the direction of rift propagation. After Figure
26 from Manighetti, Tapponnier, et al. (2001). (b) Topographic map of DMH rift including the mapping of the 668 faults considered in this study (blue lines). In
addition to the mid-segment magma chamber, other magma sources are also indicated: Ado’Ale volcanic complex, Dabbahu and Gabho volcanoes. Along the rift
axis, three rift segments are defined (north, center, and south, dark brown dotted lines) based on morphological and structural observations (see text for more
details). Topographic profiles (black dashed lines) across these three segments are shown in (c).
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segment length, fault dimension, elastic and lithospheric thicknesses (supporting information Table S1;
Casey et al., 2006; Ebinger et al., 2017; Hammond et al., 2011; Hayward & Ebinger, 1996; Kogan et al.,
2012). Similarly, crustal anisotropy increases from EARS to Afar. The magnitude of anisotropy is higher
along Quaternary-Recent rift segments where strain is accommodated by magmato-tectonic processes
(Keir et al., 2011). Finally, the margin subsidence associated with a voluminous emission of basalts in a
heavily intruded and weakened plate characterizes the ultimate stage of thinning (Bastow & Keir, 2011).
This latest stage, which precedes the onset of seafloor spreading, was only evidenced in the northernmost
part of Afar.

Located along the RS ridge, the DMH rift consists of a ~60-km-long and ~20-km-wide volcano-tectonic seg-
ment where faulting and volcanism have been localized since ~1.0–1.5 Myr (Audin et al., 2004). Following
the emplacement of the Gulf Basalt formation, the magmato-tectonic activity decreased significantly in rela-
tion to the northward inland Aden-Ghoubbet rift propagation (Acocella et al., 2008; Audin et al., 2004). After
0.2 Myr, the accumulated strain turned to be released through short but intense and localized phases of mag-
matism, as illustrated by the last 2005–2010 rifting episode (Stab et al., 2016; Wright et al., 2012). The DMH
rift accommodates most of the 15 mm/year divergence between Nubia and Arabia plates (Figure 2a; e.g.,
Vigny et al., 2006). Similar to other rift segments in Afar, the DMH rift hosts at its center a silicic volcanic
complex, the Ado’Ale Volcanic Complex (AVC), which has been intensely dismantled by large normal faults
(Figures 1, 2b, and 2c; Lahitte, Gillot, & Courtillot, 2003; Lahitte, Gillot, Kidane, et al., 2003). Widespread
deformation and high density of short faults in this area characterize long-term magmato-tectonic interac-
tions (Dumont et al., 2017). The location of the AVC also coincides with a change in rift azimuth. South
of AVC, the main graben and normal faults are oriented ~N150°, and therefore orthogonal to the N055°
extension direction of the Arabia/Nubia divergence, while North of AVC the tectonic structures are oriented
N165° (Figure 2b; Rowland et al., 2007).

At its northern tip, the DMH rift hosts the ~10 km in diameter Dabbahu stratovolcano (Figure 2b). The effu-
sive activity of this volcano was particularly intense 72–58 kyr ago, when it resurfaced the topography north
of AVC (Medynski et al., 2013). Its plumbing system may include a series of stacked sills at depths ranging
from 1 to 5 km, based on petrogeochemical and geophysical analyses and point toward the existence of a
long-lived underlying magma storage (Field et al., 2012). Moreover, geodetic and seismic data have shown
that both the Dabbahu and the nearby Gabho volcano (Figure 2b) were involved in the first and longest dike
intrusion (~60-km long) of the 2005–2010 rifting episode, explaining why the first and largest dike intruded
the eastern rift shoulder north of AVC (Grandin et al., 2009).

At the rift center, a magmatic system, later named “mid-segment magma chamber” or MSMC (Figure 2b),
was identified during the last rifting episode as the main feeder of the dikes injected between June 2006
and May 2010 (Belachew et al., 2011; Grandin et al., 2010; Hamling et al., 2009; Wright et al., 2012).
Although shifted ~5 km southward with respect to the axial position of AVC (Figure 2), MSMC belongs to
AVC’s magma plumbing system located at the rift center (Dumont et al., 2017). In the following sections,
we will not discriminate MSMC from AVC when dealing with the long-term magmatic plumbing system
at the rift center. In that case, we will use the name AVC. Magmato-tectonic interactions have also been
observed around MSMC over months following dike intrusions in connection with transient surface defor-
mation caused by refilling processes in the shallow magma chamber (Dumont et al., 2016; Grandin et al.,
2010). In addition, recent geodetic studies have shown that viscoelastic relaxation could not explain alone
the high-rate displacements measured in the years following the rifting episode suggesting that magma kept
playing a key role in the surface deformation (Hamling et al., 2014; Pagli et al., 2014).

3. Material and Methods

To characterize fault growth processes both at the fault and rift scales, we quantify fault attributes through
detailed fault mapping. Mapping was performed using various data sets (see supporting information, Figure
S1), including panchromatic Quickbird images (with a 60-cm ground resolution), SPOT-5 images (2.5-m
resolution), and a 10-m-accuracy DEM generated from SPOT-5 stereo images (20-m resolution). These data
sets were complemented by Interferometric Synthetic Aperture Radar (InSAR) images spanning the post-
September 2005 period (20-m resolution). Eventually, a total of 668 faults were mapped along DMH rift
(Figure 2b; Dumont et al., 2016). This structural map extends primarily over the neovolcanic zone (<0.6
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Myr) and also over the Gulf Basalt series (1.1–0.6 Myr) composing the rift flanks including the AVC (Kidane
et al., 2003; Stab et al., 2016). The oldest dating of fault scarp available on the rift eastern flank goes back to
~200 kyr (Ferguson et al., 2013), a time interval we tackle with this study. Our fault mapping includes the
most recent magmato-tectonic events up to May 2007, the date of the latest optical images used for this
map (Figure 2b; Dumont et al., 2016). Recent volcanism (<2 kyr) in the rift center prevented us from iden-
tifying numerous of the most recent tectonic structures there (Ferguson et al., 2010). The two eruptions of
August 2007 and June 2009 covered areas of 2.2 and 4.5 km2 respectively, south of the center of MSMC
(~12.25°N, 40.67°E), likely covering faults (Ferguson et al., 2010). In May 2010, the smaller and latest lava
field of the 2005–2010 rifting episode (0.23 × 106 m3) formed, ~10 km north of these two eruptions
(~12.33°N, 40.62°E, Barnie et al., 2016), covering a part of a >11-m-high fault we mapped.

We measured the following fault parameters: along-strike vertical throws, length, and azimuth. Fault strike
is defined from the end points of each individual fault, sincemost faults are overall linear. Scarp heights were
measured through a series of short profiles perpendicular to local fault strike, spaced laterally by ~15m along
the fault length. For each profile, the scarp height was quantified by subtracting the elevation of the bottom
from the elevation of the top of the fault scarp, which were estimated by fitting linear regressions of the topo-
graphic slopes on each side of the fault (Dumont et al., 2016). Fault map was also used to compute the fault
density along DMH rift. Fault density was measured as the cumulative fault length per area, using a 1 × 1
km2 sliding window with a 500-m overlap, a method that was also used along the slow-spreading Lucky
Strike ridge segment (Escartín et al., 2014).

Following Bohnenstiehl and Carbotte (2001), we have estimated the strain accommodated by normal faults
across the rift to evaluate the role of faulting in rifting processes. We calculate the cumulative sum of all ver-
tical scarp heights along profiles normal to the rift starting from the morphological rift axis (white dotted
line, Figures 2b and 5a). Horizontal extension can be calculated assuming a fault dip. The calculated strain
(horizontal strain divided by profile length) is thus influenced by fault angle (see supporting information,
Figure S2). At the DMH rift segment, analysis of focal mechanisms forMw> 3.5 earthquakes during the pro-
pagation of the November 2007 and October 2008 dikes suggests mean fault dips of 62.2° ± 9.7° (Belachew
et al., 2013). We therefore reduced the range of fault dips to two end-member dips, 45° and 60° to calculate
strain along profiles. These fault dips are actually also used in other similar studies (e.g., Bohnenstiehl &
Carbotte, 2001; Combier et al., 2015), thus facilitating comparison of results from different areas.

4. General Morphostructural Analysis of DMH Rift

We used along-axis morpho-tectonic changes to subdivide DMH rift into the north, center and south seg-
ments (Figure 2b). The geomorphology of the north segment is characterized by a change in the rift azimuth
(N165° instead of N150°) that takes place between N12.35° and N12.45°, north of AVC (Figure 2b; Dumont,
2013). There, the rift axis is much less prominent than elsewhere along the rift (Figures 2b and 2c). The rift
valley is mostly asymmetrical (west dipping faults) and narrow (maximum width ~4 km and depth ~50 m).
The north segment is considered as a representative of the interaction between Manda-Hararo (MH) rift and
Dabbahu volcano (Figure 2c; Medynski et al., 2013, 2016). At the rift center, the prominent relief of AVC is
intensely faulted, showing a transition zone between the northern and southern axial valley morphologies.
Thus, the center segment is defined by a prominent topography (100–150m) and a rift axis that is not so well-
defined evidencing the interaction between the rift axis and the AVC (Figures 2b and 2c). The south segment
of the rift corresponds to a well-defined and symmetrical rift axis (~10-km wide and ~100-m deep), in con-
trast with that of the north segment. In addition, normal fault scarps are subvertical all along the rift. Tilted
blocks are absent along the rift margins, except very locally along the northeastern rift shoulder (north seg-
ment). Such absence of tilted block has been interpreted as the result of specific interactions between the
local topography and dike intrusions at crustal depths (Dumont et al., 2016).

When comparing these morphological observations to the fault density map (Figure 3), two areas with rela-
tive high fault density appear: in the northern part of the north segment and at the rift center. In the north
segment, the highest fault density exceeds 6 km/km2 in the morphological axial depression. A high fault
density, ~2–3 km/km2, is also detected along the western flank of the graben formed in September 2005.
These values reflect a dense population of long faults in this rift area, both along and off the rift axis (support-
ing information, Figure S3). At the rift center, the largest area with a high fault density, ~2–3 km/km2, is
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observed on the northwestern side of the small caldera. In the center and
south segments, fault densities with similar values are more scattered, but
they tend to concentrate along the borders of the deforming area induced
by the September 2005, and they may indicate areas where dikes intruded
fromAVC tend to be repeatedly emplaced. Further south, the fault density
is lower, in particular, at the graben axis.

5. Fault Attribute Distribution and Scaling Laws
5.1. Fault Attributes

We consider here the distribution of fault azimuth and fault length along
the rift. The rose diagram of fault orientation normalized by fault length
(Figure 4a, left) reveals that the fault azimuth distribution shows along-
rift axis variations. This is illustrated by the obliquity plot (azimuth
deviation from the normal to the extension direction) for four groups
of fault with different lengths (Figure 4a, right). The azimuth deviation
is calculated with respect to the regional extension direction defined geo-
detically after Vigny et al. (2006). The highest obliquity values occur at
rift tips, reaching 30–35° and 20–25° for the north and south rift seg-
ments, respectively. The smallest obliquity values are measured at the
rift center in the narrow band, where magmatism has been localized
for the last 20 kyr (Dumont et al., 2017), and also at the northernmost
part of the rift (Figure 4a, right). The fault obliquity is thus increasing
from the rift center toward both rift tips, although it is more pronounced
northward (~21° per 0.1° of latitude) than southward (~21° per 0.1° of
latitude). Faults with largest obliquity are located between the
Dabbahu volcano and the AVC around ~12.5°N, where the rift shows
also a change in azimuth. Fault azimuth appears to be subparallel to a
line linking these two volcanic edifices (Figure 2b and supporting infor-
mation, Figure S4). We also observe that faults with L > 4 km, which
represent 10% of our fault population, are located both at the rift
shoulders and at the rift axis in the north rift segment while they are
most exclusively located at the rift shoulders elsewhere along the rift
(supporting information, Figure S3).

5.2. Displacement-Length Relationship

The assumed relationship between the cumulative displacement (D) and
fault length (L): D = γLn, includes γ, a parameter related to rock mechan-
ical properties and n, the exponent reflecting the fault growth conditions
(1 ≤ n ≤ 2; Scholz, 2002). This latter parameter means that mixing D-L
measurements from different fault systems might likely contribute to
the scattering of D-L relationship (Cowie & Scholz, 1992b; Kim &

Sanderson, 2005; Torabi & Berg, 2011). Therefore, we chose to compare our measurements only with data
from the Afar region (Figure 4b) because of the similarity of tectonic regimes and crustal materials
(Ebinger & Hayward, 1996; Hammond et al., 2011, 2013; Manighetti et al., 1998; Manighetti, Tapponnier,
et al., 2001; Redfield et al., 2003). Hence, we used data from Manighetti, King, et al. (2001) that includes
faults from (1) Asal-Ghoubbet rift, with Asal representing the “inland” and Ghoubbet the “submarine” parts
of the termination of the propagating Aden oceanic ridge, both being among the most recent and active rift
segments of the Afar depression where magmatism and faulting accommodate most of the extension; (2)
Central Afar of which 90% of the faults are from the center of the Afar depression and 10% of the faults
are from the northern tip of EAR. These faults are associated with a more distributed deformation than that
along rift segments and are not related to any kind of volcanism. These faults do not accommodate more
than 15% of the total strain, although they include some of the larger, older (~2 Myr), and less active faults
(≤1–2 mm/year) identified in the area. Figure 4b shows significant scattering in the data, which is common

Figure 3. Fault density of the 668 faults mapped along the Dabbahu-
Manda-Hararo rift. Fault density is measured as the cumulative fault
length within 1 × 1 km boxes in the area defined by the dashed line. Dark
gray lines represent the borders of the September 2005 dike-induced graben
(after Grandin et al., 2009), the black filled circle indicates the mid-segment
magma chamber center and the black oval the small caldera located at the
rift axis. Dotted black line defines the area where the dikes from June 2006 to
May 2010 emplaced. Light gray lines correspond to 10 m topographic
contours.
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for these kinds of fault measurements. However, as for the data of Asal-Ghoubbet and Central Afar, our data
roughly aligns along slopes between 0.004 and 0.07. Thus, besides scattering, D-L measurements for DMH
are more similar with measurements from Asal-Ghoubbet than with measurements derived from data
from Central Afar that systematically yield higher ratio.

5.3. Scaling Laws

To account for the incompleteness of sampling or data discretization (Bonnet et al., 2001) for each of the
three segments of DMH rift, we decided to analyze fault populations using two modes of representation, a

Figure 4. Fault attribute analysis including fault azimuth (a), displacement-length (D-L) relationship (b), and scaling laws (c). Analysis of fault azimuths (a) relies
on a rose diagram (left) that represents the distribution of fault azimuth normalized by fault length and an obliquity plot (right) showing the deviation from
the normal to the direction of extension plotted as a function of the latitude. The direction of extension at 49.3° (Dumont et al., 2017) is indicated as well as its
normal (dashed line). For the obliquity plot (a), each fault is represented by its median latitude, length, and azimuth and then all faults were split into four groups
depending on their length. (b) D-L measurements at DMH rift are compared to those of Central Afar, Asal, and Ghoubbet rifts (modified from Manighetti,
King, et al., 2001). (c) Scaling laws are evaluated for fault length distribution for the segments north, center, and south located along Dabbahu-Manda-Hararo rift.
For all segments, a cumulative distribution of fault length is presented in a log-log plot as well as a log-normal one (small insets). The parameters of both exponential
(blue curves) or power laws (orange curves) are indicated on each plot.
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cumulative log-log plot of fault lengths and a cumulative log-normal plot (Figure 4c). The exponential and
power laws represent the two end-members of fault growth processes. To estimate the law parameters, we
used 300 bootstrap loops, each of them sampling randomly two thirds of the data (Efron & Tibshirani, 1986).

Using both representation modes, similar observations can be done for the central and south segments
(Figure 4c), which are both sub-perpendicular to the regional extension direction. For these two data sets,
exponential laws fit better the fault length distribution, while the power law only explains a part of the full
fault length range we observe, with a high and low cutoff lengths. Conversely, the power law seems to

Figure 5. Along-rift axis variations of cumulative vertical throw and strain. Cumulative vertical throws are calculated
along profiles normal to the direction of extension (a). The different gray tons are used to differentiate the
(b)–(e) plots, while the dashed/full lines allow to identify if the profiles belong to the north, center, or south rift segments.
The blue rectangle identifies profiles where the strain peak is observed in (f)–(g). (b–e) Cumulative vertical throws from
the morphological rift axis toward rift margins. The degrading allows to locate the profiles from north to south on (a).
(f) Strain estimates are deduced from the cumulative throws calculated along profiles shown in (a), (g) strain evaluated for the
eastern and western rift flanks and (h) along-strike asymmetry calculated as the ratio between the strain on the eastern
relative to the western flank. Strain is estimated for two end-member dips, for example, 60° (brown) and 45° (green). Filled
lines represents the 75th percentiles of strain for each profile, dots the median, and dashed lines the 25th percentiles.
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provide a better fit for most fault lengths in the north segment, which is oblique to the extension direction.
The curvature in the log-log plot cannot be reproduced with a simple exponential model. The power law
seems to preferentially fit data for lengths larger than ~1–1.5 km and up to 5–7.5 km, according to the log-
normal plot, although it cannot explain the large number of long faults in the area. This scaling law analysis
suggests that fault growth processes differ laterally along the DMH rift, with the north segment concentrat-
ing a large number of long faults.

6. Role of Faulting in Rifting Processes: Strain Estimates

Strain analysis along individual profiles show that regardless of the fault dip assumed, two thirds of the
extension is accommodated along a narrow band that extends up to 2.5–5 km from the rift axis in the north
and center segments (Figures 5a–5c). Southward, the width of this band increases to ~10–15 km, in an area
where few faults are found near the rift axis (Figures 5d and 5e). This might be related to significant effusive
volcanism covering faults and masking strain, or more distributed strain (Ferguson et al., 2010).

Figures 5f and 5g shows strain estimates based on fault dips of 45° and 60°, and its partition at both rift flanks to
estimate asymmetry in extension (Figure 5h). Themaximum strain alongDMH rift is found at ~12.37°N, north of
AVC in the center segment (Figure 5f) and estimated at ~12% and ~20% assuming a 60° and 45° dipping fault,
respectively (Table 1). From this point, total strain decreases northward to reach a minimum (<2%) at
~12.44°N, to increase again toward Dabbahu volcano with median values of ~3% and 8%, for 60° and 45° dips,
respectively (Figure 5f). South of the strain maximum, strain estimates are stable with median values of ~2%
and ~5%, decreasing at the southern rift tip. In addition to along-axis variations in strain, there is a clear asymme-
try, with the eastern flank displaying systematically higher strain than the western one (Table 1 and Figure 5h).
This trend is reversed at the southern tip of the rift, as the western margin accommodates 2.5% to 3% and>5% of
extension assuming fault dips of 60° and 45°, respectively, while the eastern margin accounts for ~1% and ~2.5%
(Figure 5g). For the south segment, the maximum in tectonic strain is mostly accommodated at the eastern flank
where it reaches ~10% and >15%, respectively, for 60° and 45° fault dips (Figure 5g and Table 1).

7. Discussion
7.1. Unusual Character of the North Rift Segment

The analysis of fault attributes highlight the difference in faulting patterns along the north segment of the
DMH rift, relative to the center and south segments (Table 1). In the north, long faults appear at the rift cen-
ter as well as on the rift margins (Figure 3 and supporting information, Figure S3). This observation is some-
how unusual as faults grow both laterally and vertically from the rift center so that eventually the largest
faults are located on the rift margins. Along DMH rift, dike intrusions accommodate most of the crustal
extension, with dike-induced faulting contributing to fault growth (Belachew et al., 2013; Ebinger et al.,
2008; Grandin et al., 2009; Hamling et al., 2009; Keir et al., 2011; Rowland et al., 2007). Actually, with
repeated dike intrusions, faults migrate progressively away from the rift axis where more energy is required
for faults to slip (Carbotte et al., 2006; Shaw & Lin, 1993). The presence of long faults at the rift center sug-
gests that a different mechanism is driving fault growth along the north segment. Other processes allowing
efficient fault lengthening may explain this observation, such as fault growth by linkage (Cartwright et al.,
1995) or through damage zones (Kim et al., 2004). These along-rift axis variations in fault growth processes
contribute also to the scattering of the D-L measurements (Kim & Sanderson, 2005). Other sources of D-L
scattering include measurement errors, inelastic deformation, and to a lesser extent, local changes in mate-
rial properties of the lithosphere (Cartwright et al., 1995; Kim & Sanderson, 2005).

With scaling laws, we have further analyzed fault growth processes over the three rift segments using two
end-member models (Figure 4c): the power law distribution corresponding to a self-similar growth process
thus scale independent, and exponential distributions that are scale dependent, and whose characteristic
length is often linked to the elastic thickness of the lithosphere (Cowie & Shipton, 1998; Soliva & Schultz,
2008). Exponential and power laws have been both recognized at oceanic ridges and continental rifts
(Bohnenstiehl & Carbotte, 2001; Bohnenstiehl & Kleinrock, 1999; Carbotte & Macdonald, 1994; Escartin
et al., 1999; Scholz & Cowie, 1990). Exponential distributions best explain fault data at both the center
and south segments of DMH rift (Figure 4c) and are generally interpreted as representing either an early
extension stage (Bonnet et al., 2001) or high extension rates (Spyropoulos et al., 2002). In contrast, the
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power laws are considered to be representative of intermediate spreading rates (Spyropoulos et al., 2002) and
correspond to lower amounts of deformation (Gupta & Scholz, 2000). Interestingly, only fault length
distribution of the North segment cannot be clearly identified by one of these two laws (Figure 4c). These
differences between the various rift segments, and especially differences with the north segment,
demonstrate that the state of fault growth varies along the rift. If we consider the characteristic length of the
exponential law as a proxy for elastic thickness (Cowie & Shipton, 1998) at the center and south segments,
they indicate, respectively, 2.9 and 4.3 km; no such estimate can be obtained for the north segment. These
estimates are much lower than the mean effective elastic thickness (Te) deduced from gravity and
topographical data for the Afar region, which is on the order of 5–12 km (Ebinger & Hayward, 1996;
Redfield et al., 2003). However, our estimates are consistent with values for thinned segments like
Djibouti/Tadjura rift or the Danakil Depression where Te is 5–6 km (Ebinger & Hayward, 1996). Our values
of elastic thickness is also in agreement at first order, with the detection of dike opening and shallow
seismicity that barely exceed 5–6 km in depth nearby MSMC (Belachew et al., 2011; Grandin et al., 2012,
and references therein). In contrast, for the north and south segments, dike opening was, respectively,
detected down to ~12 and 10 km (Belachew et al., 2011; Grandin et al., 2012). Interestingly, the propagation
rates during the 2006–2010 intrusive sequence also showed differences between the north and south
segments, with faster rates observed for northward propagating dikes (Barnie et al., 2016; Belachew et al.,
2011; Grandin et al., 2011). These observations point toward variations of the lithospheric conditions
between the North and South segments, including both structural (thickness, thermal and internal
structure) and dynamical properties (stress state; Barnie et al., 2016; Belachew et al., 2011; Dumont et al.,
2017; Grandin et al., 2011, 2012). The results are therefore in good agreement with (1) a thicker brittle layer
at segment ends than at the rift center where magma is stored and (2) a difference between the north and
south segments reflecting a different lithospheric structure and state of stress. We interpret these differences
as resulting from a less mature rifting stage in the north segment than in the south segment.

With the analysis of fault azimuths, we have shown that the largest azimuth deviations are located north of
N12.45° (Figure 4a and supporting information, Figure S4). This is just north of the change of rift azimuth
(Dumont, 2013) and north of the maximum tectonic strain detected along the rift (Figures 5f and 5g).
Furthermore, Dumont (2013) made several observations along the north segment suggesting that faults in
this area are more complex and sinuous than elsewhere along the rift. The authors observed also en
échelon faulting and recognized some dextral strike-slip components along some faults, in agreement with
some dextral strike-slip earthquakes detected in 1996 between the DMH and Alayta rifts (Hofstetter & Beyth,
2003). These observations, which provide long-term constraints on the extensional stresses, can be further
compared with the current state of stress of the plate boundary using focal source mechanisms for the
1996–2010 period (Figure 6; Ayele et al., 2009; Barnie et al., 2016; Belachew et al., 2013; Ebinger et al.,

Table 1
Summary of Fault Attributes and Their Variations in the Three Rift Segments Along the DMH Rift and at Lucky Strike Slow Spreading Ridge Segment

Whole DMH (N = 668) North segment (N = 146) South segment (N = 270) Center segment (N = 252) Lucky Strike (N = 1803)

Fault length (km) 1.9 ± 2.1 (1.2) 2.6 ± 3.4 (1.4) 1.9 ± 1.8 (1.3) 1.4 ± 1.3 (1.0) 0.25 ± 0.22 (0.19)
Length distribution — Mostly power law Exponential law Exponential law Exponential law
Scarp height (m)a 16.6 ± 11.9 (20.3) 21.6 ± 14.1 (18.3) 25.5 ± 17.4 (21.4) 27.2 ± 19.0 (24.3) —

Dmax/L
b 0.011 (0.42)e — — — —

Azimuths (°) 146.4 ± 28.6 (151.0) 156.1 ± 35.8 (165.1) 148.0 ± 22.7 (151.2) 139.2 ± 27.8 (143.7) 19.1 ± 13.7 (18.9)
Density (km/km2)c 0.87 ± 0.71

(med: 0.73, max: 7.1)
1.2 ± 1.1

(med: 0.9, max: 7.1)
0.83 ± 0.6

(med: 0.7, max: 3.6)
0.7 ± 0.5

(med: 0.7, max: 3.2)
3.47g

Tectonic straind W E All W E All W E All W E All Wf Ef Allf

Med (%, 45° dip) 2.0 3.7 3.1 2.4 2.8 3.5 2.7 1.4 2.5 3.3 4.15 4.45 12.3 9.3 11.9
Max (%, 45° dip) 13.9 20.2 20.2 8.8 13.2 13.2 11.0 16.7 16.7 13.9 20.2 20.2 12.3 11.8 12.3
Med (%, 60° dip) 1.2 2.2 1.8 1.4 1.6 2.0 1.5 0.8 1.4 1.9 2.4 2.6 7.1 5.3 6.9
Max (%, 60° dip) 8.0 11.7 11.7 5.1 7.6 7.6 6.3 9.7 9.7 8.0 11.7 11.7 7.1 6.8 6.9

Note. All values are presented as mean and their standard deviation and [median]; except when median (med) and maximum (max) are indicated. W for western
flank, E for eastern one, All for both eastern and western flanks. DMH = Dabbahu-Manda-Hararo.
aEach fault is represented by its highest scarp height, the mean, std, median are applied to the whole fault population or the different segments. bDmax/L ratio
estimated from a linear regression, with R2 value indicated into brackets. cFault density estimated as cumulative fault length per surface survey (2,062 km2 for
DMH rift, 119.6 km2 for Lucky Strike). dEach profile is represented by a median and maximum strain values. eDmax/L estimate from Dumont (2013).
fDerived from Figure 14 in Combier et al. (2015). gAfter Escartín et al. (2014).
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2008; Hofstetter & Beyth, 2003). These focal mechanisms are compatible with minimum horizontal
compressive stress σ3 striking NE–SW south of ~12.55–12.6°N, illustrated by T axes orientations ranging
from 20° and 80°N (Figure 6b). North of ~12.55°N, σ3 is more E-W oriented, as shown by deviations of the
T axes by 60–80° with respect to the direction of extension (Figure 6b). These results evidence a rotation of
the nodal planes in the vicinity of Dabbahu volcano, hence a local reorientation of stresses down to 12.55–
12.6°N. Short- and long-term observations are therefore consistent within the first ~5 km from Dabbahu
volcano. Largest deviations of the fault azimuths suggest that the reorientation of the local stresses initiates
from ~12.45 to 12.5°N (Figure 4a), despite a limited number of faults mapped north of 12.5°N. The radius of
influence of Dabbahu volcano would then extend to ~10–15 km. However, the few focal mechanisms
determined between 12.45–12.55°N (Figure 6a) do not allow discussing whether the radius of influence of
Dabbahu volcano differs, depending on whether instantaneous or finite strains are considered.

7.2. From Fault Growth to Rift Development

TheD-L ratio of the DMH rift (Figure 4b) is similar to those measured along the Asal rift and Ghoubbet ocea-
nic ridge (Manighetti, King, et al., 2001) where magmato-tectonic processes have been recognized (Doubre

Figure 6. Fault plane solutions along Dabbahu-Manda-Hararo rift. (a) Fault plane solutions are lower hemisphere pro-
jections. Black and white beach balls represent global centroid-moment-tensor solutions for M ≥ 5.0 events occurring in
September and October 1996 (locations after Hofstetter & Beyth, 2003). Dark red and white beach balls correspond to
solutions for 5.4 ≥ M ≥ 4.9 events occurring mostly during September 2005 intrusion (locations after Ayele et al., 2009).
Light red and white beach balls 2.9 < M < 3.9 events occurred just after this main September 2005 intrusion and
represent solutions from Ebinger et al. (2008). Beach balls accompanying November 2007 (south of mid-segment magma
chamber) and October 2008 (north of mid-segment magma chamber) were associated with 3.4 ≤ M ≤ 4.6 events with
solutions from Belachew et al. (2013). Yellow beach balls are related to 3.3 ≤M ≤ 3.7 events accompanying May 2010 dike
and eruption solutions from Barnie et al. (2016). Direction of extension between Nubia and Arabia plates is indicated
along the three segments of Dabbahu-Manda-Hararo rift by arrows (after Vigny et al., 2006). The inset summarizes the
minimum compressive stress σ3 (arrows) associated with all these focal mechanisms and the associated tension direction,
σ1 being principally vertical downward. (b) T axes orientations (blue circles) corresponding to the focal mechanisms
presented in (a). These directions are represented along the rift, as well as their deviation from the direction of extension
(orange curve), N49° estimated after Vigny et al. (2006). The brownish area includes all deviations up to 30°, from N49°.
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et al., 2007; Doubre & Peltzer, 2007; Smittarello et al., 2016). Magmatic rift segments result therefore in simi-
lar fault populations. These D-L ratios including DMH, Asal, and Ghoubbet data are all clearly smaller than
those of Central Afar, where extension is more distributed over a 70-km-wide band that links the rift seg-
ments of the Red Sea and Aden propagators (Figure 2a; Doubre et al., 2016; Manighetti, Tapponnier, et al.,
2001). In Central Afar, the crust is ~18- to 25-km thick, with normal faults an order of magnitude larger than
those at the DMH rift segment, such as in the Dôbi graben (Figure 4b; Hammond et al., 2011; Jacques et al.,
2011). To a first order, the D-L fault ratios in the Afar region record different deformation modes and fault
growth processes, as well as variations of the brittle-ductile transition.

The oldest dating of lavas, affected by rift faulting and located within a radius of 2 km from the DMH rift flank,
goes back to ~0.1–0.2 Myr (Ferguson et al., 2013; Lahitte, Gillot, & Courtillot, 2003; Lahitte, Gillot, Kidane,
et al., 2003). As the faulted area of DMH rift extends much further than the sites where these samples were
taken, it suggests that the dismantling of AVC along both rift flanks started likely before and/or during the
“Gulf Basalt” formation at ~1.1–0.6 Myr, facilitating the progressive ascent of basaltic magma toward the sur-
face (Lahitte, Gillot, & Courtillot, 2003; Stab et al., 2016). The present-day rift axis seems therefore to have been
shaped during the last 0.2 Myr by sporadic and intense magmato-tectonic phases which is consistent with
recent dating and geological observations (Medynski et al., 2013, 2016; Rowland et al., 2007).

In the northernmost part of the rift, an intense effusive episode took place between ~72 and 58 kyr at
Dabbahu volcano covering a broad area south of the volcanic edifice, corresponding mostly to our north seg-
ment (Figure 7; Field et al., 2013; Medynski et al., 2013). According to Medynski et al. (2013), this effusive
episode might have started ~90–80 kyr ago. The subsequent decrease in the magma supply at Dabbahu (at
ages younger than 50 kyr) contributed then to the edifice growth and dike-induced faulting along the south-
ern flank of the volcano (Figure 7; Medynski et al., 2013). Moreover, combination of dating with structural
analysis led Medynski et al. (2016) to highlight different displacement rates for faults located in the north
segment according to their across-rift distance from the rift axis. The authors correlated these displacement
rates with the distribution of magma from different sources along DMH rift (AVC at the rift center, Dabbahu
and Gabho volcanoes, located north of the rift). They have shown that voluminous intrusions like the one of
September 2005 under the eastern flank of the north rift segment (Figure 2b), were infrequent contrary to
the ones along-axis. However dating shows that such a massive intrusion likely already occurred with a
recurrence time of 5–10 kyr involving the three aforementioned magma sources (Medynski et al., 2016).

We propose that the link between the Dabbahu volcano and the Manda-Hararo rift segments was estab-
lished only in recent times (few 10 kyr). The Dabbahu volcanic plumbing system has been maintained since
the last ~60–70 kyr (Field et al., 2012, 2013; Medynski et al., 2013), contributing to the weakening of the sur-
rounding brittle lithosphere by thermomechanical softening and therefore to the generation of a local stress
concentration (Corti et al., 2003; Lahitte, Gillot, & Courtillot, 2003). This weakening effect, combined with
the load of the volcanic edifice itself, could promote the capture of a propagating rift through the develop-
ment of en-échelon and/or curved faults, as shown in analog models (van Wyk de Vries & Merle, 1996).
Similar observations made in the north segment (Dumont, 2013) suggest that such a process may also have
contributed to the DMH rift reorientation. This process may have been enhanced due to the short distance
(<30 km) separating the Dabbahu volcano from the AVC that may have played a role in redefining locally
the principal stress trajectory. A similar mechanical interaction was recognized for volcanic systems in cen-
tral Iceland distant from 30 km on average (Gudmundsson & Andrew, 2007). The azimuth change taking
place only between N12.35° and N12.45° suggests that Manda-Hararo rift already propagated several kilo-
meters north of AVC, before the Dabbahu volcano was sufficiently developed to influence the local stress
field and thus to capture Manda-Hararo rift propagation (Figure 7). The reorientation of focal mechanisms
nearby Dabbahu volcano (Figure 6), as well as the absence of along-axis variations in the direction of exten-
sion, also supports this scenario (Dumont et al., 2017).

During the 2005–2010 rifting episode, dikes were intruded along two main trajectories north of AVC
(Figures 2b, 3, and 7): (1) from AVC along the morphological rift axis, for most of the intrusive sequence
and (2) from multiple interacting magma sources (Dabbahu, Gabho and AVC) and mostly along the eastern
rift shoulder in the north segment (Ayele et al., 2009; Belachew et al., 2011, 2013; Grandin et al., 2009;
Hamling et al., 2009; Wright et al., 2006). These two trajectories can also be seen in the fault density map
(Figure 3). In the north segment, the two sectors characterized by a relative high fault density can be

10.1029/2018TC005141Tectonics

DUMONT ET AL. 13



tracked southward up to the rift center in a discontinuous manner. Both of them seem to bound past large
intrusions equivalent to that of September 2005 but injected along axis (Rubin & Pollard, 1988).
Interestingly, these two borders are highly asymmetrical with higher values directly south of Dabbahu
(corresponding to the northwestern rift border, Figure 3). This observation is opposite to the asymmetry
observed in the topography (Figures 1 and 2c) suggesting that other kind of intrusions, likely emitted only
from Dabbahu volcano (Medynski et al., 2013), may also have contributed to this localized surface
fracturing south of Dabbahu. The northeastern rift border although well defined, seems to be associated
with values that extend further eastward but still confined within the September 2005 dike path and
down to N12.44° of latitude (Figure 3). This more complex spatial pattern actually tends to confirm an
unusual faulting distribution below the northeastern rift shoulder. It therefore confirms the existence and
also the lower frequency of past off-axis large events with respect to large along-axis ones, in agreement
with Medynski et al.’s (2016) conclusions. Such observation is also corroborated by cumulative slip profiles
that indicate long-term southward propagation in the narrow band of the September 2015 intrusion in the
north rift segment (Dumont et al., 2017). The sustained coexistence of these two trajectories in the north
segment can be related to the three aforementioned sources of magma that interfere to distribute magma
along this rift segment to release extensional stresses (Medynski et al., 2016). The fact that these two
different trajectories do still coexist nowadays indicates that the zone of tectonic and magmatic activity is
not yet fully localized and developed in this sector. Hence, with such a geometry, extensional stresses may
not be released as efficiently as along the rest of the rift, explaining why the north segment may be at a less
advanced rifting stage than elsewhere along the rift. So, along the north segment, the interference between
dike intrusions coming from several different directions likely facilitates interaction of adjacent fault
segments and therefore fault lengthening through linkage or damage zones (Cartwright et al., 1995; Kim
et al., 2004), in contrast to areas where intrusions are emitted always from the same magma source and
along similar directions, promoting lateral propagation of preexisting faults.

7.3. Comparison of DMH Rift and Mid-Oceanic Ridges for a Better Understanding of
Continent-Ocean Transition
7.3.1. DMH Rift and LS Spreading Oceanic Ridge: How Similar They Are?
The DMH rift has frequently been compared to slow-spreading oceanic ridge segments owing to several
similarities, including morphology, extension rate, or magma storage (Hayward & Ebinger, 1996;
Medynski et al., 2013). These systems also have numerous differences, which include lithospheric thickness,
crustal structure, or plate boundary geometry and stress. Here we explore this analogy in more details using
the example of Lucky Strike oceanic spreading segment (LS-OSS) along a slow-spreading ridge (Tables 1 and
2 and supporting information, Figure S5).

Located at 37.5°N along the Mid-Atlantic Ridge, this ~60-km-long spreading center shows a full spreading
rate of ~20.3 mm/year, features that are comparable to those of the DMH rift (Figure 1; Gripp & Gordon,
1990; Vigny et al., 2006). Both segments show some asymmetry (Figure 1 and section 4). At LS-OSS, the

Figure 7. Conceptual model proposed for the evolution of Dabbahu-Manda-Hararo rift for the last ~100 kyr highlighting
the influence of Dabbahu volcano in the development ofManda-Hararo rift. Details on the timing constraints are provided
in the text.
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asymmetrical morphology is related to an asymmetrical accretion during the last 0.7 Myr (Escartin et al.,
2001; Miranda et al., 2005), while at DMH rift, this asymmetry is caused by rifting processes (Svartman
Dias et al., 2016). LS-OSS axial rift valley with a ~20-km width, approximately doubles that of the DMH rift
valley (Figure 1), what might be partly due to the overall lithospheric structure and not necessarily due to the
age difference between the two extensional systems, ~10 and <1.5 Myr, respectively (Table 2). Both LS-OSS
and DMH rift host a series of volcanic constructs at the rift center that are intensely dissected by normal
faulting (Figure 1). The LS-OSS hosts an active and recent ~10-km-diameter volcano, Lucky Strike, that rises
500 m above the surrounding seafloor at the segment center. Such a large volcanic edifice is not observed
within the rift valley of DMH rift. The only individual volcanic structure is of smaller dimension, a ~1-km-dia-
meter caldera formed about 20–25 kyr (Figures 1 and 2b; Medynski et al., 2015). However, melt is focused at
both segment centers, likely associated with a comparable shallow magma plumbing system located at ~4-
to 6-km depth and extending ~6–8 km along-axis and including both long-term and ephemeral magma bodies
(Table 2; Belachew et al., 2011; Carbotte et al., 2016; Dumont et al., 2017; Grandin et al., 2010; Keir et al., 2009;
Singh et al., 2006). At DMH rift, low-silica content, trace elements, and Nd, Sr isotopes do not reflect MORB-
type melting regime but rather extension processes that are still evolving (Table 2; Barrat et al., 2003). On the
contrary, LS-OSS basalts are clearly identified asMORB (Table 2; Gale et al., 2011; Hamelin et al., 2013). At the
LS-OSS, both segment ends are bound by nontransform offsets, in areas where faulting dominates. This

Table 2
General Comparison of Characteristic Features Shared Between DMH Rift, LS-OSS, and Oceanic Ridges in General

Features DMH LS-OSS
DMH features
similar to

Segment age ~1–1.5 Myra ~10 Myrb —

Extension/Spreading rate ~15 mm/yearm ~20.3 mm/yearc S
Segment length ~60 km ~60 km S, Id

Rift valley width ~5–10 km ~20 km I
General morphology axial basin axial basin S, Id

Maximum fault scarp heights (m) ~100 500–900e I, F
Fault length scaling law Mostly exponential exponential S, I, F
Tectonic strain accommodated by faulting ~10–20% ~10% S, I
Crust thickness at the segment center (km) ~ 6f ~7.5e S, I, F
Crust thickness at the segment tips (km) ~10–12 km(f,l) ~5.5 e)

—

Depth of midsegment magma chamber (km) ~4 and > 15f ~3.5–6b S
Lateral extension of the shallow magma
chamber (km)

~5–8f ~ 6–7b —

Along-axis shape of the shallow
magma chamber

elongated elongated S, I, Fd

Accretion process Dike intrusion from the rift centerg Dike intrusion from the rift centerh

+ detachment fault
S, I

Dike propagation rate 0.5–3 km/hri ~1–2 km S, Ii

Basalt type Not yet MORBk E-MORB and T-MORBj

SiO2 content (wt.%) 46.28–49.42 (48.05–48.73)k 48.93–50 and 50.72–51.7j

K2O/TiO2 <0.25 (<0.10)k >0.35 and <0.25j

Lan/Smn 1.5–2.1 (0.74–0.98)k 3.5–5 and 2–2.5j
87Sr / 86Sr 0.70362–0.70373 (~0.70379)k 0.702941–0.703145 and 0.702874–0.703045j
143Nd/143Nd Homogeneous: εNd = +5.2 (εNd = +6)k 7.8 < εNd < 8.4 and εNd > 8.97j
206Pb/204Pb 18.904 ± 0.06 and 19.199 ± 0.1j

Basalt source mantle contaminated by hydrothermally
altered gabbroic cumulates (presence of

an ancient recycled oceanic crust
component within the Ethiopian plume?)k

Local heterogeneities in the composition
of the depleted mantle showing refractory

material and influence of the Azores
mantle plumej2

Note. With I for intermediate oceanic ridges, S and F for slow (second-order discontinuities) and fast (third-order discontinuities) ones (from Carbotte et al.,
2016). Isotopic compositions are presented to emphasize the mantle origins of the basalts at DMH rift and LS-OSS. E-MORB for enriched MORB, and T-
MORB for transitional MORB, definition based on K2O/TiO2 and isotopic compositions (e.g., Gale et al., 2011). The composition indicated in italic for DMH
basalts corresponds to the second type of basalt encountered along the rift, also named “the depleted Light Rare Earth Elements (LREE)” samples in Barrat
et al. (2003).
aAfter Audin et al. (2004), Acocella et al. (2008). bAfter Singh et al., 2006; Escartín et al. (2014), and references therein. cAfter Escartin et al. (2001). dAfter Carbotte
et al. (2016) andMacdonald (2001). eAfter Combier et al. (2015), and references therein. fAfter Grandin et al. (2010) and Belachew et al. (2011). gAfterWright et al.
(2006, 2012), Grandin et al. (2010). Hamling et al. (2009, 2010). hAfter Dziak et al. (2004). iAfter Grandin et al. (2011), and therein references. jAfter Hamelin et al.
(2013) and Gale et al. (2011). kAfter Barrat et al. (2003) and Ferguson et al. (2013). lAfter Grandin et al. (2012), mVigny et al. (2006), and references therein.
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extension is associated with the exposure of ultramafic rocks outcrop, not observed anywhere else along the
segment (Menez Hom, Figure 1). LS-OSS also lacks off-axis volcanism that has been identified at the DMH
rift. Located NW in the Center segment (Figures 1 and 7; Medynski et al., 2015) and dated to ~15–5 kyr, the
small volcanic edifice seems to stand at the apex of a large magma reservoir with a volume that would be 4
times larger than that of MSMC (Dessisa et al., 2013; Medynski et al., 2015).

Magma contributes also to localize crustal deformation at both extensional systems. At DMH rift, the rift
valley narrows from ~8 to 5 km at the intersection of the rift axis with the AVC (Figure 1; Dumont et al.,
2017), while the rift valley edges are not well defined, partly due to intense faulting. Such behavior is not
clearly observed along the whole LS-OSS segment, although the neovolcanic zone crossing the LS volcano
seems to behave similarly; it is narrower at the segment center (central volcano), becoming wider away from
it (Figure 1; Escartín et al., 2014). Magmato-tectonic interactions have also been recognized at both DMH rift
and LS-OSS. Magma intrusions contribute both to melt distribution from the segment center toward the seg-
ment ends and to fault growth, process that is also observed at intermediate spreading ridges (Carbotte et al.,
2006, 2016; Dumont et al., 2016, 2017; Dziak et al., 2004; Escartín et al., 2014; Medynski et al., 2013, 2016;
Rowland et al., 2007; Wright et al., 2012).

Figure 8. Fault attribute analysis including fault azimuth (a) and scaling laws (b) at Lucky Strike oceanic spreading seg-
ment using fault data from Escartin et al., (2015). Analysis of fault azimuths (a) is similar to that presented in Figure 4
for Dabbahu-Manda-Hararo rift, consisting of a rose diagram (left) and an obliquity plot (right) using the spreading
direction of 103° (Escartin et al., 2001). For the scaling law analysis, the cumulative distribution of fault length is pre-
sented in a log-log plot as well as a log-normal one (small insets). The parameters of both exponential (blue curves) or
power laws (orange curves) are indicated on each plot.

10.1029/2018TC005141Tectonics

DUMONT ET AL. 16



The fault population of LS-OSS comprises rift bounding faults with vertical throws ranging from 500 to 900 m
(Combier et al., 2015), while at the DMH rift they barely reach 100m (Table 2; Figures 2b, 2c, and 5b–5e), com-
parable to those observed at intermediate and fast-spreading centers with thus a similar axial valley depth. We
have further explored faulting at LS-OSS, using prior mapping of 1,803 faults identified from high-resolution
(~10m) sonar data (Escartin et al., 2015). This fault map that covers about one third of the total segment length
centered around LS volcano (supporting information, Figure S5), including the transition from a narrow to a
wider zone of deformation, is actually an analog to faults located in the center segment of DMH rift. Fault
lengths at LS-OSS are very short (98.6% are <1 km, Figure 8a), with a mean length of 250 m, to be compared
to 1.4 km at the DMH Center segment (Table 1), confirming that conditions for fault lengthening are at first
order, not encountered in areas under permanent magma influence (Dumont et al., 2017). In addition, fault
growth at LS-OSS and the center rift segment seems to be driven by similar processes as evidenced by exponen-
tial scaling laws also observed in the south segment of DMH rift (Figure 8b and Table 1). They mark a later
stage in the evolution of the fault network (Spyropoulos et al., 2002) and are likely related to dike intrusions
(Combier et al., 2015; Dziak et al., 2004; Rowland et al., 2007). Fault azimuth analyses reveal a much tighter
clustering of azimuths normal to the spreading direction than those at DMH rift (Figures 8a and 4a), as illu-
strated with obliquity plots. Maximum obliquity, ~8–10° versus ~20–35° at DMH rift, is reached at the borders
of LS volcano while it decreases outward, likely due to magma-induced localization.

Faulting at DMH rift and LS-OSS seems to have a similar contribution in rifting/spreading processes
(Figure 9). There are numerous uncertainties and bias in methods used to estimate tectonic strain, for
instance, fault dip assumption that can reduce strain estimate by 40% when using a 60° fault dip (Figure 5
and supporting information, Figure S2). In addition to these uncertainties, numerous other processes may
impact fault analyses (e.g., erosion, fault dip angle, burial of faults by lava or sediment, and undetected
faults), which would lead to an underestimate of tectonic strain estimates. Despite these limitations, the
compilation of Figure 9 shows that faulting accommodates a modest fraction of the overall plate separation
(~5–20%), across a wide range of spreading rates. Strain estimates are much more scattered for slow and

Figure 9. Comparison between strain rates accommodated by faulting at continental rifts and oceanic ridges as a func-
tion of the extension rate. The calculation method is designated through different symbols, with large symbols repre-
senting dip > 60° while small ones, dip < 60°. The color code indicates if it is a continental rift (dark gray) or oceanic
ridge (light gray). Fault dip assumptions rely either on focal mechanisms of local earthquakes, other geophysical mea-
surements and/or field observations, or are assumed.
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intermediate oceanic spreading centers, ranging from a few percent and up to 15–20% (Bohnenstiehl &
Kleinrock, 1999; Carbotte & MacDonald, 1994; Combier et al., 2015; Dauteuil et al., 2001; Deschamps et al.,
2005, 2007; Escartín et al., 1999; MacDonald & Luyendyck, 1977). On the contrary, they are consistently
low, typically at ~5%, at fast oceanic ridges (Bicknell et al., 1987; Bohnenstiehl & Carbotte, 2001; Carbotte &
MacDonald, 1994; Cowie et al., 1993; Escartín et al., 2007). For continental magmatic rifts, that have shown
slow spreading rates, tectonic strain rarely exceeds 15% (De Chabalier & Avouac, 1994; Gupta & Scholz,
2000), except for the DMH rift when a 45° fault dip is assumed. In the center segment where the highest strain
was estimated (Table 1), the maximum strain reaches ~12% for a 60° dip, while most median values along
DMH rift do not exceed 3%. In addition, our fault mapping may not be exhaustive, contributing to a plausible
underestimation of tectonic strain along the DMH rift. We thus estimate that faulting could represent up to
10–20% of strain along the DMH rift, therefore similar to strain estimates for Asal rift (De Chabalier &
Avouac, 1994) or to those made at slow-spreading centers such as Lucky Strike (Combier et al., 2015).
7.3.2. On the Continent-Ocean Transitional Rift
The comparison between the DMH rift and the LS-OSS oceanic segment provide clues to better understand the
late stage of the continent-ocean transition at the DMH rift. We have shown that the upper crustal extension is
accommodated similarly at both extensional systems. It is dominated by magmatic processes via dike intru-
sions injected from the segment center (~80%), in association with tectonic extension accommodated by nor-
mal faulting, not exceeding 10–20% of the total extension (Figure 9). In Afar and north of the Main Ethiopian
rift, faulting is most exclusively related to dike intrusions as illustrated by high fault density centered on the
magmatic centers (Agostini et al., 2011; Dumont et al., 2017). In the central and southern Main Ethiopian rift,
the crustal extension is accommodated differently as evidenced by asymmetrical segments that develop from
one large normal fault (Agostini et al., 2011; Hayward& Ebinger, 1996). At LS-OSS, a dichotomy exists in fault-
ing processes as they are mainly dike-induced in the neovolcanic zone in the segment center and purely tec-
tonic at segment ends (Combier et al., 2015; Seher et al., 2010). Additionally, both faulting and volcanic
construction participate in shaping the DMH rift and LS-OSS morphology. Therefore, DMH rift and LS-OSS
share first-order structural and kinematic features, suggesting that the spreading dynamics and its structural
expression gets established during advanced/late stage of rifting (Keir et al., 2013).

Structural analyses points toward the existence of underplating at the base of the lower crust beneath the DMH
rift (Stab et al., 2016). These results are supported by seismic studies, and in particular the ratio between the P and
S wave velocities (>2), which indicates both melt and underplating (Hammond et al., 2011). The low-viscosity
material associated with underplating is recognized as a key feature at volcanic passive margins (Geoffroy,
2005), which influences the response of the lithosphere to an extensional stress regime as suggested by numerical
and analog modeling (Callot et al., 2001; Corti, 2012; Huismans & Beaumont, 2007). Thus, if the underplating
material corresponds to a rheological boundary between the ductile lower crust and the brittle mantle, it contri-
butes to form a narrow deformation zone and to localize the lithosphere breakup, as it is at DMH rift (Callot et al.,
2001, and references therein). Models also suggest that this would result in a passive upwelling of the underlying
mantle, with the development of shear zones connected to the underplating zone. Seismic velocity structure
beneath Afar derived from relative travel time tomography does not show the Ethiopian mantle plume that
initiated the continental breakup (Hammond et al., 2013, and references therein). Instead, it reveals low-velocity
zones directly beneath irregular rift segments and down to 75-km depth, interpreted as shallow passive mantle
upwelling rooted to the initial mantle plume. Midcrustal shear zones connected to the underplatedmaterial have
also been suggested from the reconstruction of Central Afar cross section (Stab et al., 2016). All these observations
we made at DMH rift considered together with results from numerical and analog modeling strongly suggest a
decoupling of the lithospheric crust and mantle.

Understanding the behavior of the lithosphere is particularly important to unravel the processes controlling
the transition from continental rifting to oceanic crust accretion. The lithospheric structure at magmatic
slow-spreading ridges likely shows an along-axis variation, with a thicker lithosphere at the segment ends
that includes lithospheric upper mantle (e.g., Cannat et al., 2009). At the segment center, both the long-term
melt supply and the presence of transient melt lenses suggest a much thinner lithosphere, likely restricted to
the magmatic crust. This is supported by the presence of a ~3-km-deep melt lens at LS-OSS (Singh et al.,
2006) underlain by seismic crustal velocities that are anomalously low and interpreted as a crustal volume
at high-temperature, and/or containing small amounts of melt (Seher et al., 2010). Thus, a decoupling of
the lithospheric crust and mantle characterizes segment centers at LS-OSS and slow oceanic ridges,
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similarly as at DMH rift (Grandin et al., 2012). However, this decoupling evolves to become fully coupled at
segment ends of slow-spreading ridges (Grandin et al., 2012; Seher et al., 2010).

The narrow rift stage, currently observed at DMH rift, follows a phase of wide rifting, identified in Central
Afar (Stab et al., 2016). Such a phase is consistent with the general evolution of the continent-ocean transi-
tion (Buck, 1991; Péron-Pinvidic et al., 2013), whereas it contributes to the debate on the evolution of the
Afar depression (Audin et al., 2004; Manighetti et al., 1998; Wolfenden et al., 2004). The thinning stage is
characterized by the transition from a decoupled to coupled crustal/mantle extension (Brun, 2002; Cannat
et al., 2009; Péron-Pinvidic et al., 2013; Svartman Dias et al., 2015, 2016). North of DMH rift, Keir et al.,
(2013) showed a drastic change in segment morphology, crustal and mantle structure, as well as faulting
and magmatic processes. Lithospheric thinning northward seems thus to play a key role in these changes
and especially the significantly reduced lower crust thickness beneath the Danakil depression (Bastow &
Keir, 2011; Hammond et al., 2011; Keir et al., 2013). The decoupling/coupling transition is therefore at a
different stage, likely more advanced, in northern Afar than at DMH rift, although the extension rate is
slightly lower (Pagli et al., 2012). Rifting processes appear therefore to depend on crustal thickness variations
making the extension depth dependent. This depth-dependent extension likely influences the thermal
regime of the lithosphere and/or vice versa. Whatever the source of these lithospheric variations, either
the thermal conditions or the rifting processes, they impact the strain rate, the surface morphology, and also
the rheology and hence the variations in the brittle-ductile transition (Cannat et al., 2009; Grandin et al.,
2012; Keir et al., 2013; Svartman Dias et al., 2016). No correlation between rift morphology, extension rate

Figure 10. Location of magmatic crises (red stars) and seismic ones (blue triangles) in Central Afar since the twentieth
century. In background, tectonic map after Figure 26 of Manighetti, Tapponnier, et al. (2001).
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and magma is observed in the Afar depression (supporting information, Table S1). Actually, the absence of
such correlation for the Afar depression, is also observed at slow-spreading ridges and in particular at
LS-OSS, due to their small extension rates and their lower thermal gradient (Morgan & Ghen, 1993). In spite
of this, oceanic ridges including slow-spreading ridges show durable morphologies, reflecting stable thermal
conditions in the lithosphere, contrary to continental magmatic rifts. At slow-spreading ridges, these ther-
mal conditions rely on a balance between the heat supply and cooling (Cannat et al., 2009). This balance
likely varies along a ridge segment from center to ends, similarly to the degree of lithospheric coupling
and to the tectonic deformation that increases toward segment ends, involving in some cases detachment
faulting (Grandin et al., 2012; Seher et al., 2010). At DMH rift, the inheritance of continental crust mixed
with newly accreted mafic material contributes to transitional thermal conditions, as also illustrated by geo-
chemical compositions and in particular isotopes that are used as tracers of mantle dynamics (Table 2).
Moreover, it is difficult to further discuss the along-rift variations in faulting processes at DMH rift, the var-
iation in the balance of magmatic and tectonic processes being only partly documented (Dumont et al., 2016,
2017; Grandin et al., 2010, 2011; Hamling et al., 2009; Medynski et al., 2013, 2016; Rowland et al., 2007). The
depth-dependent extension and feedback thus likely determine the transitional present-day surface expres-
sion of DMH rift and also that of other rift segments in a late rifting stage.

This transient behavior of DMH rift may also be integrated at the scale of the Afar depression (Figure 10).
During the twentieth century, the episodic release of tectonic stresses mostly by magma intrusions (Asal rift
in 1978, Ruegg & Kasser, 1987; DMH rift in 2005–2010, Wright et al., 2012), and also through seismic
sequences (Serdo and Dôbi in 1969 and 1989, respectively, Kebede et al., 1989; Jacques et al., 2011) reveals
an axis joining the RS and GA propagators, where extensional stresses are released at the scale of the whole
depression. GA and RS branches form themain boundaries of the triple junction, which is in agreement with
GPS (Doubre et al., 2016) and InSAR measurements (Pagli et al., 2014). These magmatic and tectonic events
may also represent a transient phase of stress release that are part of large-scale cycles operating at time
scales of several thousand years and contributing to the transition toward the oceanic spreading.

8. Conclusions

We quantified fault attributes (azimuth, length, and throw) for 668 normal faults to analyze fault growth
processes and strain distribution along Dabbahu-Manda-Hararo rift (Central Afar, Ethiopia). This analysis
allowed us to document along-axis variations in fault growth processes, as well as in rift morphology.
North of the transversal AVC volcanic chain and between N12.35° and N12.45°, the azimuth of DMH rift
changes accommodated by the fault population. In addition of being characterized by faults trending almost
north-south, the northern part of the rift also shows long faults distributed evenly at the rift axis and mar-
gins. Combined to scaling laws andmorphological analysis, these results suggest specificities of the northern
part of the rift that cannot be explained by regional processes such as changes in the direction of extension
between Nubia and Arabia tectonic plates. Instead, all the observations point toward the influence of
Dabbahu volcano in the rift development. Using thermomechanical arguments, we suggest that crustal
magma chambers act as stress concentrators. We propose that the propagating Manda-Hararo rift was
captured in the last ~100 kyr by the Dabbahu volcano. We also link rifting processes at DMH rift as repre-
sentative of a late rifting stage at the continent-ocean transition through the comparison of characteristic fea-
tures of DMH rift to those of the slow oceanic spreading center Lucky Strike located in North Atlantic. By
integrating these observations with numerical and analogous modeling, this approach allows us to discuss
the transient features of the late stage of rifting and their origin.
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