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S U M M A R Y
Often geodetic data are inverted for fault slip using less independent constraints than model
parameters, and the solution is non-unique. That underdetermined geodetic slip inversions
cannot provide unique slip distributions does not mean that they cannot provide other unique
information regarding the slip distribution. In order to see which of the slip distribution
attributes are obtainable by underdetermined inversions, we considered a synthetic GPS data
set and inverted it for slip. We set the fault and network geometries to be identical to those of the
Parkfield segment and the 14 SCIGN GPS sites next to it. We show that while slip inversions
of such data yield robust estimate of the geodetic potency and the moment centroid, neither
the spreadness nor the skewness may be resolved given the SCIGN network configuration.
Furthermore, we show that randomly constructed networks are better configured than the
Parkfield network, in the sense that they better recover the macroscopic attributes of the slip
distribution. Finally, we show that the moment magnitude may be recovered using individual
GPS stations, provided that these stations are not located in close proximity to the fault zone.

Key words: Inverse theory; Earthquake source observations; North America.

1 I N T RO D U C T I O N

Detailed mapping of seismic and aseismic slip distributions is
important for addressing several fundamental questions in earth-
quake physics. For example, it may shed light on the mechanics
of rupture initiation and arrest, the mechanics of aftershock trig-
gering and stress transfer, and it may help to constrain the fault
constitutive properties. Resolving fault slip on spatial and tempo-
ral scales that are of interest to earthquake physicists is a diffi-
cult task. Thus, earthquake slip inversion is the subject of intense
research.

Often geodetic data are inverted for fault slip using less inde-
pendent data than model parameters. In such cases, the solution is
non-unique and the problem is ill conditioned. Ways to address this
problem include the incorporation of non-geodetic data sets into
the inversion (Custódio et al. 2009; Simons et al. 2011; Ziv 2012),
addition of a non-negativity constraint (Page et al. 2009) and reduc-
tion of the model space (Page et al. 2009). Indeed, these approaches
reduce the null-space (i.e. the number of unresolvable parameters)
and narrow the range of possible solutions.

Geodetic data contain noise whose relative importance depends
on various factors, including the size of the slip event and the
distance between its centroid and the observation point. A well-
known consequence of noisy data inversion is that the noise is
mapped to the model space, the effect of which is to further enhance
the non-uniqueness of the problem. A common approach to reduce
the effect of noise is to constrain the solution to be smooth. Yet, the

use of smoothing is problematic as the roughness of the true slip
distribution is not a priori known.

That underdetermined slip inversions of (noisy) geodetic data
cannot provide unique slip distributions, does not mean that they
cannot provide other unique information regarding the slip distribu-
tion. We would like to know which attributes of the slip distribution
are resolvable, and what properties are in common to very differ-
ent solutions that satisfy the data similarly well. To address these
questions we constructed a synthetic GPS-like data set, inverted
it for slip using different numerical approaches, and obtained a
suite of solutions. We compared the solutions, and identified a
set of uniquely determined parameters that characterize the slip
distribution.

2 F O R M U L AT I O N O F T H E L I N E A R
I N V E R S E P RO B L E M

We now describe the simplest and most common approach for static
slip inversion using geodetic data. The scheme described here is
applicable to cases where the fault geometry is known, and there-
fore the fault parameters may be pre-determined. In such cases the
ground displacements are linearly related to the fault slip, and the
inversion may be formulated as a linear inverse problem (Menke
1989).

The fault plane is discretized uniformly into a set of M rectan-
gular dislocations (i.e. elements of uniform slip) embedded within
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a uniform elastic half-space. Slip on the fault, u, causes ground
displacement, d, at N sites according to

Gkl
i j u

l
j = dk

i , (1)

where G is an elastic kernel for dislocations (Okada 1985) relat-
ing a unit slip on dislocation j with ground displacement at site
i. The index k stands for the three ground displacement compo-
nents, that is, east, north and up, and the index l signifies the three
components of fault slip, that is, strike-parallel, dip-parallel and
fault-perpendicular. The problem is said to be underdetermined if
N < M. Often the fault is known to slip at a certain direction. In
such cases it is sensible to reduce l from three slip components to a
single component, and the problem is underdetermined if 3N < M.

If the data were noise-free or if the distribution of noise were to
be the same at all sites and along all directions, the inversion would
simply amount to solving the above equation for u. To account for
the noise being site and direction dependent, it is useful to assign
noise-dependent weights to each equation in (1) as follows:

W k
i Gkl

i j u
l
j = W k

i dk
i , (2)

with W being a weighting matrix whose diagonal entries are in-
versely proportional to the data uncertainty squared.

The solution vector contains spurious structures due to the map-
ping of noise from the data-space to the model-space. In order to
suppress this effect, it is useful to impose smoothing. In this study,
we use a Laplacian smoothing

κ∇2ul
j = 0, (3)

where κ is the smoothing coefficient. Apart from suppressing spuri-
ous structures due to noise, the addition of the smoothing constraint
adds M equations, that is, it turns the problem from an underdeter-
mined to an overdetermined one.

Solution to the overdetermined problem may be obtained using
a variety of minimization schemes, whereas solution to the under-
determined problem is less straight forward and is done here in two
ways. The first is by use of the non-negative least squares (NNLS)
algorithm of Lawson & Hanson (1995), to get a solution to (2) or
(2)–(3) subject to u ≥ 0. The second is by multiplying either side of
the set of equations by the generalized inverse (also known as the
Moore–Penrose pseudo-inverse). The generalized inverse is calcu-
lated here by singular value decomposition (SVD) of G to U�VT,
where � is a diagonal matrix of the singular values, and U and V
are orthogonal matrices. Following SVD and after setting to zero
(or dumping) the reciprocal of unstable singular values, the general-
ized inverse is equal to: V�−1UT. Note that the number of non-zero
singular values cannot exceed the number of equations, that is, 3N.
Use of this approach minimizes both the sum of the data residuals
squared, and the length of the solution vector, which may include
both positive and negative components.

In this study we solve for u in (2) subject to the smoothing
constraint (3), using either the generalized inverse matrix or the
NNLS algorithm. For each solution, the percentage of model-space
and data-space residuals are calculated according to

misfit percentage = 100
‖Dsyn − Dest‖

‖Dsyn‖ , (4)

where D stands for the ground displacement vector when calculating
the percentage of data-space residual, and it stands for the fault slip
vector when calculating the percentage of model-space residual, the
superscripts ‘syn’ and ‘est’ denote ‘synthetic’ and ‘estimated’, re-
spectively, and the double vertical bars signify the L2 norm. Because
the synthetic data that we use is constructed from a pure strike-slip

model (see further details in Section 3.2), we constrain the solution
to be strike-parallel.

3 W H I C H AT T R I B U T E S O F T H E S L I P
D I S T R I B U T I O N A R E R E S O LVA B L E ?

3.1 The set of slip distribution functions

The geodetic potency of a single slip event is equal to the integral
of slip over the fault plane:

p = A
∑

j

u j , (5)

where A is the elementary dislocation area, and the summation
over the slip is vectorial. Provided that the slip is entirely seis-
mic and is everywhere and at all times not flipping its direction,
the seismic and geodetic potencies are exactly the same. In that
case multiplying the geodetic potency by the rigidity, μ, gives the
seismic moment, which may then be used to compute the mo-
ment magnitude of the slip event according to (Hanks & Kanamori
1979): Mw = 2

3 [log (μp) − 9.1] = 2
3 [log (M0) − 9.1], where M0 is

the seismic moment in Joules.
Another important attribute of the slip distribution is the moment

centroid, whose components are

Cx =
∑

j

u j x j

/ ∑
j

u j

Cy =
∑

j

u j y j

/ ∑
j

u j , (6)

where x and y are the along-strike and downdip dislocation coordi-
nates, respectively.

The extent to which the slip distribution is spread with respect
to the centroid is quantified using the spreadness tensor, whose
components are

Ixx =
∑

j

u j (x j − Cx )2
/ ∑

j

u j

Iyy =
∑

j

u j (y j − Cy)2
/ ∑

j

u j

Ixy =
∑

j

u j (x j − Cx )(y j − Cy)
/∑

j

u j . (7)

Finally, the skewness of the slip with respect to the centroid is
quantified using the followings:

Jxxx =
∑

j

u j (x j − Cx )3
/ ∑

j

u j

Jyyy =
∑

j

u j (y j − Cy)3
/ ∑

j

u j

Jxxy =
∑

j

u j (x j − Cx )2(y j − Cy)
/∑

j

u j

Jyyx =
∑

j

u j (y j − Cy)2(x j − Cx )
/∑

j

u j . (8)

Note that the spreadness and the skewness tensors may be thought
of as analogous to the second and third moment tensors of in-
ertia, respectively, whereas the potency (divided by fault area)
and the centroid are equivalent to the total mass and the centre
of inertia, respectively. While the potency and the moment cen-
troids are commonly used and are easily grasped attributes of the
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Figure 1. Sketches of several unrealistically simple slip distributions and their respective attributes. (a) Circular ring. (b) Elliptical ring. (c) Inclined ellipse.
(d) Left skewed ring. (e) Right skewed ring. (f) Top-right skewed ring. The coordinate system is shown in panel (a).

slip distribution, the spreadness and the skewness are not. Thus
in Fig. 1, in order to guide the intuition, we present sketches of
several unrealistically simple slip distributions and their respective
attributes.

3.2 The synthetic data

In order to see which attributes of the slip distribution are resolv-
able and are shared by different solutions that produce very similar
ground displacements, we construct a synthetic slip distribution and
a synthetic ground displacement associated with it. We first set the
fault and network geometries to be identical to those of the Parkfield
segment and the 14 SCIGN GPS sites next to it (black circles in
Fig. 2a). The obvious added value of generating a synthetic data set
that is similar to that of the 2004 Parkfield earthquake is that the
result of this study may be used to draw conclusions regarding one
of the best studied earthquakes to date, and the very likely site of
a future magnitude 6 earthquake (Bakun et al. 2005; Barbot et al.
2012). Next, after having assessed the degree to which the slip dis-
tribution functions listed in Section 3.1 may be recovered using the
Parkfield network, we compare the Parkfield network with a set of
randomly distributed networks, each of which consists of 14 GPS
antennas.

The synthetic slip distribution is shown in Fig. 2(b). Similar
to the 2004 Parkfield earthquake, the moment magnitude of the
synthetic earthquake is equal to 6 and the slip is right-lateral. The
synthetic slip distribution consists of an inclined elliptical patch of
uniform slip of about 0.4 m that is disrupted by two smaller patches
of zero slip (i.e. barriers). While this slip distribution may differ
from any of the past coseismic slip distributions along the Parkfield
segment, it has the advantage of including both long- and short-
wavelength features that are generally targeted by coseismic slip
inversion resolution tests. We use eq. (1) to compute the ground
displacements corresponding to the synthetic slip distribution. To
the synthetic ground displacement we add uncorrelated Gaussian
random noise. In generating the noise we use different standard
deviation for each ground displacement component, and these are
set to be equal to the corresponding average standard deviations
reported on the Parkfield’s webpage posted by the Scripps Orbit
and Permanent Array Center (SOPAC).

3.3 Parkfield network configuration

We now examine consequences of the fault and network geome-
tries that are identical to those of the Parkfield segment and the 14
SCIGN GPS sites next to it (Fig. 2a). Previous researchers have

Figure 2. The GPS network configuration and the synthetic slip distribu-
tion. (a) A map showing the synthetic network configuration, with the dark
circles denoting the location of Parkfield’s 14 GPS sites, and the dotted
line indicating the surface trace of the model fault. (b) The synthetic slip
distribution, with shaded area indicating an area of uniform slip amounting
to 0.42 m and white cross indicating the centroid location. The model fault
is 40 km long and 15 km wide.
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Figure 3. Parkfield’s inversion results as a function of the smoothing coeffi-
cient using the NNLS algorithm (dashed curves) and the generalized inverse
approach (solid curves). (a) Percentage of data-space residual. (b) Percent-
age of model-space residual. (c) Moment magnitude (black) and geodetic
potency (grey). (d) Centroids. Horizontal dotted lines in panels (c) and (d)
indicate the true synthetic values. Model-space and data-space residuals are
calculated using eq. (4).

shown that this network cannot resolve the actual slip distribution
below 3 km and near the segment ends (Barbot et al. 2009; Page
et al. 2009; Ziv 2012). In Fig. 3, we show the percentage of data-
space and model-space residuals as a function of the smoothing
coefficient. The data misfit remains less than about 1 per cent over
a range of smoothing for which the model-space residual varies
between 55 and 400 per cent. That radically different slip distribu-
tions provide nearly equally good fit to the data is a well-known
consequence of the problem being underdetermined and the data
containing noise (Savage 1990; Du et al. 1992; Bos & Spakman
2003).

3.3.1 The geodetic potency and the centroid

We find that the geodetic potency (and the moment magnitude)
and the centroids remain nearly constant and nearly equal to the
synthetic values over a wide range of smoothing (Figs 3c and d).
Surprisingly, even solutions providing poor fit to the geodetic data,
say 70 per cent, successfully recover these slip attributes. To visual-
ize the extent to which radically different slip distributions provide
not only practically equal good fit to the ground displacement, but
also to the seismic moment and the centroid, we present in Fig. 4
a set of four different solutions for the slip distribution, all satis-

Figure 4. Example slip distributions satisfying at least 99 per cent of the
data. (a) Solution obtained using the generalized inverse and κ = 0 (i.e.
no smoothing). (b) Solution obtained using the generalized inverse and
κ = 10−3. (c) Solution obtained using the NNLS algorithm and κ = 0.
(d) Solution obtained using the NNLS algorithm and κ = 10−4. Geodetic
moment magnitude as well as the percentage of data-space and model-
space residuals are indicated on each panel. The crosses and circles indicate
the true and estimated moment centroids, respectively. The model fault is
represented by an array of 300 dislocations, whose along-strike and downdip
dimensions are 2 and 1 km, respectively. The solid contour indicates the
target (i.e. synthetic) slip distribution. Note the difference in colour code of
different panels.

fying ≥99 per cent of the geodetic data. A set of two solutions is
obtained using the generalized inverse matrix (Figs 4a and b), and
another set of two solutions is obtained using the NNLS algorithm
(Figs 4c and d). One solution in each set is subject to the smoothing
constraint of (3), while the other is not. Note that slip distributions
obtained using the generalized inverse are considerably smoother
than those obtained using the NNLS algorithm. For example, the
solution shown in Fig. 4(b) using the generalized inverse is notably
smoother than that shown in Fig. 4(d) using the NNLS algorithm,
despite the latter being subject to 10-fold stronger smoothing than
the former. Although the four solutions presented here satisfy more
than 99 per cent of the data, the misfit in the model-space varies
widely between 54 and 492 per cent. Despite this great variability,
the moment magnitudes of the 4 slip distributions (reported on each
panel) are between 5.95 and 5.98, and a close match is found be-
tween synthetic and estimated centroids. Note that hereafter results
will be obtained using the NNLS algorithm.

In order to see how the data uncertainties are mapped to un-
certainties in the slip distribution attributes, we produce a set of
Monte Carlo realizations of the data errors. As before, the synthetic
errors are spatially uncorrelated and their distribution is Gaussian,
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Figure 5. Percentage of model-space misfit versus geodetic potency re-
sulting from 100 Monte Carlo tests employing smoothing strength κ =
0 (dark symbols) and 100 tests employing κ = 10−4 (grey symbols). (a)
Parkfield network configuration, with the largest and the smallest estimated
moment magnitudes indicated. (b) Random network configuration. The ver-
tical dashed lines indicate the true synthetic value.

with different standard deviations for different displacement com-
ponents (set equal to the corresponding average standard deviations
reported on SOPAC’s website). Each Monte Carlo realization of
the data error is then added to the noise-free synthetic data, and
inverted for slip using the NNLS algorithm. In Fig. 5(a), we show
the geodetic potency as a function of the percentage of model-
space misfit of 100 such inversions. The percentage of model misfit
of results obtained without smoothing (black circles) are in the
range of 200 and 450 per cent, and that of results obtained using
κ = 10−4 (grey circles) are between 60 and 100 per cent. Note that
here, because the synthetic slip distribution is smooth, the effect
of smoothing is to reduce both the model misfit and the spread in
the moment magnitude estimates. The result of the Monte Carlo
tests shows that uncertainties in the geodetic potency determination
due to data uncertainties are 20–30 per cent. When translated to
moment magnitude using the moment-magnitude relation of Hanks
& Kanamori (1979) and a shear modulus of 16 GPa, the largest
and smallest seismic moment of the set are equal to 6.07 and 5.95,
respectively, indicating that geodetic magnitude determinations are
practically insensitive to data uncertainties. Interestingly, despite the
GPS sites being strongly clustered near the fault centre, the Monte
Carlo tests yield similar scattering for the Cx and Cy, indicating
that the two components are similarly sensitive to data uncertainties
(Fig. 6).

3.3.2 The spreadness and the skewness tensors

The estimated components of the spreadness and the skewness ten-
sors as a function of the model misfit for 100 Monte Carlo real-
izations are shown in Figs 7(a) and 8(a), respectively. Because the
Parkfield GPS network is densely distributed around the fault cen-
tre with no stations near the fault ends, the control on the rupture
lateral extent is rather poor. Consequently, the components that are
a function of the along-strike coordinate (i.e. Ixx, Ixy, Jxxx and Jxxy)

Figure 6. Percentage of model-space misfit versus centroids resulting from
100 Monte Carlo tests employing κ = 0 (dark symbols) and 100 tests
employing κ = 10−4 (grey symbols). (a) Parkfield network configuration. (b)
Random network configuration. The vertical dashed and dotted lines indicate
the true synthetic values of the along-strike and the downdip components of
the centroids, respectively.

are less well constrained than those that are not (i.e. Iyy and Jyyy).
We conclude that neither the spreadness nor the skewness may be
resolved given the Parkfield network configuration.

3.4 Comparison with randomly generated networks

Because our ability to resolve the slip distribution functions
(eqs 5–8) is strongly influenced by the spatial distribution of the
observation points, it is instructive to consider alternative network
configurations. In the previous section we have seen that important
attributes of the synthetic slip distribution cannot be resolved us-
ing the Parkfield’s GPS network, and we will now see how use of
randomly generated GPS networks affects the resolution of these
attributes.

Using a uniformly distributed random number generator, we con-
structed a set of 10 000 random networks, each of which consists
of 14 sites, whose position is constrained to a 35 × 35 km2 squared
region enclosing the model fault. For each of the random network
configurations, we then computed a set of 100 different synthetic
data, containing uncorrelated random noise as is explained in Sec-
tion 3.3. Next we used the NNLS algorithm to invert each data set to
get the slip distribution, and used that slip distribution to compute
the set of slip distribution functions (eqs 5–8).

We define a network discrepancy parameter that quantifies, for
each network configuration, the percentage of the average discrep-
ancy between the estimated and the true slip distribution functions
as follows:

network discrepancy parameter =

100
1

m

m∑
l=1

√√√√ 1

10

10∑
n=1

(
f syn
n − f est

nl

f syn
n

)2

, (9)
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Figure 7. Percentage of model-space misfit versus the spreadness resulting
from 100 Monte Carlo tests employing κ = 0 (light coloured symbols)
and 100 tests employing κ = 10−4 (dark coloured symbols). (a) Parkfield
network configuration. (b) Random network configuration. The vertical lines
indicate the true synthetic values. In order to avoid overlap between symbols
of different components, values of Iyy were shifted to the left by a constant
amount.

where m is the number of data realizations for each random network
configuration, the superscripts ‘syn’ and ‘est’ denote ‘synthetic’ and
‘estimated’, respectively, and f1 through f10 are the 10 slip distri-
bution functions defined in eqs (5)–(8). In Fig. 9, we compare the
distribution of the network discrepancy parameters corresponding
to 10 000 random network configurations to the network discrep-
ancy parameter corresponding to the Parkfield network (indicated
by the vertical dashed line). Remarkably, we find that more than
99 per cent of the random configurations result in a network discrep-
ancy parameter that is smaller than that of the Parkfield network.
On the basis of this analysis we conclude that randomly constructed
networks are better configured than the Parkfield network, in the
sense that they better recover the macroscopic attributes of the slip
distribution.

The four configurations that yield the smallest network discrep-
ancy parameter are shown in Fig. 10. Despite these configurations
sharing very similar value of discrepancy parameter, the differences
between them are notable. A count of station-to-centroid distances
reveals a clear tendency for well-configured random networks to
peak between 15 and 20 km (Fig. 11). In contrast, the Parkfield net-
work is much more clustered near the fault centre, with two sites
practically located inside the fault zone.

Estimated slip parameters obtained through inversions of 100
Monte Carlo data realizations computed for the Parkfield network
and the random network configuration that yields the smallest dis-
crepancy parameter are compared in Figs 5–8. Note that the distribu-
tion of the estimated slip parameters corresponding to this random
network is far less scattered and is in much better agreement with the
synthetic slip parameters than those corresponding to the Parkfield
network. While use of the random network configuration clearly
improves the fit between the estimated and the actual slip distri-
bution functions (eqs 5–8), the fit to the slip distribution remains
poor.

Figure 8. Percentage of model-space misfit versus the skewness resulting
from 100 Monte Carlo tests employing κ = 0 (light coloured symbols) and
100 tests employing κ = 10−4 (dark coloured symbols). (a) Parkfield net-
work configuration. (b) Random network configuration. The vertical lines
indicate the true synthetic values. In order to reduce overlap between sym-
bols of different components, values of different components were shifted
horizontally by different amount.

Figure 9. A histogram showing the distribution of network discrepancies
corresponding to 10 000 random network configurations. The vertical dashed
line indicates the average discrepancy corresponding to the Parkfield net-
work.

4 S I N G L E - S I T E M A G N I T U D E
D E T E R M I NAT I O N

We have shown that while the extent to which the spreadness and the
skewness may be resolved depends strongly on the spatial distribu-
tion of the observation sites, the geodetic potency and the centroid
are better resolved and are less sensitive to the network configura-
tion. To further illustrate the robustness of the magnitude and the
centroid determinations, we solve the set of equations for the slip
distribution using the 3-D ground displacement at each of the 14
GPS sites separately.

In Fig. 12(a), we show the 14 geodetic potency versus smooth-
ing curves that we obtained using the NNLS algorithm. Note that
for most GPS sites, the geodetic potency is nearly independent of
smoothing for smoothing coefficient smaller than 10−2. Beyond that
point, the potency decreases rapidly with increasing smoothing. In
Fig. 12(b) we show the 14 moment magnitudes that we obtained for
each station separately by solving eq. (2) only, that is, without the
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Figure 10. Maps of four random networks yielding the smallest network
discrepancy parameters, with solid circles indicating the position of the
randomly positioned GPS sites and open stars indicating the position of the
Parkfield GPS stations.

Figure 11. A comparison between the station-to-centroid distance count of
the Parkfield network (dashed curve) and the four random networks yielding
the smallest network discrepancy parameters (solid curve).

smoothing constraint. Note that 10 of the 14 single-site magnitude
estimates are within ±0.05 magnitude unit of the synthetic magni-
tude, ±20 per cent of the synthetic potency (or seismic moment).
In addition, while the single-site magnitude estimates of GPS sites
located closest to the model fault plane are rather poor (i.e. CARH,
POMM and MIDA, indicated by upward-pointing triangles), those
of sites located further away from the fault are extremely close
to the ‘true’ magnitude (i.e. CRBT, LOWS and TBLP, indicated by
downward-pointing triangles). In Fig. 13, we show the single-site Cx

and Cy determinations. Similar to the single-site magnitude deter-
mination, the centroid determinations too are poor for GPS stations
located in the vicinity of the fault plane, but are in good/fair agree-
ment with the synthetic model for stations located further away from
it. In summary, while having as many constraints as possible helps
to account for uncertainties in fault geometry and measurement er-
rors, our analysis shows that use of individual sites for earthquake
magnitude determination is robust, provided that these sites are not

Figure 12. The results of single-site size determination. (a) Curves of geode-
tic potency versus smoothing coefficient. (b) The 14 moment magnitude
estimates as a function of GPS site, with upward and downward pointing tri-
angles indicating the two closest and the two most distant sites, respectively.
The dashed line indicates the true synthetic magnitude.

located within or in close proximity to the fault zone. Next we dis-
cuss the implications of this result for earthquake early warning
using real-time GPS.

5 I M P L I C AT I O N S F O R E A RT H Q UA K E
E A R LY WA R N I N G

Earthquake Early Warning Systems (EEWS) are rapid co- or post-
rupture magnitude and location determination systems that issue a
hazard assessment ahead of the destructive ground shaking, during
which various life and infrastructure saving measures may be taken.
Such systems are currently being implemented in Japan (Nakamura
1988), Mexico (Aranda et al. 1995) and Taiwan (Wu & Kanamori
2005). From a seismological perspective, the most challenging task
in the design of an EEWS is the development of a robust algorithm
for rapid magnitude assessment. To date, the data that are utilized by
such algorithms are seismograms and/or accelerograms. Recent ad-
vances in continuous GPS analysis techniques make it now possible
to obtain a close to real-time estimate of the 3-D ground displace-
ment (Bock et al. 2000). Can real-time estimates of GPS ground
displacement be harnessed for rapid magnitude determination?

We have shown that underdetermined slip inversions, even those
utilizing just a single GPS site (provided that this site is not located
within or in close proximity to the fault zone), yield robust esti-
mate of the moment magnitude. This result implies that real-time
GPS ground displacement can be used for rapid magnitude deter-
mination. Guided by this thinking, Allen & Ziv (2011) developed
a simple algorithm that can be applied in real-time, which extracts
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Figure 13. The results of single-site centroid determination. (a) The 14
along-strike centroid coordinates as a function of GPS site. (b) The 14
downdip centroid coordinates as a function of GPS site. Centroids are
normalized by the true synthetic values. Upward and downward pointing
triangles indicate the two closest and the two most distant sites, respectively.

the static offsets from the GPS total displacement waveforms by
averaging the dynamic oscillations. The static offsets are then used
as input for linear slip inversions similar to the one used here, using
a model fault plane that is chosen from a list of pre-recognized faults
on the basis of proximity to the real-time estimated hypocentre. The
estimated magnitude is then calculated directly from the slip distri-
bution. Both the static offsets and the magnitude estimates are being
repeatedly updated every second. The method has been tested and
successfully implemented on real-time displacement waveforms of
the 2010 April 4, Mw 7.2 El Mayor-Cucapah earthquake, showing
that real-time high-rate GPS can provide a useful and indepen-
dent assessment of earthquake magnitude for the purpose of earth-
quake early warning and real-time earthquake information systems
(Crowell et al. 2009).

6 S U M M A RY A N D C O N C LU S I O N S

In order to see which of the slip distribution attributes are obtain-
able, and are shared by different underdetermined models providing
satisfactory fit to the data, we constructed a synthetic GPS data set
and inverted it for slip. The geometry of that case study corresponds
to that of the Parkfield segment and the 14 SCIGN GPS sites next to
it. We show that slip inversions of that data yield robust estimate of
both the geodetic potency and the moment centroid. In contrast, the
slip inversions of the same data failed to resolve the spreadness and
the skewness of the slip distribution with respect to the centroid,
especially those components that are a function of the along-strike
position. This latter conclusion is not surprising, since the Park-
field network is densely distributed around the fault centre with no
stations near the fault ends.

We examined whether use of randomly generated GPS networks
improves or worsen the resolution of the slip distribution functions
(eqs 5–8). We find that randomly constructed networks are better
configured than the Parkfield network, in the sense that they better
recover the true slip distribution functions. Nevertheless, use of the
random network configuration does not improve the fit between the
estimated and the synthetic input slip distribution.

We show that the moment magnitude may be recovered using only
one GPS station, provided that this station is not located too close
to the fault plane. Some researchers have added a seismic moment
constraint to the set of equations (Johnson et al. 1994; Lundgren
& Stramondo 2002), whereas the results of this study suggest that
such a constraint is unneeded.

Near-fault GPS stations are critical for constraining shallow slip
during inter- and post-seismic intervals. For constraining the slip
attributes of moderate-to-large earthquakes, however, it is impor-
tant to have stations further away from the fault plane. Since the
2004 Parkfield earthquake, the number of GPS antennas within a
distance range of 35 km from the Parkfield epicentre has tripled.
These stations are now part of the Plate Boundary Observatory,
which is a component of the EarthScope project. Additional GPS
stations that were deployed beyond that distance range may, how-
ever, not be useful for monitoring the next Parkfield earthquake,
as the expected ground displacement at these stations due to Mw

6 along the Parkfield segment and the data accuracy are of similar
magnitude. Despite the dramatic increase in the number of stations,
detailed mapping of the seismic slip distribution of the next Park-
field earthquake, on spatial and temporal scales that are of interest
to earthquake physicists, will not be feasible. Nevertheless, thanks
to the addition of stations at the intermediate range (i.e. between
10 and 20 km of the epicentre), it is expected that the macroscopic
attributes of that earthquake, including the spreadness and the skew-
ness, will be well resolved.
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