Mathématiques 2 - Algèbre - TD Nº 1

Exercice 1. Déterminer lesquels des ensembles E_1 , E_2 , et E_3 sont des sous-espaces vectoriels de \mathbb{R}^3 .

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x - 7y = z\}$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 - z^2 = 0\}$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = x + y + z = 0\}$$

Exercice 2.

- (a) L'ensemble $E = \{(x, 2x 3y, y), (x, y) \in \mathbb{R}^2\}$ est-il un sous espace vectoriel de \mathbb{R}^2 ?
- (b) Soit $F = \{(x, y, z) \in \mathbb{R}^3 / (x y + z = 0)\}$. Est-ce un sous espace vectoriel de \mathbb{R} ?
- (c) Soit $G = Vect\{(1,1,1)\}$. Étudier $F \cap G$.
- (d) Dans \mathbb{R}^3 , on considère u=(1,-1,0) et v=(1,1,-1). A quelle condition sur les réels a,b,c, le vecteur (a,b,c) est-il élément de $Vect\{(u,v)\}$?

Exercice 3.

- (a) Dans \mathbb{R}^3 , donner un exemple de famille libre qui n'est pas génératrice.
- (b) Dans \mathbb{R}^3 , donner un exemple de famille génératrice qui n'est pas libre.
- (c) Dans \mathbb{R}^3 , la famille $\{u=(1,1,1); v=(0,1,1); w=(-1,1,1)\}$ est-elle génératrice de \mathbb{R}^3 ?
- (d) Montrer que les vecteurs $v_1 = (0, 1, 1)$, $v_2 = (1, 0, 1)$ et $v_3 = (1, 1, 0)$ forment une base de \mathbb{R}^3 . Trouver les composantes du vecteur w = (1, 1, 1) dans cette base.
- (e) Montrer que les vecteurs $v_1 = (1,1,1)$, $v_2 = (-1,1,0)$ et $v_3 = (1,0,-1)$ forment une base de \mathbb{R}^3 . Trouver les composantes des vecteurs $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$ et w = (1,2,-3) dans cette base (v_1,v_2,v_3) .

Exercice 4. Dans \mathbb{R}^4 muni du produit scalaire usuel, on pose $V_1 = (1, 2, -1, 1)$ et $V_2 = (0, 3, 1, -1)$. On pose $F = Vect(V_1, V_2)$. Déterminer une base orthonormale de F et un système d'équations de F^{\perp} .

Exercice 5. (a) On considère l'ensemble vide $P = \emptyset$. Quel est l'espace vectoriel engendré par P? Trouver la dimension de Vect(P).

- (b) On considère à présent l'ensemble $P = \{(1, 3, -4)\}$. Quel est l'espace vectoriel engendré par P? Quelle est sa dimension?
- (c) Montrer que la dimension des espaces vectoriels \mathbb{R} , \mathbb{R}^2 , et \mathbb{R}^3 est respectivement égale à 1, 2 et 3.

Exercice bonus:

Exercice 6. Soient F et G deux sous-espaces vectoriels de E.

- (a) Montrer que F + G est aussi un sous-espace vectoriel de E.
- (b) Montrer que $\dim(F+G) = \dim F + \dim G \dim(F \cap G)$.

Mathématiques 2 - Algèbre - TD Nº 2

Exercice 1. Soit $(\vec{u}, \vec{v}, \vec{w}) \in \mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$. Montrer que :

- (a) $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2$
- (b) $(\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u}.\vec{v} + \vec{v}^2$
- (c) $(\vec{u} + \vec{v})(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$
- (d) $(\vec{u} \wedge \vec{v}) \wedge \vec{w} = (\vec{u}.\vec{w}).\vec{v} (\vec{v}.\vec{w}).\vec{u}$
- (e) $(\vec{u}.\vec{v})^2 + (\vec{u} \wedge \vec{v})^2 = \vec{u}^2 \vec{v}^2$

Exercice 2. Calculer les coordonnées du produit vectoriel $\vec{u} \wedge \vec{v}$ avec :

- (a) $\vec{u} = (0, 1, 2)$ et $\vec{v} = (2, 1, 2)$
- (b) $\vec{u} = (-2, a, 0)$ et $\vec{v} = (a, 0, 2)$

Exercice 3. Dans le repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, soient A = (6, 2, 4), B = (2, 1, 1) et $C = (\alpha, 3, 7)$ trois points de l'espace, où α est un nombre réel.

- (a) À quelle condition le vecteur \overrightarrow{OC} est-il unitaire?
- (b) À quelle condition $(\overrightarrow{AC} \wedge \overrightarrow{BO}) \cdot \overrightarrow{k} = 1$?
- (c) À quelle condition les points A, B et C sont-ils alignés?
- (d) À quelle condition \overrightarrow{OA} et \overrightarrow{AC} sont-ils perpendiculaires?

Exercice 4. Dans le repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points A = (0, 0, 0), B = (-1, 1, -2), et C = (2, -2, 4) de l'espace.

- (a) Montrer que A, B et C sont alignés.
- (b) Montrer que l'équation de la droite qui passe par A, B et C peut s'écrire sous la forme $\vec{u} = \lambda \vec{b}$ où \vec{u} varie dans \mathbb{R}^3 , λ varie dans \mathbb{R} et \vec{b} est un vecteur unitaire de \mathbb{R}^3 à déterminer.

Exercice 5. On considère le plan P d'équation x + y - z = 0, avec $(x, y, z) \in \mathbb{R}^3$.

- (a) Trouver le vecteur unitaire normal au plan P.
- (b) Calculer la distance du point (0,0,1) au plan P.

Exercice 6. Dans le repère orthonormé (O, \vec{i}, \vec{j}) , soient A = (0, 0), B = (2, 0), C = (3, 1) et D = (1, 1) trois points de l'espace.

- (a) Calculer l'aire du paralléllogramme ABCD en utilisant un produit vectoriel.
- (b) Soit D' la projection orthogonale de D sur la droite passant par A et B. Calculer la distance AD' en utilisant un produit scalaire.

Mathématiques 2 – Algèbre – TD Nº 3

Exercice 1. Notations:

 \mathcal{C} : ensemble des fonctions numériques continues sur [0,1].

 \mathcal{C}_d : ensemble des fonctions numériques ayant une dérivée continue sur [0,1].

 $\mathcal{C}(\mathbb{R})$ et $\mathcal{C}^1(\mathbb{R})$: définis de façon analogue pour les fonctions définies sur \mathbb{R} .

 \mathcal{P} : ensemble des polynômes sur \mathbb{R} .

 \mathcal{P}_n : ensemble des polynômes sur \mathbb{R} , de degré $\leq n$.

Dire si les applications suivantes sont des applications linéaires :

- (a) $\mathbb{R} \to \mathbb{R} : x \mapsto 4x 3$.
- (b) $\mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto (y, x)$.
- (c) $\mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto 3x + 5y$.
- (d) $\mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto \sin(3x + 5y)$.
- (e) $\mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto xy$.
- $\text{(f) } \mathbb{R}^2 \to \mathbb{R}^2 : M \mapsto M' \text{ défini par } : \overrightarrow{OM'} = \frac{\overrightarrow{OM}}{\|\overrightarrow{OM}\|} \text{ si } \overrightarrow{OM} \neq \overrightarrow{0} \text{ et } \overrightarrow{0} \text{ sinon}.$
- (g) $\mathbb{R}^3 \to \mathbb{R} : M \mapsto \overrightarrow{OM} \cdot \overrightarrow{V}$ où $\overrightarrow{V} = (4, -1, 1/2)$.
- (h) $C \to \mathbb{R} : f \mapsto \max_{t \in [0,1]} f(t)$.
- (i) $\mathcal{C}_d \to \mathcal{C} : f \mapsto f'$.

Exercice 2. On munit \mathbb{R}^2 d'un repère orthonormé (O, \vec{i}, \vec{j}) .

- (a) Soit f une application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 . Montrer qu'il suffit de connaître les images de \vec{i} et \vec{j} par f pour connaître la valeur de f en tout point de \mathbb{R}^2 .
- (b) Quelle est la matrice de la symétrie axiale par rapport à l'axe des abscisses dans la base $\{\vec{i}, \vec{j}\}$?
- (c) Quelle est la matrice de la projection orthogonale sur l'axe des abscisses dans la base $\{\vec{i},\vec{j}\}$?
- (d) Quelle est la matrice de la rotation d'angle θ (dans le sens inverse des aiguilles d'une montre) et de centre O dans la base $\{\vec{i}, \vec{j}\}$?
- (e) Quelle est la matrice de l'homothétie de centre O et de rapport k dans la base $\{\vec{i},\vec{j}\}$?
- (f) Quelle est la matrice de la symétrie centrale de centre O dans la base $\{\vec{i},\vec{j}\}$?
- (g) Est-ce qu'une translation est une application linéaire?

Exercice 3. Soit $A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ pour $\theta \in \mathbb{R}$. Calculer $A(\theta) \times A(\theta')$ et $(A(\theta))^n$ pour n entier supérieur à 1.

Exercice 4. Soit l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ donnée par :

$$f(x, y, z) = (x + 2y + z, 2x + y + 3z, -x - y - z).$$

- (a) Justifier que f est linéaire.
- (b) Donner la matrice de f dans la base canonique de \mathbb{R}^3 .
- (c) Déterminer une base et la dimension du noyau de f, noté $\ker f$. L'application f est-elle injective?
- (d) Donner le rang de f et une base de Im f. L'application f est-elle surjective?

Exercice 5. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique (e_1, e_2, e_3) est

$$A = \left(\begin{array}{ccc} 15 & -11 & 5\\ 20 & -15 & 8\\ 8 & -7 & 6 \end{array}\right).$$

Montrer que les vecteurs

$$e'_1 = 2e_1 + 3e_2 + e_3$$
, $e'_2 = 3e_1 + 4e_2 + e_3$, $e'_3 = e_1 + 2e_2 + 2e_3$

forment une base de \mathbb{R}^3 et calculer la matrice de f par rapport à cette base.

Exercice 6. Dans $E = \mathbb{R}^3$ euclidien orienté rapporté à une base orthonormée directe \mathcal{B} , soient les endomorphismes de matrice A dans \mathcal{B} suivants :

$$- A = -\frac{1}{3} \begin{pmatrix} -2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{pmatrix}$$

$$- A = \frac{1}{9} \begin{pmatrix} 8 & 1 & 4 \\ -4 & 4 & 7 \\ 1 & 8 & -4 \end{pmatrix}$$

Dans chaque cas, en notant C_i la colonne i de A, calculer :

- (a) $||C_1||$
- (b) $||C_2||$
- (c) $< C_1 | C_2 >$ (produit scalaire)
- (d) $C_1 \wedge C_2$ (produit vectoriel).

En déduire la nature de A.

Déterminer les $X \in \mathbb{R}^3$ tels que AX = X.

Mathématiques 2 – Algèbre – TD Nº 4

Exercice 1. On considère les trois matrices suivantes :

$$A = \begin{pmatrix} 2 & -3 & 1 & 0 \\ 5 & 4 & 1 & 3 \\ 6 & -2 & -1 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} 7 & 2 \\ -5 & 2 \\ 3 & 1 \\ 6 & 0 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} -1 & 2 & 6 \\ 3 & 5 & 7 \end{pmatrix}$$

- (a) Calculer AB puis (AB)C.
- (b) Calculer BC puis A(BC).
- (c) Que remarque-t-on?

Exercice 2. Calculer (s'il existe) l'inverse des matrices :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 0 & 1 & \ddots & & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ & \cdots & 0 & 1 & 1 \\ 0 & & \cdots & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & \vdots \\ & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 & 2 \\ 0 & \cdots & & 0 & 1 \end{pmatrix}$$

Exercice 3. Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
 Calculer A^2 et montrer que $A^2 = 2I - A$, en déduire que A est inversible et calculer A^{-1} .

Exercice 4. Dans l'espace euclidien \mathbb{R}^3 , on considère le plan F d'équation x+2y-z=0.

- (a) Trouver une base orthonormée de F.
- (b) Donner la matrice de la projection orthogonale de \mathbb{R}^3 sur le plan F dans la base canonique.
- (c) Calculer la distance de (1, 3, -1) au plan F
- (d) Donner la matrice de la symétrie orthogonale de \mathbb{R}^3 par rapport au plan F

Exercice 5. Température dans une vallée alpine

Le 24 mai 2016 à 13h00, des relevés de température sont effectués à différentes altitudes au travers d'une vallée alpine. Les températures mesurées, ainsi que l'altitude des relevés, sont reportés dans le tableau et la figure ci-dessous.

				0000000	•
Station	Température	Altitude	2500 m		
1	0°C	2000 m	-	\0°	TEMPERATURES A MIDI +2°
2	$+3^{\circ}\mathrm{C}$	$1500~\mathrm{m}$	2000 т		7,
3	$+6^{\circ}\mathrm{C}$	$1000~\mathrm{m}$	1500 m		★ "
4	$+10^{\circ}\mathrm{C}$	$500 \mathrm{m}$			2 \
5	$+8^{\circ}\mathrm{C}$	$1000~\mathrm{m}$	1000 m	_	~_ ^; ~~~~
6	$+5^{\circ}\mathrm{C}$	$1500~\mathrm{m}$	S00 m		*10*
7	$+2^{\circ}\mathrm{C}$	$2000 \mathrm{m}$			2
8	$-2^{\circ}\mathrm{C}$	$2500~\mathrm{m}$	0 m	_	
				SUD ←	→ NO

- (a) Reporter ces mesures sur un graphique dans lequel l'altitude sera représentée en abscisses, et la température en ordonnées. Que remarque-t-on?
- (b) En notant x l'altitude, et y la température, établir un modèle simple, sous la forme d'une équation algébrique, permettant d'expliquer la tendance observée.
- (c) Représenter ce modèle sous une forme matricielle, en le décomposant sur la base des polynômes de degré inférieur ou égal à 1.
- (d) Estimer les paramètres du modèle par la méthode des moindres carrés.

Mathématiques 2 – Algèbre – TD Nº 4 bis

Exercice 1. Cycle sismique

On mesure le déplacement d'un marqueur GPS au cours du temps sur plusieurs années. Les mesures sont reportées dans le tableau ci-contre et représentées dans le graphe ci-dessous (points rouges).

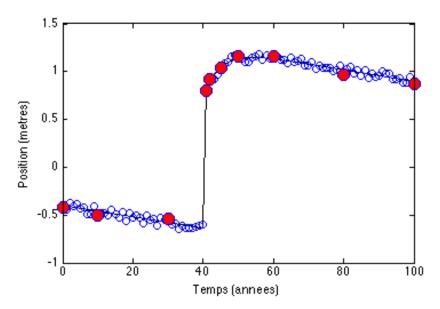
Sachant qu'un séisme s'est produit à la date $t_e=40$, on souhaite modéliser les déplacements mesurés en utilisant le modèle suivant :

$$y = a + b * t + c * \mathcal{H}(t_e)$$

$$+ d * \mathcal{H}(t_e) * \left\{ 1 - exp\left(-\frac{t - t_e}{t_r}\right) \right\} \quad (1)$$

où \mathcal{H} représente la fonction de Heaviside, et $t_r = 5$.

Campagne	Date	Position
1	0	-0.4243
2	10	-0.5094
3	30	-0.5349
4	41	0.7969
5	42	0.9216
6	45	1.0342
7	50	1.1639
8	60	1.1565
9	80	0.9711
10	100	0.8678



- 1/ Que représentent, physiquement, les paramètres a, b, c et d?
- 2/ Estimer \hat{a} , \hat{b} , \hat{c} et \hat{d} par la méthode des moindres carrés.
- 3/ Évaluer la norme des résidus ||e||.

Réponses : $\hat{a} = -0.4023$; $\hat{b} = -0.0065$; $\hat{c} = 1.3935$; $\hat{d} = 0.5428$; ||e|| = 0.1040.

"Vraies" valeurs : a=-0.4 ; b=-0.006 ; c=1.4 ; d=0.5.

Mathématiques 2 - Algèbre - TD Nº 5

Exercice 1. Pour quels b au second membre les systèmes suivants ont-ils des solutions?

$$\begin{pmatrix} 1 & 4 & 2 \\ 2 & 4 & 8 \\ -1 & -4 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \qquad \begin{pmatrix} 1 & 4 \\ 2 & 9 \\ -1 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Exercice 2. Déterminer le nombre q de sorte que (si possible) le rang de la matrice soit égal à (a) 1, (b) 2, (c) 3 :

$$A = \begin{pmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & q \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 1 & 3 \\ q & 2 & q \end{pmatrix}$$

Exercice 3. Déterminer le nombre q de sorte que (si possible) le rang de la matrice soit égal à (a) 1, (b) 2, (c) 3 :

$$A = \begin{pmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & q \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 1 & 3 \\ q & 2 & q \end{pmatrix}$$

Exercice 4. Trouver les matrices A et B vérifiant les propriétés suivantes, ou expliquer pourquoi cela n'est pas possible.

- (a) L'unique solution de $Ax = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ est $x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- (b) L'unique solution de $Bx = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ est $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Exercice 5. Prouver que si a = 0 ou d = 0 ou f = 0 (3 cas), les colonnes de U sont liées :

$$U = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}$$

Exercice 6. Déterminer le nombre q de sorte que (si possible) le rang de la matrice soit égal à (a) 1, (b) 2, (c) 3 :

$$A = \begin{pmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & q \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 1 & 3 \\ q & 2 & q \end{pmatrix}$$

Exercice 7. Ce problème a pour but de projeter $b = (b_1, ..., b_m)$ sur la droite de vecteur directeur a = (1, ..., 1).

- (a) Résoudre l'équation $a^T a \hat{x} = a^T b$ d'inconnue \hat{x} .
- (b) Soit p le projeté de b sur la droite de vecteur a. On considère le vecteur erreur e = b p. Exprimer le vecteur erreur e, la variance $||e||^2$ et l'écart type ||e|| en fonction de b.
- (c) Dessiner un graphe avec b = (1, 2, 6). Déterminer et représenter son projeté p sur a. Où se trouve e sur le graphe? Vérifier que p est orthogonal à e.
- (d) Déterminer la matrice de la projection orthogonale P.

Exercice 8. Donner la matrice C des cofacteurs de A et multiplier A par C^T . En déduire A^{-1} .

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

Exercice 9. Les quatre premières ondelettes se trouvent dans les colonnes de la matrice $de\ Haar\ W$:

$$W = \frac{1}{2} \begin{pmatrix} 1 & 1 & \sqrt{2} & 0 \\ 1 & 1 & -\sqrt{2} & 0 \\ 1 & -1 & 0 & \sqrt{2} \\ 1 & -1 & 0 & -\sqrt{2} \end{pmatrix}$$

Qu'y a-t-il de spécial avec les colonnes de W? Déterminer W^{-1} . Quelle est la relation entre W et W^{-1} ?

Exercice 10. Donner la matrice C des cofacteurs de A et multiplier A par C^T . En déduire A^{-1} .

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$