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ABSTRACT- Hyperspectral characteristics of the HyMap airborne instrument are used to determine the
minimum number of wavebands useful for accurate retrieval of canopy biophysical variables. The information
content of a reflectance spectrum indicates the number of independent variables that explain its variance. It is
usually determined statistically and leads to the identification of the spectral regions the most sensitive to
variations of these variables. Here, a sensitivity analysis of the PROSPECT+SAIL model is performed with the
aim of determining the most informative HyMap spectral bands on the dynamics of the canopy biophysical
variables. The relevance of such optimal wavelengths is then assessed in inverse mode, where the variables are
estimated from real reflectance spectra acquired during the DAISEX 1999 (Digital AIrborne Spectrometer
EXperiment) campaign. Emphasis is on the estimation of the leaf chlorophyll content Cab and the leaf area index
LAI.

1 INTRODUCTION

Inversions of canopy reflectance models have
spread during the last decade to estimate vegetation
characteristics. In comparison with empirical or semi-
empirical methods, physically-based models better
account for the interdependence between canopy state
variables. Nevertheless, the non-unicity of the solution
turns out to be a limiting factor for reliable estimates.
Recent efforts to develop computationally efficient
inversion techniques such as neural networks and
look-up tables, and to regularize the inverse problem
by introducing prior information on the variables, have
only partially overcome this issue. A further approach
may take advantage of optimal sampling
configurations which i) express the best adequacy
between the models and "reality" (i.e., between the
input variables and the "real" canopy state variables;
between the simulated and the measured reflectances),
and ii) carry as much information as possible.

The inverse problem consists here in determining
the set of model variables such that the simulated
reflectances comply the best with observations. The
search for an optimal set of canopy variables, by all
the acceptable solutions, implicitely supposes that
there is a particular combination of reflectances
associated to it. The aim of this study is to determine
the best choice of N observations, among M available
(N being smaller than M), that leads to the best
estimation of the canopy biophysical variables. The
determination of such optimal configurations of
observation is in progress (Kimes et al., 2000) and is
advanced by spatial agencies (CNES, ESA, NASA) to

improve the quality of remote sensing products and
the definition of new instruments.

In remote sensing, the concept of information
content of a reflectance spectrum has been first
introduced by the pioneers of imaging spectroscopy
applied to soils and plant canopies, even though this
issue was not considered for inversion purposes. It
measures the number of independent variables that
explain most of the observed variability. Its
determination is inseparable from the identification of
the spectral regions the most sensitive to these
variables (Price, 1975). Typically, five dimensions
satisfactorily described the variability of radiometric
signals measured over vegetation (Price, 1992; Curran,
2001): two in the visible, one in the near infrared, and
two in the middle infrared. The selection of a limited
number of wavebands for the estimation of plant
canopy characteristics is generally made statistically
(multiple regression analysis for instance).

In this paper, we propose an alternative approach
based on the sensitivity analysis of a canopy
reflectance model (the issue of adequacy between
model and reality is not considered here since we
assume that the model is reality). The PROSPECT+
SAIL model is used in the observation configuration
of HyMap to determine the best wavelengths for the
estimation of canopy biophysical variables, in
particular the leaf chlorophyll content Cab and the leaf
area index LAI that are the two most relevant
biophysical variables that reveal vegetation state and
functioning.

Then, inversions of the coupled canopy reflectance
model on HyMap reflectance spectra acquired during
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the DAISEX99 campaign enable to validate these
preliminary results.

2 SENSITIVITY ANALYSIS

2.1 The model

The SAIL radiative transfer model (Verhoef, 1984,
1985) is widespread in the remote sensing community
for the estimation of vegetation biophysical variables.
It calculates the canopy reflectance, provided the leaf
optical properties and a limited number of variables
describing its architecture: the leaf area index LAI, the
mean leaf inclination angle ALA, assuming an
ellipsoidal distribution of foliage elements (Campbell,
1990), the hot spot parameter sl, and a soil brightness
parameter αsoil.

It is coupled with the PROSPECT model in order
to account for the leaf optical properties. The version
used here requires the leaf structure parameter N, the
chlorophyll a and b content Cab (µg.cm-2), the
equivalent water thickness Cw (cm), the dry matter
content Cm (g.cm-2), and the brown pigment
concentration Cbp (Jacquemoud and Baret, 1990; Baret
and Fourty, 1997), to simulate leaf reflectance and
transmittance spectra in the optical domain.

2.2 Experimental design

Design of numerical experiments recently emerged in
the field of remote sensing for sensitivity analyzes of
complex computational models (Bacour et al., 2002).
They allow better sampling of the parameter space in a
limited number of simulations where all the input
variables vary simultaneously (Benoist et al., 1994).
We used such an method to study the influence of each
variable of the model within its range of variation.

The space of canopy realizations is determined
after a Hyper Graeco Latin Geometric sampling
scheme, the resolution of which allows full
investigation of all interactions between two variables.
The companion experimental design is made of 2401
simulations corresponding to different combinations of
the eight PROSPECT+SAIL input variables, each of
them taking one over seven values equidistributed
within its definition range (Table I). As the
simulations are conducted in the principal plane where
the hot spot parameter has very little influence, the
latter is fixed to 0.25.

The observation configurations comply with those
of the HyMap instrument used in the DAISEX99
campaign (see §3.1): sun zenith angle θs of 17°, view
zenith angle θv varying from 0° to 25° with a 5° step,
and relative azimuth angle φ equal to 100° and 280°.
89 over 128 wavebands are used. They cover the solar
spectrum from 457 to 2271 nm.

Lower
bound

Upper
bound

N 1 3
Cab 1 100
Cm 0.002 0.02
Cw 0.04 0.04

Leaf

Cbp 0 1
LAI 0 8
ALA 30 85Canopy
αsoil 0.5 3

Table I. Variation of the PROSPECT+SAIL input
parameters used in the experimental design.

2.3 Sensitivity analysis

The effects and contributions of the model variables
are assessed from the whole set of simulations (for
more details, see Bacour et al., 2002). The mean effect
of a variable v represents the distance between the
mean values of the model responses when v is on level
n, vnρ , and the general mean ρ . They are expressed
as a percentage:

100×−= ρ
ρρvn

vnE (1)

Since the results present only a slight dependence
with the view zenith angle, we will deal with
directional averaged values hereafter. The spectral
sensitivity of the model variables is summarized in
Figure I: given a wavelength, the tangent to the effect
surface expresses the ability of the model to link
variations of reflectance levels to variations of the
biophysical variables: a positive (respectively,
negative) slope means that increasing the value of a
variable translates into an increase (respectively,
decrease) of the reflectance; moreover, the sharper the
slope is, the more sensitive the reflectance is to
variations of the considered variable. One can observe
a quasi-exponential decrease of Cab, Cw, and LAI
effects on their definition range, with a noticeable
reversal for the leaf area index in the green (where
increasing biomass tends to increase the reflectance).
On the other hand, effects of the other variables turn
out to be almost linear.



n.3

1.1
1.4

1.7
2

2.3
2.6

2.9

500
1000

1500
2000

−20

−10

0

10

20

Nλ   (nm)

N

E
ff

ec
t 

(%
)

6
21

36
51

65
80

95

500
600

700
800

900
1000

0

50

100

C
ab

λ   (nm)

C
ab

E
ff

ec
t 

(%
)

0.003
0.0060.008

0.011
0.0140.016

0.019

500
1000

1500
2000

−20

−10

0

10

20

30

C
m

λ   (nm)

C
m

E
ff

ec
t 

(%
)

0.002
0.008

0.014
0.02

0.026
0.032

0.038

500
1000

1500
2000

0

50

100

150

C
w

λ   (nm)

C
w

E
ff

ec
t 

(%
)

0.1 0.2
0.4 0.5

0.7 0.8
1

600
800

1000
1200

−20

−10

0

10

20

C
bp

λ   (nm)

C
bp

E
ff

ec
t 

(%
)

0.4
1.6

2.8
4

5.2
6.4

7.6

500
1000

1500
2000

0

50

100

LAIλ   (nm)

LAI

E
ff

ec
t 

(%
)

33
41

49
58

66
74

82

500
1000

1500
2000

−40

−20

0

20

40

ALAλ   (nm)

ALA

E
ff

ec
t 

(%
)

0.63
1

1.38
1.75

2.13
2.5

2.88

500
1000

1500
2000

−20

0

20

α
soil

λ   (nm)

α
soil

E
ff

ec
t 

(%
)

Figure I. Mean effects of the PROSPECT+SAIL
variables as a function of the wavelength: N, Cab, Cm,
Cw, Cbp, LAI, ALA, and αsoil.

Whereas the study of the variable effects reveals
their sensitivity, the determination of their relative
contribution helps organizing their own influence on
the canopy reflectance into a hierarchy. For each
variable, the contribution index Cv characterizes the
variance it explains:
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for N = 2401 simulations and m = 7 levels taken by
each variable.

As illustrated by Figure II, the total contribution of
the variables and their interactions almost equal 100%;
the residues are attributed to inherent computational
errors and should be regarded as noise. Figure II
clearly shows the spectral influence of each variable:

in the visible, the chlorophyll content drives about
50% of the reflectance variations, with a weaker
contribution near 550 nm; in the near-infrared, the
most important variables are the leaf angle parameter
and the leaf area index; the middle infrared confirms
the strong influence of light absorption by the leaf
water content around 1450 and 1940 nm.
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Figure II. Spectral variation of the contribution of the
PROSPECT+SAIL variables.

2.4 Definition of optimal wavebands

In order to determine optimal wavebands for the
estimation of Cab and LAI, let us define sensitivity Sv

and optimality I indices which combine both the
sensitivity and contribution of the variables:
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Sv expresses the cumulative magnitude of the
sensitivity of the variable v (i.e. the slope of its mean
effects) on the range of variation. In the definition of
the optimality index, the impact of the interactions
where Cab and/or LAI are involved, has been taken into
account so as to reduce possible compensations
between variables during inversions. Each wavelength
has been attributed such indices. Then, the selection of
optimal spectral bands is only based on the values of I.
Because of the distribution of the latter in the solar
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spectrum − the maximum values are all located in the
near infrared − we decided to split it into three
domains: the visible (400-700 nm), the near infrared
(700-1300 nm), and the middle infrared (1300-2300
nm). Also, another hierarchy has been established to
account for correlations between the wavelengths: for
each wavelength λ0, the optimality index I is weighted
by a factor that depends of the value of the correlation
of λ0 with the other wavebands comprised within a
given correlation length (that is, every spectral band λi

verifying corr(λ0,λi) ≥ 1/e). The goal was to spread the
information of adjacent wavebands on the solar
spectrum with respect to physical assumptions (Figure
III).
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Figure III. Position of the eight most optimal
wavelengths in the visible (400-700 nm), near infrared
(700-1300 nm), and middle infrared (1300-2300 nm)
domains, together with an experimental wheat
reflectance spectrum, whether the correlation between
wavebands is taken into account (top) or not (bottom).

3 CANOPY BIOPHYSICAL VARIABLE
ESTIMATION

The relevance of the optimality indices determined
previously is appraised with HyMap measurements,
and illustrated with the leaf area index for which the
ground truth was available. The aim is to assess
whether the use of the selected wavebands determined
as above improves the estimation of LAI or not, by
comparison with inversions performed with the whole
radiometric information.

3.1 The DAISEX99 campaign

The scientific goal of DAISEX (Berger et al.,
2001; Müller et al., 2001; Moreno et al., 2001) was to

demonstrate the retrieval of geo- bio-physical
variables from imaging spectrometers. In this context,
the Barrax (Spain) test site − an agricultural flat area
of 3 km × 3 km centered on 39°3'N, 2°5'W − was
monitored the 3rd of June 1999 with HyMap and in
situ to determine some biophysical variables including
the leaf area index of corn (Zea mays L.), sugar beet
(Beta vulgaris L.), and barley (Hordeum vulgare L.).

3.2 Inversions

Inversions of PROSPECT+SAIL are conducted by
means of a quasi-Newton algorithm to minimize the
misfit function S² that characterizes the gap between
measured Rmes and simulated Rmod reflectances:
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mes RRS

1

2
mod² (5)

The routine E04JYF of the Numerical Algorithm
Group library allows fixing the upper and lower
bounds of variation of the nine variables estimated
simultaneously (the eight ones defined in Table I plus
the hot spot parameter). Also, 10 sets of variables,
with values drawn randomly according to a uniform
distribution, are used as initial guess of the inversion
process. In the following, the estimated LAI values are
averages of these 10 estimates.

3.3 Studied cases

Different combinations of optimal wavelength
selections have been studied for the estimation of the
leaf area index (Table II). In each case, the estimations
were made with the previously selected wavelengths,
considering or not the correlation, as well as with
randomly drawn wavelengths.

The use of such a limited radiometric information
for infering biophysical variables by inversion rises
the question of determination of the optimization
problem. Theoretically, solving the inverse problem
imposes the system to be over-determined, i.e. the
number of variables M to estimate must be at most
equal to the number of measurements N; the solution
is therefore not unique. However, from a statistical
point of view, the higher the number of avalaible data
is (considering they are noise free), the more
consistent the estimation is. The ratio N/M is therefore
an indicator of the confidence one can expect in the
estimates.
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Number of wavebands
VIS NIR MIR Total

Ratio
N / M

# 1 16 36 37 89 9.9

# 2 16 36  52 5.8

# 3 8 10  18 2

# 4 10 10  20 2.2

# 5 6 6 6 18 2

Table II. Different cases tested for the estimation of
the leaf area index with HyMap.

Results of the LAI estimations are gathered in
Figure IV. Reducing the spectral information generally
leads to debase the estimates of low LAI values (below
1), as illustrated by #2 to #5. This trend may result
from different soil conditions between the model and
real crops: in the experimental designed simulations,
the soil is assumed Lambertian; in the inversions, it is
anisotropic and characterized by the SOILSPECT
model (Jacquemoud et al., 1992) whose input
parameters were estimated on a bare soil from HyMap
spectra. For higher LAI values, the estimates better
match the in situ measurements, even when few
radiometric data are available (#3, #4, and #5). The
introduction of spectral correlations in the
determination of the optimal wavelengths does not
improve the estimations. Moreover, inversions
performed at the "optimal" wavelengths led to better
results, with regard to the ground truth, than when
using random ones, pointing out a certain relevance of
the concept of optimal configuration.
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Figure IV. Estimated values of the leaf area index (y-
axis) against the in situ measurements (x-axis) for
different selections of the wavebands (see Table II).

4 CONCLUSION

Improved estimation of canopy biophysical variables
through inversion of a radiative transfer model may be
obtained by taking advantage of optimal sampling
configurations i) carrying as much information as
possible, and ii) providing the best adequacy between
the models and "reality". The first point was
investigated in this paper with the PROSPECT+SAIL
model.

In a first step, a sensitivity analysis of the model
enables to point out some spectral features where the
influence of the leaf area index and the chlorophyll a
plus b content is prominent as compared to the other
variables. On this basis, different sets of optimal
wavelengths were determined. These were then
employed in inversion on HyMap hyperspectral
reflectance spectra acquired during the DAISEX99
campaign. It appeared that, even for limited
radiometric information, high LAI values were
consistently estimated when compared to the ground
truth (results were even better than when using all the
reflectances). Conversely, lower LAI values (<1) were
poorly retrieved, probably because of different soil
characteristics between simulations and actual
canopies. The hypothesis of a homogeneous canopy is
also no more valid in that case.

These preliminary results point out that the
relevance of the "optimal" wavelengths derived in this
study still remains ambiguous. Their validation in the
inversion process is limited by the number of canopies
considered and the lack of information on the
experimental errors (for the radiometric part as well as
for the LAI ground truth). It also appears that most of
the wavebands retained are contiguous, i.e. their
information content is correlated. Other choices in the
empirical determination of the optimality indices may
have lead to different results: more emphasis could
have been put on either the sensitivity or the
contribution, different weights could have been laid to
the parameter interactions, etc. Finally, their use in the
prospect of estimation of canopy biophysical variables
with model inversion is restricted by the determination
of the inverse problem (i.e. the number of variable to
estimate vs. the number of available data). Quite
obviously, the potentiality of exploiting optimal
wavelengths should be enhanced by addition of
directional information.
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