
www.elsevier.com/locate/sna

Comparison of Four Radiative Transfer Models
to Simulate Plant Canopies Reflectance:
Direct and Inverse Mode

S. Jacquemoud,* C. Bacour,* H. Poilvé,† and J.-P. Frangi*

Four one-dimensional radiative transfer models are method to extract information on plant canopies, the
SAIL and KUUSK models, which perform well in termscompared in direct and inverse modes. These models are

combinations of the PROSPECT leaf optical properties of accuracy and running time, proved to be good candi-
dates for remote sensing application in ecology or agri-model and the SAIL (Scattering by Arbitrarily Inclined

Leaves), IAPI, KUUSK, and NADI (New Advanced Dis- culture (precision farming). Elsevier Science Inc., 2000
crete Model) canopy reflectance models. To evaluate their
ability to estimate canopy biophysical parameters, inver-
sions were first performed on synthetic reflectance spec- INTRODUCTION
tra (10 wavelengths in the visible and near-infrared). The The estimation of terrestrial surface properties from op-
simulated spectral and directional reflectances showed tical remote sensing data has been the subject of many
good agreement among the four models. A 1997 airborne studies ever since satellites have permitted the measure-
experiment in the United States was used to test their ment of reflectances over the Earth. Nonetheless, follow-
performance on real data. This experiment gathered a ing the properties of the vegetation from space has been
unique data set composed primarily of 200 reflectance limited by a lack of repeat data acquisitions occurring
spectra acquired over corn (Zea mays L.) and soybean close together in time, as well as by the limited number
(Glycine max) fields, and the corresponding ground truth of spectral wavebands and viewing directions of the sen-
(chlorophyll a1b content and leaf area index). Only the sors. The evolution of technology (improvement of spa-
first three models, which ran fast enough to allow the

tial and spectral resolution and increase in signal-to-noiseprocessing of a large data set, were actually inverted by
ratio), the decreasing cost of the sensors, and a betteriterative optimization techniques. Inversions were con-
understanding of the interaction between radiation andducted in successive stages where the number of re-
plant canopies have opened up new prospects. Untiltrieved parameters was reduced. No significant difference
now, the complexity of the physics of interaction of lightcan be observed between the three models. Globally, the
with matter (absorption, refraction, scattering) has pro-leaf mesophyll structure parameter and leaf dry matter
moted the development and the intensive use of empiri-content couldn’t be estimated. The chlorophyll content,
cal or semiempirical methods to relate simple vegetationthe leaf area index, and the mean leaf inclination angle
indices to biophysical characteristics of plant canopiesyielded better results, although the latter wasn’t validated
such as the leaf area index (LAI) or the fraction of pho-due to missing ground data. Assuming that model inver-
tosynthetically active radiation (fPAR). Classically, thesesion by iterative optimization techniques is a promising
indices are combinations of reflectances measured over
several broad bands. Most of them are scarcely based on
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optimization techniques has arisen as a promising method mogeneous canopies (a definition that is scale-depen-
(Myneni and Ross, 1991; Verstraete et al., 1996) and has dent), one-dimensional radiative transfer models are best
extended to extracting the physical and biological proper- suited to iterative optimization techniques. The early in-
ties of various media, such as the atmosphere, a bare soil, novators in this domain include: Goel and Thompson
or a plant canopy, in parallel to the development of ana- (1984), Goel (1989) pioneered, followed by Otterman
lytical models of optical properties of these media. (1987, 1990), Pinty et al. (1990, 1991, 1996), Kuusk (1991,

When the first inversions were performed in the 1995a), Deering et al. (1992), Privette et al. (1994,
field of remote sensing data interpretation 15 years ago, 1996a, 1996b), and Bicheron and Leroy (1999). These
little came of this technique for operational studies. Until recent works mainly concern the retrieval of canopy ar-
now, they have been mostly considered as a way to vali- chitecture (LAI, leaf angle distribution) by using bidirec-
date radiative transfer models, in general by using the tional reflectances. In the mid-1980s, hyperspectral in-
same limited field data sets used in the forward modeling struments in their turn led to works on the modeling of
direction. With few exceptions (Privette et al., 1996a; Gao high spectral resolution and on the inversion of analytical
and Lesht, 1997; Qiu et al., 1998; Bicheron and Leroy, models to extract information not only about vegetation
1999), they have never emerged as an alternative way to biochemistry (Gao and Goetz, 1995), but also about the
extract information about plant canopies from reflectances. amount of vegetation (Jacquemoud et al., 1995; Asner et
The complexity of the method, as well as prohibitive cal- al., 1998). Recently, projects like the EOS platform have
culation times in the past, are without doubt the two reenergized the notion of synergy between spectral and
main reasons for that failure. A successful inversion is bidirectional data. Inverting models on these data should
the conjunction of three factors: a good model, an appro- lead to better characterization of terrestrial surfaces in
priate inversion procedure, and a set of calibrated reflec- the future. However, considering that there are already
tances. Only the first factor will be detailed in this paper. many impressive codes at leaf and canopy levels, the de-

Remote sensing, as in many scientific disciplines, velopment of new models has been stated to be of sec-
uses modeling that consists of an abstract and simplified ondary importance with regard to the practical use of ex-
version of reality. What is a good model? From our per- isting ones (Wickland and Smith, 1995).
spective, the choice of the model is governed by a few This creates a question: Which model is the best
rules: With many parameters, it is clear that one can al- suited for a given application? Although the models used
ways construct a mathematical model describing any situa- by the authors quoted above meet the requirements for
tion, but this is obviously not the real problem. The chal- a good inversion, no one can answer this question. In
lenge, rather, consists in constructing a model that does this paper, we compare the performance of four one-
not rely excessively on untestable mathematical hypothe- dimensional radiative transfer models of plant canopies
ses (i.e., that has a physical meaning). Thus, there is a reflectance, first in direct mode and then by invertingconflict between the strict adhesion to empirical data,

them on the same data set. A strict comparison of theircommonly called the fit, and the number of input param-
performance must imply that these models accept theeters used by a model: a lot of parameters may provide
same input parameters. For instance, a study contrastinga good fit but also imply a complicated model. For the
a one-dimensional to a three-dimensional radiative trans-purposes of classical inversion (i.e., iterative optimization
fer model would be meaningless since these models aretechniques), the best model is a compromise between a
built on different hypotheses and they don’t do the samefew parameters and a good fit (Thom, 1983). That state-
job. The first part of this paper is a short description ofment directly excludes ray tracing or three-dimensional
the four models that are structured as a combination ofradiative transfer models that require a detailed descrip-
a leaf optical properties model and four bidirectionaltion of the canopy architecture and, in consequence,
canopy reflectance models. Their behavior in the directpowerful computers and long calculation times to simu-
mode is analyzed before introducing the inverse problemlate reflectances. As the merit function may be called
with a theoretical study and a validation over corn andhundreds of times, detailed models will imply a very slow
soybean fields.inversion. They are consequently better suited to neural

networks or lookup tables. Although the running time of
a model on a given computer depends on many factors, THE MODELS
it is unfortunately never discussed in publications. This

The schema that consists of running together a canopyelement, however, is critical for successful applications.
reflectance model and a leaf optical properties model isAnother condition that governed the choice of a particu-
now widespread in the literature (Jacquemoud et al.,lar model is that its input parameters represent quanti-
1994, 1995; Kuusk, 1995b; Bicheron and Leroy, 1999;ties measurable in the field and interpretable in terms of
Pragnère et al., 1999). At scales of both the leaf and theplant biophysical characteristics. This criterion excludes
canopy, the models have been adapted to provide thesome parametric models that are nevertheless used for

other purposes. Although they only apply to limited ho- best tool for comparison.
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Figure 1. Specific absorption coefficient of (left scale) chloro-
phyll a1b (cm2 lg21) and (right scale) water (cm2 g21) and dry Figure 2. Root mean square errors between the measured and
matter (cm2 g21). simulated reflectance and transmittance data.

At Leaf Level At Canopy Level
The last version of the PROSPECT model (Jacquemoud Leaves are the main surfaces of green plant canopies. It’s
et al., 1996) including the leaf biochemistry has been no wonder that leaf optical properties are the major in-
simplified by Baret and Fourty (1997), who considered put parameters common to all canopy reflectance mod-
the dry matter content Cm as a whole instead of individu- els. The choice of a model is driven by a variety of fac-
ally treating the protein, cellulose, lignin, and so on. Cm tors detailed earlier. One-dimensional radiative transfer
expressed in g cm22 is equivalent to the specific leaf area models proved to meet these requirements. An excellent
(SLA), which is essential in plant growth studies and review of photon transport in leaf canopies can be found
which is a major input parameter of ecosystem function- in Myneni and Ross (1991). These models apply to ho-
ing models. In short, PROSPECT requires the leaf struc- mogeneous absorbing and diffusing media, and they pro-
ture parameter N, the chlorophyll a1b content Cab (lg ceed from the same transfer equation. They differ from
cm22), the equivalent water thickness Cw (g cm22), and one another in the way this equation is solved. For in-
the dry matter content (g cm22) to simulate leaf reflec- stance, different approximations may be used to calculate
tance and transmittance spectra in the optical domain. the hot spot effect or the multiple scattering in the can-
Since Baret and Fourty (1997) have restricted their study opy. One of the most popular models is the SAIL model
to the middle infrared, we decided to validate PROS- (Verhoef, 1984, 1985), which was adapted in the early
PECT on the whole optical domain in the same way as 1990s by A. Kuusk (personal communication) to take into
Jacquemoud et al. (1996). Figure 1 presents the specific account the hot spot effect. This success is attached to a
absorption coefficient of chlorophyll, water, and dry mat- simple and fast code that accurately calculates the reflec-
ter as a function of the wavelength. The action spectrum tance of homogeneous crops. Since then, many other
of chlorophyll species ranges from 400 nm to 700 nm, outstanding codes have been proposed in the literature,
while water and dry matter present absorption features but they have been rarely compared to each other in
only after 950 nm. There is nearly constant absorption terms of accuracy, speed, or invertibility. For that reason,
of radiation across the visible spectrum by dry matter, in addition to the SAIL model, we have chosen the IAPI
however, as confirmed experimentally by albino leaves. model developed by Iaquinta and Pinty (1994), the
The inversion of PROSPECT on 63 reflectance and trans- KUUSK model based on a Markov chain approach
mittance spectra of the LOPEX93 data set (Hosgood et (Kuusk, 1995b) to describe the architecture, and the
al., 1995) shows that the chlorophyll, water, and dry mat- NADI semidiscrete model recently published by Gobron
ter can be retrieved with an R2 of 0.67, 0.95, and 0.65, et al. (1997). We have no intention here of detailing
respectively, which is a satisfactory result for fresh leaves. these four models. Only improvements in the original
In terms of reflectance and transmittance reconstruction, versions will be described; otherwise the reader is re-
the results also show a very good agreement between the ferred to the above-mentioned publications. In spite of
63 measured and simulated spectra (Fig. 2), with a root their similarities, these models were not immediately
mean square error less than 0.02 (0.014 on average for comparable. For instance, three different leaf angle dis-

tribution (LAD) functions were used: continuous ellipsoi-reflectance and 0.017 on average for transmittance).
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Table 1. An Example of PROSAIL Input and Output Files

input.m output.m

Parameters5[ 30.0 60.0 30.0 .0 30.00 60.0
4 0 % isat .0 .0 .0 .0 180.0 180.0

30.0 0 % Theta_s, Phi_s 500.00 .0377 .0424 .0293 .0237 .0222
57.0 0 % Theta_1 595.00 .0778 .0846 .0591 .0501 .0535

2.0 0 % LAI 677.50 .0466 .0636 .0421 .0335 .0295
1.5 0 % N 800.00 .4061 .3953 .3029 .2803 .3228

35.0 0 % Cab 1707.50 .1981 .2340 .1667 .1459 .1567
0.0150 0 % Cw 2187.50 .0676 .0978 .0647 .0545 .0558
0.0100 0 % Cm
0.250 0 % Sl

50.0 0 % vis
5 0 % na

60.0 0.0 % Theta_v(j), Phi_v(j)
30.0 0.0

0.0 0.0
30.0 180.0
60.0 180.0

];

Simulations have been performed for the six TM wavebands (isat54) and five viewing angles (na55) distributed around the nadir. The six wavelengths
in the first column of output.m correspond to the maximum sensitivity of each filter function of the TM instrument.

dal (SAIL) or elliptical (KUUSK) inclination angle distri- ter, which determines the ellipse eccentricity. Another
example is given by the hot spot parameter Sl, definedbutions, and the six discrete Bunnik functions (IAPI and

NADI) that are supposed to cover a large range of leaf as the ratio between the radius of a single leaf and the
canopy height in SAIL, KUUSK, and NADI, but as theinclinations. A discrete function is obviously not adapted

to inversions unless the canopy architecture is known a average radius of the sun flecks in IAPI. Gobron et al.
(1997) showed that the latter definition could be relatedpriori. After comparing all the leaf angle distributions

proposed until today (i.e., polynomial, trigonometric, to the first one so that all four models now use the first
definition of Sl to take into account the hot spot effect.beta, ellipsoidal, and elliptical), we fixed our choice on

the ellipsoidal one (Campbell, 1990). It is only character- Other minor parameters, such as the Markov parameter
in KUUSK and the horizontal visibility in SAIL, haveized by a mean leaf inclination angle hl since the leaf

azimuth angle is assumed to be randomly distributed. been fixed to make the best comparison between the four
models. Finally, they have been coupled to the PROS-The corresponding change was made for SAIL, IAPI,

and NADI but not for KUUSK, whose LAD can be PECT model and, for this paper, renamed PROSAIL,
PROSIAPI, PROKUUSK, and PRONADI.matched to the ellipsoidal one by fixing the eln parame-

Figure 3. Canopy spectral reflectance simulated by PROSAIL, PROSIAPI, PROKUUSK, and PRONADI at
nadir (hv508) and in the hot spot direction (hv5308). The shape of a standard soil reflectance spectrum is
added. The differences between the maximum and minimum reflectance are drawn on the right with the average
over the wavelengths.
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Figure 4. Directional reflectance simulated by PROSAIL, PROSIAPI, PROKUUSK, and PRONADI,
at 675 nm and 810 nm. The differences between the maximum and minimum reflectance are drawn
on the right with the average over the directions.

Typical PROSAIL input and output files can be seen VALIDATION
in Table 1. For a given parameter set, both spectral and Verstraete et al. (1996) gave an excellent review of the
directional reflectances are calculated after choosing the philosophy of inversion. However, other than the theory,
type of sensor (isat) and the number of viewing angles there are several ways to invert a model according to the
(na). Besides the most common space-borne sensors code itself, the nature and the number of the radiometric
(HRV, TM, AVHRR, AVIRIS, etc.) available, any new data available (spectral or directional reflectances), and
one can easily be introduced in the codes as long as the the optimization algorithm. We will restrict the scope of
spectral response of the filter functions is known. Assum- this study to reflectances acquired at nadir in 10 wave-
ing a sun zenith angle of 308, the reflectance of a stan- bands nearly regularly spaced out in the visible/near-
dard plant canopy (N51.5, Cab535 lg cm22, Cw50.015 infrared domain from 430 nm to 880 nm. The latter
g cm22, Cm50.01 g cm22, LAI52, spherical leaf angle were resampled from the 48 Compact Airborne Spectro-
distribution or hl<578, Sl50.25) has been calculated from graphic Imager (CASI) spectral bands to study crop de-
400 nm to 2500 nm (in 5-nm steps) and from hv508 to velopment. Then inversions consist in minimizing the
hv5898, in the backward and forward directions (in 18 merit function v2, shown in Eq. (1) as:
steps). The Lambertian soil reflectance can be seen in
Figure 3. The latter shows quite a good superposition of v25o

10

k51

[qmeas(k)2qmod(k,H)]2 (1)
the four reflectance curves simulated at nadir (hv508)
and in the hot spot direction (hv5308), considering the where Q is the vector of parameters to retrieve. Among
various mathematical formalisms of these models. The the parameters used in direct mode, some of them like
differences are generally maximum in the near-infrared, Cw have no influence on the reflectance in the visible/
which is not surprising since these models are distinguish- near-infrared; other ones like Sl have discriminable ef-
able from each other by the way that multiple scattering fects only around the hot spot direction. It may be diffi-
is accounted for. In the visible, the strong absorption of cult or impossible to retrieve their value. Consequently,
radiation by chlorophylls smoothes the divergences. The we shall maintain them as a constant. The E04JAF rou-
differences also depend on the viewing direction, but tine from the Numerical Algorithms Group (NAG) li-
surprisingly not consistently as a function of the wave- brary, which is based on a Quasi-Newton algorithm and
length. The canopy reflectance simulated at 675 nm and only requires function evaluations, was chosen to mini-
810 nm as a function of the viewing zenith angle also mize v2. This algorithm is now well known and com-
shows a good agreement both in the forward and back- monly used in remote sensing, so we won’t describe it
ward directions (Fig. 4). As seen earlier, the discrepancy further. The initial parameter guess has been fixed to
is maximum in the near-infrared and varies as a function N51.5, Cab550 lg cm22, Cm50.015 g cm22, LAI53, and
of the viewing zenith angle. These results, however, hl5458. To avoid function evaluations at nonsensical
don’t allow us to draw any conclusion from the accuracy points, the parameters were bounded by the applicability
of one model with regard to the others. A validation of of the models (1,N,2.5, 1,Cab,100 lg cm22,
the four models (i.e., inversions performed on the same 0.05,LAI,10, and 58,hl,858). The E04JAF routine

provides an error flag, ifail, indicating whether the condi-data set) should enlighten us on this question.
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Table 2. Inversions on Simulated Reflectances

Simulated by

Inverted by PROSAIL PROSIAPI PROKUUSK PRONADI

PROSAIL
N 1.51 1.59 1.40 1.39
Cab 35.0 39.6 29.3 36.1
Cm 0.0100 0.0104 0.0048 0.0116
LAI 2.01 2.32 2.10 2.26
hl 57.2 56.8 62.2 59.1
RMSE 0.0000 0.0003 0.0028 0.0005
CNTR 585 350* 521 557
cpu time 11″ 6″ 9″ 10″

PROSIAPI
N 1.35 1.51 1.30 1.37
Cab 30.3 35.1 20.4 32.8
Cm 0.0098 0.0101 0.0043 0.0123
LAI 1.73 2.00 2.32 1.97
hl 57.0 57.0 72.7 59.4
RMSE 0.0003 0.0000 0.0018 0.0009
CNTR 570 451 951* 888
cpu time 2952″ 2916″ 5904″ 4927″

PROKUUSK
N 1.00 1.00 1.56 1.00
Cab 33.1 36.2 35.8 36.0
Cm 0.0118 0.0114 0.0103 0.0148
LAI 1.66 1.92 1.99 1.83
hl 23.1 22.8 54.3 25.2
RMSE 0.0016 0.0017 0.0001 0.0020
CNTR 1373* 484 585* 301
cpu time 19″ 7″ 8″ 4″

PRONADI
N 1.43 1.48 1.42 1.33
Cab 34.3 34.4 32.8 36.9
Cm 0.0160 0.0070 0.0154 0.0154
LAI 2.03 2.09 2.01 1.94
hl 47.2 55.6 47.6 48.3
RMSE 0.0025 0.0009 0.0052 0.0017
CNTR 684 676 395 500
cpu time 2h50928″ 2h51936″ 1h38931″ 2h04943″

The RMSE and the ratio of the cpu time to the number of calls of the merit function (CNTR)
give an idea of the performance of inversions. Cab is expressed in lg cm22, Cm in g cm22, and
hl in degrees. Stars indicate cases for which the algorithm didn’t converge after 4003552000
function evaluations and for which the initial parameter set was reinitialized; cpu5central pro-
cessing unit. Calculations were performed on a CRAY J90 (1600 Mflops).

tions for a minimum are satisfied or not: the degree of model in the 10 wavebands described previously under
confidence in the result decreases as ifail increases. The fixed conditions (sun zenith angle of 308, standard Lam-
mean number of calls of the merit function v2 (CNTR) bertian soil of Fig. 3, and hv508). Testing the inversion
is informative about the convergence speed, but as the procedure on a synthetic data set generated by the
running time of the models might be variable, the cen- model itself gives an idea of the invertibility of the
tral processing unit (cpu) time necessary to achieve the model. While this step is not a proof, it is a prerequisite
inversions on a given machine was also considered. Fi- before going further. The diagonal of Table 2 (in bold)
nally, the root mean square error (RMSE) of the fit de- shows the excellent behavior of the four models in self-
fined as √v2/n tells us how well the calculated canopy re- inversion mode. We subsequently found interesting re-
flectances (using the model and the fitted parameters) sults when we inverted each model on reflectance spec-
match the measured ones. Before comparing the four tra generated by the other three models. Such a study is
models on a large field data set, the inversions were per- an original way to evaluate the robustness of the inver-
formed on synthetic data. sion procedure when radiometric data are biased due to

an approximate calibration. This sometimes happens dur-
Synthetic Data ing airborne campaigns (for instance, due to a lack of

atmospheric measurements over the study site). Then, aLet us consider the standard canopy shown in Table 1.
Canopy reflectance spectra have been calculated by each systematic over- or underestimation of the reflectance
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Table 3. Results of the 200 Inversions Performed by PROSAIL, PROSIAPI, and PROKUUSK

# Model hl cpu Time CNTR RMSE DCab n_Cab DLAI n_LAI

5 PROSAIL 70.38/55.68 9930″ 376 0.0052/0.0083 34.5/13.5 165 1.36/1.91 152
PROSIAPI 66.68/51.48 12h23918″ 570 0.0005/0.0009 30.2/13.1 165 1.52/2.07 162
PROKUUSK 54.48/44.08 4957″ 349 0.0081/0.0076 23.3/22.0 115 1.15/1.13 155

4 PROSAIL 66.58/55.98 5944″ 264 0.0061/0.0087 26.1/13.8 145 1.41/2.00 169
PROSIAPI 64.28/51.08 7h38910″ 401 0.0055/0.0087 28.2/14.4 148 1.49/1.91 168
PROKUUSK 54.98/49.78 2943″ 236 0.0129/0.0080 24.6/18.0 105 1.11/1.56 167

3 PROSAIL 60.78/54.08 3919″ 153 0.0073/0.0084 22.7/17.1 152 1.40/1.35 166
PROSIAPI 56.78/47.88 5h47940″ 301 0.0071/0.0085 25.0/15.4 172 1.62/1.66 178
PROKUUSK 59.18/51.78 1950″ 154 0.0140/0.0083 21.0/22.2 127 1.28/1.21 173

2 PROSAIL x 1902″ 53 0.0130/0.0109 19.4/19.0 131 1.11/1.63 175
PROSIAPI x 1h06948″ 68 0.0148/0.0111 16.3/20.9 126 1.24/1.45 175
PROKUUSK x 38″ 53 0.0150/0.0103 18.2/18.6 128 1.20/1.76 174

When two values are given, the first corresponds to corn fields and the second to soybean fields. The first column is the number of free parameters.
The cpu time is the total time necessary to invert a model on 200 reflectance sets. CNTR is the mean number of calls of the merit function. DCab is
expressed in lg cm22. Among the 200 plots, only 190 values of Cab and 180 values of LAI were available: n_Cab and n_LAI are the number of data
points used to calculate DCab and DLAI, which exclude the cases considered as failures by E04JAF. Calculations were performed on a IBM RS/6000
(480 Mflops).

may occur. The cross-inversions show some peculiar same minimization algorithm and initial parameters), ex-
cept that only PROSAIL, PROSIAPI, and PROKUUSKbehaviors like the difficulty of PRONADI and PRO-

KUUSK to retrieve the right mean leaf inclination angle. were considered. The reason for excluding PRONADI at
this stage in the study is due to the slowness of this code.Calculations performed with directional data provide

much better results (unpublished results), which tends to It doesn’t presume upon the accuracy of the model and
its use with other inversion techniques, but it makes tra-prove that these two models get things confused between

hl and some other parameters when only spectral reflec- ditional inversions by iterative methods impossible. The
soil reflectance has been measured separately on eachtances are available. Cab and LAI are globally well esti-
plot before the growing season. It is assumed to bemated over the 10 spectral wavebands. For inversions
known and to be Lambertian. The three models havewith a given model, CNTR varies by twice as much de-
been compared in inverse mode in terms of computationpending on which model is used to compute the reflec-
time, RMSE, and accuracy defined as the mean distancetance. But the most significant result is the markedly dif-
from the measured values of LAI and Cab to the globalferent cpu time of the inversions with the four different
minimum. The calculation of the accuracies of DCab andmodels and for the same number of calls of the merit
DLAI excludes the cases that among the 200 inversionsfunction.
performed on canopy reflectances were considered as
failures (with regard to the E04JAF’s flag). In the firstField Data
run, we allow five free parameters, and then reduce thisA field experiment was organized in 1997 in Minnesota
number in subsequent runs to see to what extent addi-on behalf of Matra Marconi Space. The main goal was to
tional constraints improve the inversions. Table 3 sum-compare crop parameters estimated with remote sensing
marizes all these results.techniques to the ground truth. About 20 soybean (Gly-

cine max) and 20 corn (Zea mays L.) parcels were over- Step 1: Assume that N, Cab, Cm, LAI, and hl are esti-
flown by CASI on five different dates covering the grow- mated at once. For corn, the leaf structure
ing season, giving rise to an impressive data set, with 200 parameter N is stuck to the upper bound
spectra available together with some canopy biophysical (PROSAIL and PROSIAPI) or to the lower
characteristics like the green LAI or Cab. LAI and Cab one (PROKUUSK), while no real trend can
have been measured in situ respectively with the LAI- be detected for soybean. The retrieved val-
2000 plant canopy analyzer and the Minolta SPAD-502 ues of the dry matter content Cm also can-
chlorophyll meter. We were informed afterward that not be interpreted. Since the ground truth is
some calibration problems might affect the chlorophyll not available for the leaf inclination angle hl,
content measurements of corn leaves because the use of the averages of the estimated values of this
the SPAD-502 is based on a very strict procedure that parameter have been calculated for each
hadn’t been totally applied. The reflectance spectra mea- crop, excluding the lower (58) and upper
sured both over bare soils and crops have been cali- (858) bounds. The values of Table 3 seem to
brated (geometric, radiometric, and atmospheric correc- overestimate the ones expected for these
tions) to obtain top-of-canopy reflectances and were plants. However, the results are coherent
resampled to fit the 10 wavebands defined earlier. The since corn (erectophile distribution) has

more vertical leaves than soybean (sphericalinversions were conducted as previously (i.e., with the
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Figure 5. Comparison between measured leaf chlorophyll content Cab (in lg cm22) and values estimated through (a)
PROSAIL, (b) PROSIAPI, and (c) PROKUUSK inversion using 10 wavelengths in the visible and near-infrared. Circles
stand for corn and stars for soybean. LAI and hl are the two other free parameters.

distribution). The comparison between esti- which are reliable. Figures 5 and 6 give a
clearer idea of the behavior of these last twomated and measured Cab shows a much

larger discrepancy for corn than for soybean, parameters. The marks at the top of the fig-
ures mean that the upper bound has beenprobably due to the above-mentioned calibra-

tion problems. The LAI is retrieved with reached during the inversion: The statistics
good accuracy. PROSIAPI is extremely slow of Table 3 consequently don’t include these
as compared to the other two models, but it values. Although Cab for soybean doesn’t fol-
provides the best reflectance reconstructions. low the one-to-one line, one can see a good

Step 2: To refine the inversions, some constraints relationship between the measured and re-
were introduced by fixing Cm. For instance, trieved values (R50.76, 0.75, and 0.71, re-
in natural conditions, the dry matter content spectively, for PROSAIL, PROSIAPI, and
Cm varies from 0.0019 g cm22 to 0.0135 g PROKUUSK), which overestimates high con-
cm22 (Hosgood et al., 1995) with an average centrations and underestimates low concen-
of 0.045 g cm22. Since there was no signifi- trations.
cant difference between the monocotyledons Step 4: The last series of inversions is the most re-
(i.e., corn) and the dicotyledons (i.e., soy- strictive since only Cab and LAI are kept
bean), Cm was set to the above average free. The mean leaf inclination angle is fixed
value. The behavior of N is still confused; to values determined in the previous step
the leaf inclination provides the same results (Table 3). In many cases, the E04JAF error
as in Step 1; and no significant improvement flag expressed doubt about the solution,
was observed for the estimation of Cab and probably because of the lack of degrees of
LAI (Table 3). freedom during the inversion procedure.

Step 3: In this step we fixed the leaf structure pa- This is corroborated by a higher RMSE.
rameter N. The leaf optical properties of corn
and soybean are quite distinct in the near-

DISCUSSION AND CONCLUSIONinfrared where scattering predominates. On
average, N51.4 for corn and N51.7 for soy- The comparison of four radiative transfer models in di-

rect mode and three of them in inverse mode is instruc-bean. These values issue from inversions per-
formed with PROSPECT on leaf spectra. tive. When a new model appears “on the market,” it is

generally validated on a unique and restricted data setThen PROSAIL, PROSIAPI, and PROKU-
USK have been inverted on three parame- that cannot stand for a categorical proof. Moreover, the

difficulties that necessarily occur during the inversionsters: Cab, LAI, and hl. The mean leaf inclina-
tion angles are surprisingly similar for the are generally avoided, and the computer powers or the

calculation times required to invert the model are barelythree models. LAI is better retrieved than
before, while Cab estimates seem to deterio- described. Our goal here was not to validate the models

(it has already been done by their authors) but to evalu-rate for soybean in situ measurements of
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Figure 6. Comparison between measured leaf area index LAI and values estimated through (a) PROSAIL, (b) PROSIAPI,
and (c) PROKUUSK inversion using 10 wavelengths in the visible and near-infrared. Circles stand for corn and stars for
soybean. Cab and hl are the two other free parameters.

ate their performance with the focus on applying them version procedures be speeded up before they become
widely used. Moreover, although inversion applies in the-operationally in remote sensing studies. This means that

objective criteria suitable for comparison can be defined; ory to each pixel independently, a new methodology
should also be developed to improve its efficiency whenit also means that we are able to hierarchize them. For

instance, is a fast, moderately accurate model better than hundreds or thousands of pixels are analyzed. Finally, the
last factor is the quality of the data (i.e., the measureda slow, highly accurate one? The answer is conditional

and not easy to evaluate. As a preliminary, we stated that reflectances that are the fixed part of the merit function)
and the biophysical parameters (leaf biochemicals anda good model was a compromise between a few parame-

ters and a good fit for traditional inversion purposes. It canopy architecture) that will allow the validation of the
model. Many studies obviously consider that these twois also a compromise between a fast running time and

good accuracy. conditions are satisfied, although in reality, they are only
approximated due to calibration and measurement er-Therefore, a model inversion that lasted several min-

utes to several hours was not satisfying, regardless of rors. The problems associated with the use of the Mi-
nolta SPAD-502 chlorophyll-meter encountered in thiswhatever accurate results it produced. For that very rea-

son, PRONADI was discarded for our inversions on field study is a good example. Anyway, although these ques-
tions are essential whenever remote sensing data are pro-data. An approach using neural networks or lookup ta-

bles, for instance, might produce a different conclusion. cessed, they were beyond the scope of this paper, and
we have not developed them. These remain as interest-If the running time prevails over the accuracy, then

PROKUUSK,PROSAIL,PROSIAPI,PRONADI. If the ing problems to dwell on in future studies nevertheless.
Is inversion by iterative optimization techniques aaccuracy on Cab is considered the preeminent factor, then

PROSAIL,PROSIAPI,PROKUUSK; if it is the accu- method with a future? Do the accuracies obtained with
these methods satisfy ecologists and agronomists for theirracy on LAI, then PROKUUSK,PROSAIL,PROSIAPI

(Table 3). The differences, however, are less noticeable application models? These questions are still points at
issue since there is a lack of studies in the literature con-than those for running times. Without digressing into all

the details, it was a surprise to see a certain coherence cerning chlorophyll and LAI estimation by model inver-
sion. Recent works in precision farming, however, sug-between the four models in direct mode, and between

PROSAIL, PROSIAPI, and PROKUUSK, in inverse gest that such methods may provide better estimations
than the NDVI, a classical vegetation index, when themode. It is consequently virtually certain that any other

model named PRO-X that was also based on the radia- NDVI is directly calibrated with field data (H. Poilvé,
unpublished data). If confirmed, these results are verytive transfer equation would lead to similar conclusions.

Besides the choice of a good model, an appropriate promising and encourage the development of new inver-
sion algorithms as was recently recommended by theinversion procedure and a set of calibrated reflectances

were the other two conditions identified for a successful NASA “Ecological Processes and Modeling” program
(Privette et al., 1997).inversion in the introduction. The choice of an optimiza-

tion algorithm is a complex question that has not been
studied much (Jacquemoud et al., 1994; Renders and This work was supported by Matra Marconi Space under con-

tract no. 11426 with the Laboratoire Environnement et Dével-Flasse, 1996). Operational prospects will require that in-
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